Exam
 Set theory, LOG120

2018-11-01

This exam is marked and graded anonymously using code numbers. Please enter your name and personal identity number below. Then enter only the code number on each answer sheet.

Name / Namn:

Personal identity number / Personnummer:

Code number / Tentamensnummer:

No aids are permitted.

1. Give, if possible, examples of sets, whose existence is provable in ZF such that
(a) $x \in y$ and $x \nsubseteq y$
(b) $x \subseteq y$ and $x \notin y$
(c) $x \in y$ and $x \subseteq y$.
2. Let R be a relation on $\mathbb{N} \times \mathbb{N}$, i.e., $R \subseteq(\mathbb{N} \times \mathbb{N}) \times(\mathbb{N} \times \mathbb{N})$, such that (3p) $(x, y) R(z, w)$ iff $x \leq z$ and $y \leq w$.
(a) Is R a total order (linear order)?
(b) Is there a maximal and/or least element?
(c) Does every subset of $\mathbb{N} \times \mathbb{N}$ has a least element?
3. (a) Give the definition of two sets X and Y having the same cardinality, i.e., of $X \approx Y$.
(b) Find a proper subset $A \subsetneq \mathbb{N}$ such that $A \approx \mathbb{N}$. Prove it.
4. (a) Let A and B be sets, what is A^{B} ?
(b) Give an explicit description of A^{\emptyset} by listing all its elements.
5. (a) What is an ordinal nmumber? Define.
(b) What is a transitive set? Define.
(c) Give an example of a transitive set that is not an ordinal number.
6. (a) Define the notion $A \preceq B$ and $A \prec B$?
(b) Prove directly, without using Cantor's theorem, that $\mathbb{N} \prec 2^{\mathbb{N}}$.
7. (a) If A and B are well-ordered by $<_{A}$ and $<_{B}$ respectively, defined $A+B$ and $A \times B$.
(b) Which well-orders A are such that $1+A \cong A$?
(c) Which well-orders B are such that $2 \times B \cong B$?

Max points: 24. 12 points are required for Pass (G) and 18 for Pass with distinction (VG).
Fredrik Engström, fredrik.engstrom@gu.se, 031 - 7866335

