Exam Logical theory part I, LOG110

2018-10-30

This exam is marked and graded anonymously using code numbers. Please enter your name and personal identity number below. Then enter only the code number on the answer sheets.

Name / Namn:	
Personal identity number / Personnumme	er:
Code number / Tentamensnummer:	

EXAM 2018-10-30 Logical theory part I, LOG110

(4p)

No aids are permitted.

- 1. Derive the following sentences using natural deduction: (4p)
 - (a) $\neg \neg p \rightarrow p$
 - (b) $(p \lor \bot) \to p$
 - (c) $\forall x(\varphi(x) \lor \psi) \to (\forall x \varphi(x) \lor \psi)$, where x does not occur in ψ .
- 2. Show that

(a)
$$\forall \forall x \exists y P(x, y) \rightarrow \exists y \forall x P(x, y), \text{ and}$$

(b) $\forall (\forall x Q(x) \rightarrow R) \rightarrow \forall x (Q(x) \rightarrow R).$

- 3. Prove that $\varphi, \psi \models \sigma$ iff $\models (\varphi \land \psi) \to \sigma$. (3p)
- 4. Prove that the following statements are equivalent, e.g., by proving that (4p) (a) implies (b), (b) implies (c) and (c) implies (a):
 - (a) Γ is consistent, i.e., $\Gamma \not\vdash \bot$.
 - (b) There is no φ such that $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$.
 - (c) There is a sentence φ such that $\Gamma \not\vdash \varphi$.
- 5. Consider $\exists x P(f(x)) \to (\neg \forall y P(y) \to \exists x f(x) = x)$ and find (3p)
 - (a) a prenex normal form, and
 - (b) a Skolem form.
- 6. Let Γ be a finite set of sentences. Describe how to construct a maximally (3p) consistent extension T of Γ and prove that the extension is complete, i.e., that for each sentence φ in the language of T: T ⊢ φ or T ⊢ ¬φ.
- 7. Let $\underline{A} = \langle A, \sim \rangle$, where $A = \mathbb{N} \times \mathbb{N}$ and $\langle n, k \rangle \sim \langle n', k' \rangle$ iff k = k' and let (3p) $T = \text{Th}(\underline{A})$. Show that if $\underline{B} \models T$ is a countable model of T then $\underline{A} \cong \underline{B}$ and write down a set of sentences Γ such that $\Gamma \equiv T$.

Max points: 24. 12 points are required for Pass (G) and 18 for Pass with distinction (VG).

Fredrik Engström, fredrik.engstrom@gu.se

FLoV Göteborgs universitet