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Part I

Propositional Logic

Chapter 1

Syntax and Semantics

1.1 Introduction

Propositional logic deals with formulas that are built from
propositional variables using the propositional connectives ¬,
∧, ∨,→, and↔. Intuitively, a propositional variable ? stands
for a sentence or proposition that is true or false. Whenever
the “truth value” of the propositional variable in a formula is

1



1. Syntax and Semantics

determined, so is the truth value of any formulas formed from
them using propositional connectives. We say that proposi-
tional logic is truth functional, because its semantics is given
by functions of truth values. In particular, in propositional
logic we leave out of consideration any further determination
of truth and falsity, e.g., whether something is necessarily
true rather than just contingently true, or whether something
is known to be true, or whether something is true now rather
than was true or will be true. We only consider two truth
values true (T) and false (F), and so exclude from discussion
the possibility that a statement may be neither true nor false,
or only half true. We also concentrate only on connectives
where the truth value of a formula built from them is com-
pletely determined by the truth values of its parts (and not,
say, on its meaning). In particular, whether the truth value
of conditionals in English is truth functional in this sense is
contentious. �e material conditional→ is; other logics deal
with conditionals that are not truth functional.

In order to develop the theory and metatheory of truth-
functional propositional logic, we must �rst de�ne the syntax
and semantics of its expressions. We will describe one way
of constructing formulas from propositional variables using
the connectives. Alternative de�nitions are possible. Other
systems will chose di�erent symbols, will select di�erent sets
of connectives as primitive, will use parentheses di�erently
(or even not at all, as in the case of so-called Polish notation).
What all approaches have in common, though, is that the

2



1.1. Introduction

formation rules de�ne the set of formulas inductively. If done
properly, every expression can result essentially in only one
way according to the formation rules. �e inductive de�nition
resulting in expressions that are uniquely readable means
we can give meanings to these expressions using the same
method—inductive de�nition.

Giving the meaning of expressions is the domain of seman-
tics. �e central concept in semantics for propositonal logic
is that of satisfaction in a valuation. A valuation E assigns
truth values T, F to the propositional variables. Any valuation
determines a truth value E (i) for any formula i . A formula is
satis�ed in a valuation E i� E (i) = T—we write this as E � i .
�is relation can also be de�ned by induction on the structure
of i , using the truth functions for the logical connectives to
de�ne, say, satisfaction of i ∧k in terms of satisfaction (or
not) of i andk .

On the basis of the satisfaction relation E � i for sentences
we can then de�ne the basic semantic notions of tautology,
entailment, and satis�ability. A formula is a tautology, � i ,
if every valuation satis�es it, i.e., E (i) = T for any E . It is
entailed by a set of formulas, Γ � i , if every valuation that
satis�es all the formulas in Γ also satis�es i . And a set of
formulas is satis�able if some valuation satis�es all formulas in
it at the same time. Because formulas are inductively de�ned,
and satisfaction is in turn de�ned by induction on the structure
of formulas, we can use induction to prove properties of our
semantics and to relate the semantic notions de�ned.

3



1. Syntax and Semantics

1.2 Propositional Formulas

Formulas of propositional logic are built up from propositional
variables and the propositional constant ⊥ using logical con-
nectives.

1. A countably in�nite set At0 of propositional variables
?0, ?1, . . .

2. �e propositional constant for falsity ⊥.

3. �e logical connectives: ¬ (negation), ∧ (conjunction),
∨ (disjunction),→ (conditional)

4. Punctuation marks: (, ), and the comma.

We denote this language of propositional logic by L0.
In addition to the primitive connectives introduced above,

we also use the following de�ned symbols:↔ (biconditional),
> (truth)

A de�ned symbol is not o�cially part of the language,
but is introduced as an informal abbreviation: it allows us to
abbreviate formulas which would, if we only used primitive
symbols, get quite long. �is is obviously an advantage. �e
bigger advantage, however, is that proofs become shorter. If a
symbol is primitive, it has to be treated separately in proofs.
�e more primitive symbols, therefore, the longer our proofs.

You may be familiar with di�erent terminology and sym-
bols than the ones we use above. Logic texts (and teachers)

4



1.2. Propositional Formulas

commonly use either ∼, ¬, and ! for “negation”, ∧, ·, and & for
“conjunction”. Commonly used symbols for the “conditional”
or “implication” are→,⇒, and ⊃. Symbols for “biconditional,”
“bi-implication,” or “(material) equivalence” are↔,⇔, and ≡.
�e⊥ symbol is variously called “falsity,” “falsum,” “absurdity,”
or “bo�om.” �e > symbol is variously called “truth,” “verum,”
or “top.”

De�nition 1.1 (Formula). �e set Frm(L0) of formulas of
propositional logic is de�ned inductively as follows:

1. ⊥ is an atomic formula.

2. Every propositional variable ?8 is an atomic formula.

3. If i is a formula, then ¬i is formula.

4. If i andk are formulas, then (i ∧k ) is a formula.

5. If i andk are formulas, then (i ∨k ) is a formula.

6. If i andk are formulas, then (i→k ) is a formula.

7. Nothing else is a formula.

�e de�nition of formulas is an inductive de�nition. Es-
sentially, we construct the set of formulas in in�nitely many
stages. In the initial stage, we pronounce all atomic formulas
to be formulas; this corresponds to the �rst few cases of the
de�nition, i.e., the cases for ⊥, ?8 . “Atomic formula” thus
means any formula of this form.

5



1. Syntax and Semantics

�e other cases of the de�nition give rules for constructing
new formulas out of formulas already constructed. At the
second stage, we can use them to construct formulas out
of atomic formulas. At the third stage, we construct new
formulas from the atomic formulas and those obtained in
the second stage, and so on. A formula is anything that is
eventually constructed at such a stage, and nothing else.

De�nition 1.2. Formulas constructed using the de�ned op-
erators are to be understood as follows:

1. > abbreviates ¬⊥.

2. i↔k abbreviates (i→k ) ∧ (k → i).

De�nition 1.3 (Syntactic identity). �e symbol≡ expresses
syntactic identity between strings of symbols, i.e., i ≡ k i� i
and k are strings of symbols of the same length and which
contain the same symbol in each place.

�e ≡ symbol may be �anked by strings obtained by con-
catenation, e.g., i ≡ (k ∨ j) means: the string of symbols i
is the same string as the one obtained by concatenating an
opening parenthesis, the stringk , the ∨ symbol, the string j ,
and a closing parenthesis, in this order. If this is the case, then
we know that the �rst symbol of i is an opening parenthesis,
i contains k as a substring (starting at the second symbol),
that substring is followed by ∨, etc.

6



1.3. Preliminaries

1.3 Preliminaries

�eorem 1.4 (Principle of induction on formulas). If some
property % holds for all the atomic formulas and is such that

1. it holds for ¬i whenever it holds for i ;

2. it holds for (i ∧k ) whenever it holds for i andk ;

3. it holds for (i ∨k ) whenever it holds for i andk ;

4. it holds for (i→k ) whenever it holds for i andk ;

then % holds for all formulas.

Proof. Let ( be the collection of all formulas with property % .
Clearly ( ⊆ Frm(L0). ( satis�es all the conditions of De�ni-
tion 1.1: it contains all atomic formulas and is closed under
the logical operators. Frm(L0) is the smallest such class, so
Frm(L0) ⊆ ( . So Frm(L0) = ( , and every formula has prop-
erty % . �

Proposition 1.5. Any formula in Frm(L0) is balanced, in
that it has as many le� parentheses as right ones.

Proposition 1.6. No proper initial segment of a formula is
a formula.

Proposition 1.7 (Unique Readability). Any formula i in
Frm(L0) has exactly one parsing as one of the following

7



1. Syntax and Semantics

1. ⊥.

2. ?= for some ?= ∈ At0.

3. ¬k for some formulak .

4. (k ∧ j) for some formulask and j .

5. (k ∨ j) for some formulask and j .

6. (k → j) for some formulask and j .

Moreover, this parsing is unique.

Proof. By induction oni . For instance, suppose thati has two
distinct readings as (k→j) and (k ′→j ′). �enk andk ′must
be the same (or else one would be a proper initial segment of
the other and that’s not possible by Proposition 1.6); so if the
two readings of i are distinct it must be because j and j ′ are
distinct readings of the same sequence of symbols, which is
impossible by the inductive hypothesis. �

It may be worth pointing out that the unique readability
is not something we get for free for any inductively de�ned
system. For example, if in the de�nition of Frm(L0) we hadn’t
used parantheses the “formula” i ∧k ∨ j would have two
di�erent parsings corresponding to (i∧k )∨j andi∧(k∨j).

It is o�en useful to talk about the formulas that “make up”
a given formula. We call these its subformulas. Any formula
counts as a subformula of itself; a subformula of i other than
i itself is a proper subformula.

8



1.3. Preliminaries

De�nition 1.8 (Immediate Subformula). Ifi is a formula,
the immediate subformulas of i are de�ned inductively as
follows:

1. Atomic formulas have no immediate subformulas.

2. i ≡ ¬k : �e only immediate subformula of i isk .

3. i ≡ (k ∗ j): �e immediate subformulas of i are k
and j (∗ is any one of the two-place connectives).

De�nition 1.9 (Proper Subformula). If i is a formula, the
proper subformulas of i are recursively as follows:

1. Atomic formulas have no proper subformulas.

2. i ≡ ¬k : �e proper subformulas of i are k together
with all proper subformulas ofk .

3. i ≡ (k ∗ j): �e proper subformulas of i are k , j ,
together with all proper subformulas of k and those
of j .

De�nition 1.10 (Subformula). �e subformulas of i are i
itself together with all its proper subformulas.

�e main connective of a formula is the outermost connec-
tive of the formula. We can now de�ne what the scope of a
connective is.

9



1. Syntax and Semantics

De�nition 1.11 (Scope). �e scope of a connective in a for-
mula is the subformula for which the connective is the main
connective.

De�nition 1.12 (Uniform Substitution). If i and k are
formulas, and ?8 is a propositional variable, then i [k/?8 ]
denotes the result of replacing each occurrence of ?8 by
an occurrence of k in i ; similarly, the simultaneous sub-
stitution of ?1, . . . , ?= by formulas k1, . . . , k= is denoted by
i [k1/?1, . . . ,k=/?=].

1.4 Valuations and Satisfaction

De�nition 1.13 (Valuations). Let {T, F} be the set of the
two truth values, “true” and “false.” A valuation for L0 is a
function E assigning either T or F to the propositional variables
of the language, i.e., E : At0 → {T, F}.

De�nition 1.14. Given a valuation E , de�ne the evaluation

10



1.4. Valuations and Satisfaction

function E : Frm(L0) → {T, F} inductively by:

E (⊥) = F;
E (?=) = E (?=);

E (¬i) =
{

T if E (i) = F;
F otherwise.

E (i ∧k ) =
{

T if E (i) = T and E (k ) = T;
F if E (i) = F or E (k ) = F.

E (i ∨k ) =
{

T if E (i) = T or E (k ) = T;
F if E (i) = F and E (k ) = F.

E (i→k ) =
{

T if E (i) = F or E (k ) = T;
F if E (i) = T and E (k ) = F.

�e clauses correspond to the following truth tables:

i ¬i
T F
F T

i k i ∧k
T T T
T F F
F T F
F F F

i k i ∨k
T T T
T F T
F T T
F F F

11



1. Syntax and Semantics

i k i→k

T T T
T F F
F T T
F F T

�eorem 1.15 (Local Determination). Suppose that E1 and
E2 are valuations that agree on the propositional le�ers occurring
ini , i.e., E1 (?=) = E2 (?=) whenever ?= occurs in some formulai .
�en E1 and E2 also agree on i , i.e., E1 (i) = E2 (i).

Proof. By induction on i . �

De�nition 1.16 (Satisfaction). Using the evaluation func-
tion, we can de�ne the notion of satisfaction of a formula i by
a valuation E , E � i , inductively as follows. (We write E 2 i to
mean “not E � i .”)

1. i ≡ ⊥: E 2 i .

2. i ≡ ?8 : E � i i� E (?8 ) = T.

3. i ≡ ¬k : E � i i� E 2 k .

4. i ≡ (k ∧ j): E � i i� E � k and E � j .

5. i ≡ (k ∨ j): E � i i� E � i or E � k (or both).

6. i ≡ (k → j): E � i i� E 2 k or E � j (or both).

If Γ is a set of formulas, E � Γ i� E � i for every i ∈ Γ.

12
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Proposition 1.17. E � i i� E (i) = T.

Proof. By induction on i . �

1.5 Semantic Notions

We de�ne the following semantic notions:

De�nition 1.18. 1. A formulai is satis�able if for some E ,
E � i ; it is unsatis�able if for no E , E � i ;

2. A formula i is a tautology if E � i for all valuations E ;

3. A formula i is contingent if it is satis�able but not a
tautology;

4. If Γ is a set of formulas, Γ � i (“Γ entails i”) if and only
if E � i for every valuation E for which E � Γ.

5. If Γ is a set of formulas, Γ is satis�able if there is a valua-
tion E for which E � Γ, and Γ is unsatis�able otherwise.

Proposition 1.19. 1. i is a tautology if and only if ∅ � i ;

2. If Γ � i and Γ � i→k then Γ � k ;

3. If Γ is satis�able then every �nite subset of Γ is also satis-
�able;

4. Monotony: if Γ ⊆ Δ and Γ � i then also Δ � i ;

13



1. Syntax and Semantics

5. Transitivity: if Γ � i and Δ ∪ {i} � k then Γ ∪ Δ � k .

Proof. Exercise. �

Proposition 1.20. Γ � i if and only if Γ ∪ {¬i} is unsatis�-
able.

Proof. Exercise. �

�eorem 1.21 (Semantic Deduction �eorem). Γ � i →
k if and only if Γ ∪ {i} � k .

Proof. Exercise. �

We write i � k for Γ � k when Γ = {i} is a singleton
and say that two formulas are semantically equivalent, i ≈
k , when i � k and k � i , i.e., when E (i) = E (k ) for all
valuations E .

�e following equivalences, known as the De Morgan
laws, seem to indicate that the connectives ∧ and ∨ behave
in a similar, dual, way.

(i ∧k ) ≈ ¬(¬i ∨ ¬k )
(i ∨k ) ≈ ¬(¬i ∧ ¬k )

�is symmetry, or duality, between conjunction and disjunc-
tion can be made precise, but �rst we de�ne the dual of a for-
mula.

14



1.6. Normal forms

De�nition 1.22. �e mapping that maps a formula with no
occurrences of→ nor↔ to its dual is de�ned by the following
clauses:

• i3 ≡ i when i is atomic,

• (¬i)3 ≡ ¬i3 ,

• (i ∧k )3 ≡ i3 ∨k3 ,

• (i ∨k )3 ≡ i3 ∧k3 .

Observe that the dual of the dual of a formula is the for-
mula itself, i.e., that (i3 )3 ≡ i .

Proposition 1.23. i ≈ k i� i3 ≈ k3 whenever the dual is
de�ned.

Proof. Exercise. �

1.6 Normal forms

In this section, we prove two normal form theorems for propo-
sitional logic. �ese guarantee that, for any formula, there
is a semantically equivalent formula in some canonical nor-
mal form. Moreover, we shall give methods for �nding these
normal-form equivalents.

Say that a formula is in disjunctive normal form if it meets
all of the following conditions:

15



1. Syntax and Semantics

• No connectives occur in the formula other than nega-
tions, conjunctions and disjunctions;

• Every occurrence of negation has minimal scope (i.e.
any ‘¬’ is immediately followed by an atomic formula);

• No disjunction occurs within the scope of any conjunc-
tion.

Here are are some formulas in disjunctive normal form:

?0
(?0 ∧ ?1) ∨ (?0 ∧ ¬?1)

(?0 ∧ ?1) ∨ (?0 ∧ ?1 ∧ ?2 ∧ ¬?3 ∧ ¬U)
?0 ∨ (?2 ∧ ¬?7 ∧ ?9 ∧ ?3) ∨ ¬?1

Note that we have allowed ourselves to employ the relaxed
bracketing-conventions that allow conjunctions and disjunc-
tions to be of arbitrary length. �ese conventions make it
easier to see when a formula is in disjunctive normal form.

To further illustrate the idea of disjunctive normal form,
we shall introduce some more notation. We write ‘(¬)?8 ’ to
indicate that ?8 is an atomic formula which may or may not
be prefaced with an occurrence of negation. �en a formula
in disjunctive normal form has the following shape:(
(¬)?81∧. . .∧(¬)?8 9

)
∨
(
(¬)?8 9+1∧. . .∧(¬)?8:

)
∨. . .∨

(
(¬)?8;∧. . .∧(¬)?8=

)
We now know what it is for a formula to be in disjunctive
normal form. �e result that we are aiming at is the following.

16



1.6. Normal forms

Proposition 1.24. For any formula, there is a semantically
equivalent formula in disjunctive normal form.

Henceforth, we shall abbreviate ‘Disjunctive Normal Form’
by ‘DNF’.

�e proof of the DNF �eorem employs truth tables. We
shall �rst illustrate the technique for �nding an equivalent
formula in DNF, and then turn this illustration into a rigorous
proof.

Let’s suppose we have some formula, i , which contains
three atomic formulas, ‘?0’, ‘?1’ and ‘?2’. �e very �rst thing
to do is �ll out a complete truth table for i . Maybe we end up
with this:

i ?0 ?1 ?2

T T T T
F T T F
T T F T
F T F F
F F T T
F F T F
T F F T
T F F F

As it happens, i is true on four lines of its truth table,
namely lines 1, 3, 7 and 8. Corresponding to each of those lines,
we shall write down four formulas, whose only connectives
are negations and conjunctions, where every negation has
minimal scope:

17
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• ?0 ∧ ?1 ∧ ?2 which is true on line 1 (and only then)

• ?0 ∧ ¬?1 ∧ ?2 which is true on line 3 (and only then)

• ¬?0 ∧ ¬?1 ∧ ?2 which is true on line 7 (and only then)

• ¬?0 ∧¬?1 ∧¬?2 which is true on line 8 (and only then)

But if we now disjoin all of these conjunctions, like so:

(?0∧?1∧?2)∨(?0∧¬?1∧?2)∨(¬?0∧¬?1∧?2)∨(¬?0∧¬?1∧¬?2)

we have a formula in DNF which is true on exactly those lines
where one of the disjuncts is true, i.e. it is true on (and only on)
lines 1, 3, 7, and 8. So this formula has exactly the same truth
table as i . So we have a formula in DNF that is semantically
equivalent to i . Which is exactly what we wanted.

Now, this strategy did not depend on the speci�cs of i ; it
is perfectly general. Consequently, we can use it to obtain a
simple proof of the DNF �eorem.

Proof of DNF �eorem. Pick any arbitrary formula, i , and let
?0, . . . , ?= be the atomic formulas that occur in i . To obtain
a formula in DNF that is semantically equivalent to i , we
consider i ’s truth table. �ere are two cases to consider:

1. i is false on every line of its truth table. �en, i is
a contradiction. In that case, the contradiction (?0 ∧
¬?0) ≈ i , and (?0 ∧ ¬?0) is in DNF.
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2. i is true on at least one line of its truth table. For each
line 8 of the truth table, let k8 be a conjunction of the
form

((¬)?0 ∧ . . . ∧ (¬)?=)

where the following rules determine whether or not to
include a negation in front of the atomic formulas:

?< is a conjunct ofk8 i� ?< is true on line 8
¬?< is a conjunct ofk8 i� ?< is false on line 8

Given these rules, a trivial proof by induction shows
thatk8 is true on (and only on) line 8 of the truth table
which considers all possible valuations of ?0, . . . , ?= (i.e.
i ’s truth table).
Next, let 81, 82, . . . , 8< be the numbers of the lines of the
truth table where i is true. Now let j be the formula:

k81 ∨k82 ∨ . . . ∨k8<

Since i is true on at least one line of its truth table, j
is indeed well-de�ned; and in the limiting case where
i is true on exactly one line of its truth table, j is just
k8: , for some 8: .
By construction, j is in DNF. Moreover, by construction,
for each line 8 of the truth table: i is true on line 8 of
the truth table i� one of j ’s disjuncts (namely, k8 ) is
true on, and only on, line 8 . (Again, this is shown by
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1. Syntax and Semantics

a trivial proof by induction.) Hence i and j have the
same truth table, and so are semantically equivalent.

�ese two cases are exhaustive and, either way, we have a
formula in DNF that is semantically equivalent to i . �

So far we have discussed disjunctive normal form. Given
the duality of disjunction and conjunction, it may not come as
a surprise to hear that there is also such a thing as conjunctive
normal form (CNF).

�e de�nition of CNF is exactly analogous to the de�nition
of DNF: A formula is in CNF i� it meets all of the following
conditions:

• No connectives occur in the formula other than nega-
tions, conjunctions and disjunctions;

• Every occurrence of negation has minimal scope;

• No conjunction occurs within the scope of any disjunc-
tion.

Generally, then, a formula in CNF looks like this:(
(¬)?81∨. . .∨(¬)?8 9

)
∧
(
(¬)?8 9+1∨. . .∨(¬)?8:

)
∧. . .∧

(
(¬)?8;∨. . .∨(¬)?8=

)
It should be immediate clear that if a formula is in DNF,

then its dual is in CNF; and vice versa. Armed with this insight,
we can immediately prove another normal form theorem:
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1.7. Expressive adequacy

Proposition 1.25. For any formula, there is a semantically
equivalent formula in conjunctive normal form.

Proof. Let i be any formula. Letk be a DNF formula seman-
tically equivalent to i3 by using Proposition 1.24. Now, k3
is on CNF by the observation above. Using Proposition 1.23,
we have (i3 )3 ≈ k3 , i.e., the CNF formulak3 is semantically
equivalent to i . �

�is slick proof is a further illustration of the power of
duality. However, it might suggest that the DNF �eorem
enjoys some kind of ‘precedence’ over the CNF �eorem. �at
would be misleading. We can easily prove the CNF �eorem
directly, using the same proof techniques that we used to
prove the DNF �eorem (whereupon the DNF �eorem could
be proved as a consequence of the CNF �eorem and duality).

1.7 Expressive adequacy

We shall now demonstrate the expressive power of proposi-
tional logic.

�e only primitive connectives we have de�ned are one-
place (i.e. ‘¬’) and two-place (i.e. ‘∧’, ‘∨’, ‘→’ and ‘↔’). But
nothing stops us from introducing three-, four-, or �ve-place
connectives; or, more generally, =-place connectives, for any
number = we like. We might, for example, de�ne a three-place
connective, ‘♥’, into existence, by stipulating that it is to have
the following characteristic truth table:
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1. Syntax and Semantics

i k j ♥(i,k, j)
T T T F
T T F T
T F T T
T F F F
F T T F
F T F T
F F T F
F F F F

Probably this new connective would not correspond with any
natural English expression (in the way that ‘∧’ corresponds
with ‘and’). But a question arises: if we wanted to employ a
connective with this characteristic truth table, must we add a
new connective? Or can we get by with the connectives we
already have?

Let us make this question more precise. Say that some
connectives are jointly expressively adequate i�, for any pos-
sible truth function, there is a scheme containing only those
connectives which expresses that truth function. Since we
can represent truth functions using characteristic truth tables,
we could equivalently say the following: some connectives
are jointly expressively adequate i�, for any possible truth
table, there is a scheme containing only those connectives
with that truth table.

We say ‘scheme’ rather than ‘formula’, because we are not
concerned with something as speci�c as a formula. To see
why, consider the characteristic truth table for conjunction;
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1.7. Expressive adequacy

this schematically encodes the information that a conjunction
(i ∧k ) is true i� both i and k are true (whatever i and k
might be). When we discuss expressive adequacy, we are
considering something at the same level of generality.

�e general point is, when we are armed with some jointly
expressively adequate connectives, no truth function lies be-
yond our grasp.

�eorem 1.26. �e following pairs of connectives are jointly
expressively adequate:

• ‘¬’ and ‘∨’

• ‘¬’ and ‘∧’

• ‘¬’ and ‘→’

Proof. Given any truth table, we can use the method of prov-
ing the DNF �eorem (or the CNF �eorem) via truth tables,
to write down a scheme which has the same truth table. For
example, employing the truth table method for proving the
DNF �eorem, I can tell you that the following scheme has
the same characteristic truth table as ♥(i,k, j), above:

(i ∧k ∧ ¬j) ∨ (i ∧ ¬k ∧ j) ∨ (¬i ∧k ∧ ¬j)

It follows that the connectives ¬’, ‘∨’ and ‘∧’ are jointly ex-
pressively adequate.

We now show that there is an equivalent scheme which
contains only ‘¬’ and ‘∨’. To show do this, we simply consider
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the following equivalence:

(i ∧k ) ≈ ¬(¬i ∨ ¬k )

(�e details are le� as an exercise).
For the joint expressive adequacy of ‘¬’ and ‘∧’ we note

that:

(i ∨k ) ≈ ¬(¬i ∧ ¬k )

To get the last result we note that:

(i ∨k ) ≈ (¬i→k )
(i ∧k ) ≈ ¬(i→¬k ) �

In short, there is never any need to add new connectives.
Indeed, there is already some redundancy among the connec-
tives we have: we could have made do with just two connec-
tives, if we had been feeling really austere.

In fact, some two-place connectives are individually ex-
pressively adequate. �ese connectives are among the stan-
dard ones, since they are rather cumbersome to use. But their
existence shows that, if we had wanted to, we could have
de�ned a truth-functional language that was expressively
adequate, which contained only a single primitive connective.

�e �rst such connective we shall consider is ‘↑’, which
has the following characteristic truth table.

24



1.7. Expressive adequacy

i k i ↑ k
T T F
T F T
F T T
F F T

�is is o�en called ‘the She�er stroke’, a�er Harry She�er,
who used it to show how to reduce the number of logical con-
nectives in Russell and Whitehead’s Principia Mathematica.
It is quite common, as well, to call it ‘nand’, since its charac-
teristic truth table is the negation of the truth table for ‘∧’.

Proposition 1.27. ‘↑’ is expressively adequate all by itself.

Proof. �eorem 1.26 tells us that ‘¬’ and ‘∨’ are jointly expres-
sively adequate. So it su�ces to show that, given any scheme
which contains only those two connectives, we can rewrite it
as a semantically equivalent scheme which contains only ‘↑’.
As in the proof of the subsidiary cases of �eorem 1.26, then,
we simply apply the following equivalences:

¬i ≈ (i ↑ i)
(i ∨k ) ≈ ((i ↑ i) ↑ (k ↑ k )) �

Similarly, we can consider the connective ‘↓’:
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i k i ↓ k
T T F
T F F
F T F
F F T

�is is sometimes called the ‘Peirce arrow’ (Peirce himself
called it ‘ampheck’). More o�en, though, it is called ‘nor’,
since its characteristic truth table is the negation of ‘∨’.

Proposition 1.28. ‘↓’ is expressively adequate all by itself.

Proof. As in Proposition 1.27, although invoking the dual
equivalences:

¬i ≈ (i ↓ i)
(i ∧k ) ≈ ((i ↓ i) ↓ (k ↓ k )) �

1.8 Failures of expressive adequacy

In fact, the only two-place connectives which are individually
expressively adequate are ‘↑’ and ‘↓’. But how would we show
this? More generally, how can we show that some connectives
are not jointly expressively adequate?

�e obvious thing to do is to try to �nd some truth table
which we cannot express, using just the given connectives.
But there is a bit of an art to this. Moreover, in the end, we
shall have to rely upon induction; for we shall need to show
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that no scheme – no ma�er how long – is capable of expressing
the target truth table.

To make this concrete, let’s consider the question of
whether ‘∨’ is expressively adequate all by itself. A�er a
li�le re�ection, it should be clear that it is not. In particu-
lar, it should be clear that any scheme which only contains
disjunctions cannot have the same truth table as negation,
i.e.:

i ¬i
T F
F T

�e intuitive reason, why this should be so, is simple: the top
line of the desired truth table needs to have the value False;
but the top line of any truth table for a scheme which only
contains disjunctions will always be True. But so far, this is
just hand-waving. To make it rigorous, we need to reach for
induction. Here, then, is our rigorous proof.

Proposition 1.29. ‘∨’ is not expressively adequate by itself.

Proof. Let i by any scheme containing no connective other
than disjunctions. Suppose, for induction on length, that every
shorter scheme containing only disjunctions is true whenever
all its atomic constituents are true. �ere are two cases to
consider:

• i is atomic. �en there is nothing to prove.
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• i is (k ∨ j), for some schemesk and j containing only
disjunctions. �en, sincek and j are both shorter than
i , by the induction hypothesis they are both true when
all their atomic constituents are true. Now the atomic
constituents of i are just the constituents of bothk and
j , and i is true wheneverk and j . So i is true when
all of its atomic constituents are true.

It now follows, by induction on length, that any scheme con-
taining no connective other than disjunctions is true when-
ever all of its atomic constituents are true. Consequently, no
scheme containing only disjunctions has the same truth table
as that of negation. Hence ‘∨’ is not expressively adequate by
itself. �

In fact, we can generalise Proposition 1.29:

�eorem 1.30. �e only two-place connectives that are ex-
pressively adequate by themselves are ‘↑’ and ‘↓’.

Proof. �ere are sixteen distinct two-place connectives. We
shall run through them all, considering whether or not they
are individually expressively adequate, in four groups.

Group 1: the top line of the truth table is True. Consider
those connectives where the top line of the truth table is True.
�ere are eight of these, including ‘∧’, ‘∨’, ‘→’ and ‘↔’, but
also the following:
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i k i ◦1 k i ◦2 k i ◦3 k i ◦4 k
T T T T T T
T F T T T F
F T T F F T
F F T T F F

(obviously the names for these connectives were chosen arbi-
trarily). But, exactly as in Proposition Proposition 1.29, none
of these connectives can express the truth table for negation.
So there is a connective whose truth table they cannot express.
So none of them is individually expressively adequate.

Group 2: the bo�om line of the truth table is False. Having
eliminated eight connectives, eight remain. Of these, four are
false on the bo�om line of their truth table, namely:

i k i ◦5 k i ◦6 k i ◦7 k i ◦8 k
T T F F F F
T F T T F F
F T T F T F
F F F F F F

As above, though, none of these connectives can express the
truth table for negation. To show this we prove that any
scheme whose only connective is one of these (perhaps several
times) is false whenever all of its atomic constituents are false.
We can show this by induction, exactly as in Proposition
Proposition 1.29 (I leave the details as an exercise).

Group 3: connectives with redundant positions. Consider
two of the remaining four connectives:
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i k i ◦9 k i ◦10 k
T T F F
T F F T
F T T F
F F T T

�ese connectives have redundant positions, in the sense
that the truth value of the overarching scheme only depends
upon the truth value of one of the atomic constituents. More
precisely:

i ◦9 k ≈ ¬i
i ◦10 k ≈ ¬k

Consequently, there are many truth functions that they cannot
express. In particular, they cannot express either the tautolo-
gous truth function (given by ‘◦1’), or the contradictory truth
function (given by ‘◦8’). To show this, it su�ces to prove
that any scheme whose only connective is either ‘◦9’ or ‘◦10’
(perhaps several times) is contingent, i.e. it is true on at least
one line and false on at least one other line. We leave the
details of this proof as an exercise.

Group 4. Only two connectives now remain, namely ‘↑’
and ‘↓’, and Propositions Proposition 1.27 and Proposition 1.28
show that both are individually expressively adequate. �

Problems

Problem 1.1. Prove Proposition 1.5
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Problem 1.2. Prove Proposition 1.6

Problem 1.3. For each of the �ve formulas below deter-
mine whether the formula can be expressed as a substi-
tution i [k/?8 ] where i is (i) ?0; (ii) (¬?0 ∧ ?1); and (iii)
((¬?0→ ?1) ∧ ?2). In each case specify the relevant substitu-
tion.

1. ?1

2. (¬?0 ∧ ?0)

3. ((?0 ∨ ?1) ∧ ?2)

4. ¬((?0→ ?1) ∧ ?2)

5. ((¬(?0→ ?1) → (?0 ∨ ?1)) ∧ ¬(?0 ∧ ?1))

Problem 1.4. Give a mathematically rigorous de�nition of
i [k/?] by induction.

Problem 1.5. Consider adding to L0 a ternary connective ♦
with evaluation given by

E (♦(i,k, j)) =
{
E (k ) if E (i) = T;
E (j) if E (i) = F.

Write down the truth table for this connective.

Problem 1.6. Prove Proposition 1.17
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Problem 1.7. For each of the following four formulas deter-
mine whether it is satis�able, a tautology and/or contingent.

1. (?0→ (¬?1→¬?0)).

2. ((?0 ∧¬?1) → (¬?0 ∧?2)) ↔ ((?2→?0) → (?0→?1)).

3. (?0↔ ?1) → (?2↔¬?1).

4. ((?0↔ (¬?1 ∧ ?2)) ∨ (?2→ (?0↔ ?1))).

Problem 1.8. Prove Proposition 1.19

Problem 1.9. Prove Proposition 1.20

Problem 1.10. Prove �eorem 1.21

Problem 1.11. Prove Proposition 1.23 by introducing an aux-
iliary mapping i= just as i3 except for atomic formulas where
i= is de�ned to be ¬i and proving that i= ≈ ¬i .

Problem 1.12. Consider the following formulas:

• (?0→¬?1)

• ¬(?0↔ ?1)

• (¬?0 ∨ ¬(?0 ∧ ?1))

• (¬(?0→ ?1) ∧ (?0→ ?2))

• (¬(?0 ∨ ?1) ↔ ((¬?2 ∧ ¬?0) → ¬?1))
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• ((¬(?0 ∧ ¬?1) → ?2) ∧ ¬(?0 ∧ ?3))

For each formula:

• write down formulas in DNF that are semantically
equivalent to these formulas.

• write down formulas in CNF that are semantically
equivalent to these formulas.

Problem 1.13. Let ♦ be the ternary connective introduced
in an earlier problem. Prove the connectives ⊥, > and ♦ are
jointly expressively adequate.

Problem 1.14. Where ‘◦7’ has the characteristic truth table
de�ned in the proof of �eorem 1.30, show that the following
are jointly expressively adequate:

1. ‘◦7’ and ‘¬’.

2. ‘◦7’ and ‘→’.

3. ‘◦7’ and ‘↔’.

Problem 1.15. Show that the connectives ‘◦7’, ‘∧’ and ‘∨’
are not jointly expressively adequate.

Problem 1.16. Complete the proof of �eorem 1.26.
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Chapter 2

Natural Deduction

2.1 Introduction

Logics commonly have both a semantics and a derivation
system. �e semantics concerns concepts such as truth, satis-
�ability, validity, and entailment. �e purpose of derivation
systems is to provide a purely syntactic method of establishing
entailment and validity. �ey are purely syntactic in the sense
that a derivation in such a system is a �nite syntactic object,
usually a sequence (or other �nite arrangement) of formulas
or formulas. Good derivation systems have the property that
any given sequence or arrangement of formulas or formulas
can be veri�ed mechanically to be “correct.”

�e simplest (and historically �rst) derivation systems
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2. Natural Deduction

for �rst-order logic were axiomatic. A sequence of formulas
counts as a derivation in such a system if each individual
formula in it is either among a �xed set of “axioms” or follows
from formulas coming before it in the sequence by one of
a �xed number of “inference rules”—and it can be mechani-
cally veri�ed if a formula is an axiom and whether it follows
correctly from other formulas by one of the inference rules.
Axiomatic proof systems are easy to describe—and also easy
to handle meta-theoretically—but derivations in them are hard
to read and understand, and are also hard to produce.

Other derivation systems have been developed with the
aim of making it easier to construct derivations or easier to
understand derivations once they are complete. Examples
are natural deduction, truth trees, also known as tableaux
proofs, and the sequent calculus. Some derivation systems
are designed especially with mechanization in mind, e.g., the
resolution method is easy to implement in so�ware (but its
derivations are essentially impossible to understand). Most
of these other proof systems represent derivations as trees of
formulas rather than sequences. �is makes it easier to see
which parts of a derivation depend on which other parts.

So for a given logic, such as �rst-order logic, the di�erent
derivation systems will give di�erent explications of what
it is for a formula to be a theorem and what it means for
a formula to be derivable from some others. However that is
done (via axiomatic derivations, natural deductions, sequent
derivations, truth trees, resolution refutations), we want these
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relations to match the semantic notions of validity and en-
tailment. Let’s write ` i for “i is a theorem” and “Γ ` i” for
“i is derivable from Γ.” However ` is de�ned, we want it to
match up with �, that is:

1. ` i if and only if � i

2. Γ ` i if and only if Γ � i

�e “only if” direction of the above is called soundness. A deriva-
tion system is sound if derivability guarantees entailment (or
validity). Every decent derivation system has to be sound;
unsound derivation systems are not useful at all. A�er all,
the entire purpose of a derivation is to provide a syntactic
guarantee of validity or entailment. We’ll prove soundness
for the derivation systems we present.

�e converse “if” direction is also important: it is called
completeness. A complete derivation system is strong enough
to show that i is a theorem whenever i is valid, and that
Γ ` i whenever Γ � i . Completeness is harder to estab-
lish, and some logics have no complete derivation systems.
First-order logic does. Kurt Gödel was the �rst one to prove
completeness for a derivation system of �rst-order logic in
his 1929 dissertation.

Another concept that is connected to derivation systems
is that of consistency. A set of formulas is called inconsistent
if anything whatsoever can be derived from it, and consis-
tent otherwise. Inconsistency is the syntactic counterpart
to unsatis�ablity: like unsatis�able sets, inconsistent sets of
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2. Natural Deduction

formulas do not make good theories, they are defective in
a fundamental way. Consistent sets of formulas may not be
true or useful, but at least they pass that minimal threshold
of logical usefulness. For di�erent derivation systems the
speci�c de�nition of consistency of sets of formulas might
di�er, but like `, we want consistency to coincide with its
semantic counterpart, satis�ability. We want it to always be
the case that Γ is consistent if and only if it is satis�able. Here,
the “if” direction amounts to completeness (consistency guar-
antees satis�ability), and the “only if” direction amounts to
soundness (satis�ability guarantees consistency). In fact, for
classical �rst-order logic, the two versions of soundness and
completeness are equivalent.

2.2 Natural Deduction

Natural deduction is a derivation system intended to mirror
actual reasoning (especially the kind of regimented reasoning
employed by mathematicians). Actual reasoning proceeds by
a number of “natural” pa�erns. For instance, proof by cases
allows us to establish a conclusion on the basis of a disjunc-
tive premise, by establishing that the conclusion follows from
either of the disjuncts. Indirect proof allows us to establish
a conclusion by showing that its negation leads to a contra-
diction. Conditional proof establishes a conditional claim “if
. . . then . . . ” by showing that the consequent follows from
the antecedent. Natural deduction is a formalization of some
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of these natural inferences. Each of the logical connectives
and quanti�ers comes with two rules, an introduction and
an elimination rule, and they each correspond to one such
natural inference pa�ern. For instance,→I corresponds to
conditional proof, and ∨E to proof by cases. A particularly
simple rule is ∧E which allows the inference from i ∧k to i
(ork ).

One feature that distinguishes natural deduction from
other derivation systems is its use of assumptions. A deriva-
tion in natural deduction is a tree of formulas. A single for-
mula stands at the root of the tree of formulas, and the “leaves”
of the tree are formulas from which the conclusion is derived.
In natural deduction, some leaf formulas play a role inside
the derivation but are “used up” by the time the derivation
reaches the conclusion. �is corresponds to the practice, in ac-
tual reasoning, of introducing hypotheses which only remain
in e�ect for a short while. For instance, in a proof by cases, we
assume the truth of each of the disjuncts; in conditional proof,
we assume the truth of the antecedent; in indirect proof, we
assume the truth of the negation of the conclusion. �is way
of introducing hypothetical assumptions and then doing away
with them in the service of establishing an intermediate step
is a hallmark of natural deduction. �e formulas at the leaves
of a natural deduction derivation are called assumptions, and
some of the rules of inference may “discharge” them. For
instance, if we have a derivation ofk from some assumptions
which include i , then the→I rule allows us to infer i →k
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and discharge any assumption of the form i . (To keep track
of which assumptions are discharged at which inferences, we
label the inference and the assumptions it discharges with a
number.) �e assumptions that remain undischarged at the
end of the derivation are together su�cient for the truth of
the conclusion, and so a derivation establishes that its undis-
charged assumptions entail its conclusion.

�e relation Γ ` i based on natural deduction holds i�
there is a derivation in which i is the last formula in the tree,
and every leaf which is undischarged is in Γ. i is a theorem
in natural deduction i� there is a derivation in which i is the
last formula and all assumptions are discharged. For instance,
here is a derivation that shows that ` (i ∧k ) → i :

[i ∧k ]1
∧Ei →I1(i ∧k ) → i

�e label 1 indicates that the assumption i ∧k is discharged
at the→I inference.

A set Γ is inconsistent i� Γ ` ⊥ in natural deduction. �e
rule ⊥E makes it so that from an inconsistent set, any formula
can be derived.

Natural deduction systems were developed by Gerhard
Gentzen and Stanisław Jaśkowski in the 1930s, and later devel-
oped by Dag Prawitz and Frederic Fitch. Because its inferences
mirror natural methods of proof, it is favored by philosophers.
�e versions developed by Fitch are o�en used in introductory
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logic textbooks. In the philosophy of logic, the rules of natural
deduction have sometimes been taken to give the meanings
of the logical operators (“proof-theoretic semantics”).

2.3 Rules and Derivations

Natural deduction systems are meant to closely parallel the
informal reasoning used in mathematical proof (hence it is
somewhat “natural”). Natural deduction proofs begin with
assumptions. Inference rules are then applied. Assumptions
are “discharged” by the ¬I,→I, and ∨E inference rules, and
the label of the discharged assumption is placed beside the
inference for clarity.

De�nition 2.1 (Assumption). An assumption is any for-
mula in the topmost position of any branch.

Derivations in natural deduction are certain trees of for-
mulas, where the topmost formulas are assumptions, and if
a formula stands below one, two, or three other sequents, it
must follow correctly by a rule of inference. �e formulas at
the top of the inference are called the premises and the for-
mula below the conclusion of the inference. �e rules come in
pairs, an introduction and an elimination rule for each logical
operator. �ey introduce a logical operator in the conclu-
sion or remove a logical operator from a premise of the rule.
Some of the rules allow an assumption of a certain type to be
discharged. To indicate which assumption is discharged by
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2. Natural Deduction

which inference, we also assign labels to both the assumption
and the inference. �is is indicated by writing the assumption
as “[i]= .”

It is customary to consider rules for all the logical opera-
tors ∧, ∨,→, ¬, and ⊥, even if some of those are consider as
de�ned.

2.4 Propositional Rules

Rules for ∧

i k
∧I

i ∧k

i ∧k
∧Ei

i ∧k
∧E

k

Rules for ∨

i
∨I

i ∨k
k

∨I
i ∨k i ∨k

[i]=

j

[k ]=

j ∨E=j
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Rules for→

[i]=

k →I=
i→k

i→k i
→E

k

Rules for ¬

[i]=

⊥ ¬I=¬i

¬i i
¬E⊥

Rules for ⊥
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2. Natural Deduction

⊥ ⊥Ei

[¬i]=

⊥ RAA=i

Note that ¬I and RAA are very similar: �e di�erence is that
¬I derives a negated formula¬i but RAA a positive formulai .

Whenever a rule indicates that some assumption may
be discharged, we take this to be a permission, but not a
requirement. E.g., in the →I rule, we may discharge any
number of assumptions of the form i in the derivation of the
premisek , including zero.

2.5 Derivations

We’ve said what an assumption is, and we’ve given the rules
of inference. Derivations in natural deduction are inductively
generated from these: each derivation either is an assump-
tion on its own, or consists of one, two, or three derivations
followed by a correct inference.

De�nition 2.2 (Derivation). A derivation of a formula i
from assumptions Γ is a tree of formulas satisfying the follow-
ing conditions:
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2.5. Derivations

1. �e topmost formulas of the tree are either in Γ or are
discharged by an inference in the tree.

2. �e bo�ommost formula of the tree is i .

3. Every formula in the tree except the sentence i at the
bo�om is a premise of a correct application of an infer-
ence rule whose conclusion stands directly below that
formula in the tree.

We then say that i is the conclusion of the derivation and that
i is derivable from Γ.

Example 2.3. Every assumption on its own is a derivation.
So, e.g., j by itself is a derivation, and so is \ by itself. We can
obtain a new derivation from these by applying, say, the ∧I
rule,

i k
∧I

i ∧k

�ese rules are meant to be general: we can replace the i
and k in it with any formulas, e.g., by j and \ . �en the
conclusion would be j ∧ \ , and so

j \
∧I

j ∧ \

is a correct derivation. Of course, we can also switch the
assumptions, so that \ plays the role of i and j that of k .
�us,
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\ j
∧I

\ ∧ j

is also a correct derivation.
We can now apply another rule, say,→I, which allows us

to conclude a conditional and allows us to discharge any as-
sumption that is identical to the antecedent of that conditional.
So both of the following would be correct derivations:

[j]1 \
∧I

j ∧ \ →I1
j→ (j ∧ \ )

j [\ ]1
∧I

j ∧ \ →I1
\ → (j ∧ \ )

Remember that discharging of assumptions is a permis-
sion, not a requirement: we don’t have to discharge the as-
sumptions. In particular, we can apply a rule even if the
assumptions are not present in the derivation. For instance,
the following is legal, even though there is no assumption i
to be discharged:

k →I1
i→k

2.6 Examples of Derivations

Example 2.4. Let’s give a derivation of the formula (i ∧
k ) → i .

We begin by writing the desired conclusion at the bo�om
of the derivation.
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(i ∧k ) → i

Next, we need to �gure out what kind of inference could
result in a formula of this form. �e main operator of the
conclusion is→, so we’ll try to arrive at the conclusion using
the→I rule. It is best to write down the assumptions involved
and label the inference rules as you progress, so it is easy to
see whether all assumptions have been discharged at the end
of the proof.

[i ∧k ]1

i →I1(i ∧k ) → i

We now need to �ll in the steps from the assumption i∧k
to i . Since we only have one connective to deal with, ∧, we
must use the ∧ elim rule. �is gives us the following proof:

[i ∧k ]1
∧Ei →I1(i ∧k ) → i

We now have a correct derivation of (i ∧k ) → i .

Example 2.5. Now let’s give a derivation of (¬i∨k )→(i→
k ).

We begin by writing the desired conclusion at the bo�om
of the derivation.
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(¬i ∨k ) → (i→k )

To �nd a logical rule that could give us this conclusion, we
look at the logical connectives in the conclusion: ¬, ∨, and
→. We only care at the moment about the �rst occurence
of→ because it is the main operator of the formula in the
end-sequent, while ¬, ∨ and the second occurence of→ are
inside the scope of another connective, so we will take care
of those later. We therefore start with the→I rule. A correct
application must look like this:

[¬i ∨k ]1

i→k →I1(¬i ∨k ) → (i→k )

�is leaves us with two possibilities to continue. Either we
can keep working from the bo�om up and look for another
application of the→I rule, or we can work from the top down
and apply a ∨E rule. Let us apply the la�er. We will use the
assumption ¬i ∨k as the le�most premise of ∨E. For a valid
application of ∨E, the other two premises must be identical to
the conclusion i→k , but each may be derived in turn from
another assumption, namely the two disjuncts of ¬i ∨k . So
our derivation will look like this:
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[¬i ∨k ]1

[¬i]2

i→k

[k ]2

i→k ∨E2
i→k →I1(¬i ∨k ) → (i→k )

In each of the two branches on the right, we want to derive
i→k , which is best done using→I.

[¬i ∨k ]1

[¬i]2, [i]3

k →I3
i→k

[k ]2, [i]4

k →I4
i→k ∨E2

i→k →I1(¬i ∨k ) → (i→k )

For the two missing parts of the derivation, we need deriva-
tions of k from ¬i and i in the middle, and from i and k
on the le�. Let’s take the former �rst. ¬i and i are the two
premises of ¬E:
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[¬i]2 [i]3
¬E⊥

k

By using ⊥E, we can obtaink as a conclusion and complete
the branch.

[¬i ∨k ]1

[¬i]2 [i]3
⊥I⊥ ⊥E

k →I3
i→k

[k ]2, [i]4

k →I4
i→k ∨E2

i→k →I1(¬i ∨k ) → (i→k )

Let’s now look at the rightmost branch. Here it’s impor-
tant to realize that the de�nition of derivation allows assump-
tions to be discharged but does not require them to be. In other
words, if we can derivek from one of the assumptions i and
k without using the other, that’s ok. And to derivek fromk

is trivial: k by itself is such a derivation, and no inferences
are needed. So we can simply delete the assumption i .
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[¬i ∨k ]1

[¬i]2 [i]3
¬E⊥ ⊥E

k →I3
i→k

[k ]2
→I

i→k ∨E2
i→k →I1(¬i ∨k ) → (i→k )

Note that in the �nished derivation, the rightmost→I infer-
ence does not actually discharge any assumptions.

Example 2.6. So far we have not needed the RAA rule. It is
special in that it allows us to discharge an assumption that
isn’t a sub-formula of the conclusion of the rule. It is closely
related to the ⊥E rule. In fact, the ⊥E rule is a special case of
the RAA rule—there is a logic called “intuitionistic logic” in
which only ⊥E is allowed. �e RAA rule is a last resort when
nothing else works. For instance, suppose we want to derive
i ∨ ¬i . Our usual strategy would be to a�empt to derive
i ∨ ¬i using ∨I. But this would require us to derive either i
or ¬i from no assumptions, and this can’t be done. RAA to
the rescue!

[¬(i ∨ ¬i)]1

⊥ RAA1i ∨ ¬i

51
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Now we’re looking for a derivation of ⊥ from ¬(i ∨ ¬i).
Since ⊥ is the conclusion of ¬E we might try that:

[¬(i ∨ ¬i)]1

¬i

[¬(i ∨ ¬i)]1

i
¬E⊥ RAA1i ∨ ¬i

Our strategy for �nding a derivation of ¬i calls for an appli-
cation of ¬I:

[¬(i ∨ ¬i)]1, [i]2

⊥ ¬I2¬i

[¬(i ∨ ¬i)]1

i
¬E⊥ RAA1i ∨ ¬i

Here, we can get ⊥ easily by applying ¬E to the assumption
¬(i∨¬i) andi∨¬i which follows from our new assumption
i by ∨I:
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[¬(i ∨ ¬i)]1
[i]2

∨Ii ∨ ¬i
¬E⊥ ¬I2¬i

[¬(i ∨ ¬i)]1

i
¬E⊥ RAA1i ∨ ¬i

On the right side we use the same strategy, except we get i
by RAA:

[¬(i ∨ ¬i)]1
[i]2

∨Ii ∨ ¬i
¬E⊥ ¬I2¬i

[¬(i ∨ ¬i)]1
[¬i]3

∨Ii ∨ ¬i
¬E⊥ RAA3i

¬E⊥ RAA1i ∨ ¬i

2.7 Proof-�eoretic Notions

Just as we’ve de�ned a number of important semantic notions
(validity, entailment, satis�abilty), we now de�ne correspond-
ing proof-theoretic notions. �ese are not de�ned by appeal
to satisfaction of formulas in structures, but by appeal to the
derivability or non-derivability of certain formulas from oth-
ers. It was an important discovery that these notions coincide.
�at they do is the content of the soundness and completeness
theorems.
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De�nition 2.7 (�eorems). A formula i is a theorem if
there is a derivation of i in natural deduction in which all
assumptions are discharged. We write ` i if i is a theorem
and 0 i if it is not.

De�nition 2.8 (Derivability). A formulai is derivable from
a set of formulas Γ, Γ ` i , if there is a derivation with conclu-
sion i and in which every assumption is either discharged or
is in Γ. If i is not derivable from Γ we write Γ 0 i .

De�nition 2.9 (Consistency). A set of formulas Γ is incon-
sistent i� Γ ` ⊥. If Γ is not inconsistent, i.e., if Γ 0 ⊥, we say
it is consistent.

Proposition 2.10 (Re�exivity). If i ∈ Γ, then Γ ` i .

Proof. �e assumption i by itself is a derivation of i where
every undischarged assumption (i.e., i) is in Γ. �

Proposition 2.11 (Monotony). If Γ ⊆ Δ and Γ ` i , then
Δ ` i .

Proof. Any derivation of i from Γ is also a derivation of i
from Δ. �

Proposition 2.12 (Transitivity). If Γ ` i and {i} ∪ Δ ` k ,
then Γ ∪ Δ ` k .
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Proof. If Γ ` i , there is a derivation X0 of i with all undis-
charged assumptions in Γ. If {i}∪Δ ` k , then there is a deriva-
tion X1 of k with all undischarged assumptions in {i} ∪ Δ.
Now consider:

Δ, [i]1

X1

k →I1
i→k

Γ

X0

i
→E

k

�e undischarged assumptions are now all among Γ ∪ Δ, so
this shows Γ ∪ Δ ` k . �

When Γ = {i1, i2, . . . , i: } is a �nite set we may use the
simpli�ed notation i1, i2, . . . , i: ` k for Γ ` k , in particular
i ` k means that {i} ` k .

Note that if Γ ` i and i ` k , then Γ ` k . It follows also
that if i1, . . . , i= ` k and Γ ` i8 for each 8 , then Γ ` k .

Proposition 2.13. �e following are equivalent.

1. Γ is inconsistent.

2. Γ ` i for every formula i .

3. Γ ` i and Γ ` ¬i for some formula i .

Proof. Exercise. �
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Proposition 2.14 (Compactness). 1. If Γ ` i then there
is a �nite subset Γ0 ⊆ Γ such that Γ0 ` i .

2. If every �nite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ` i , then there is a derivation X of i from Γ.
Let Γ0 be the set of undischarged assumptions of X . Since
any derivation is �nite, Γ0 can only contain �nitely
many formulas. So, X is a derivation of i from a �-
nite Γ0 ⊆ Γ.

2. �is is the contrapositive of (1) for the special case
i ≡ ⊥. �

2.8 Derivability and Consistency

We will now establish a number of properties of the derivabil-
ity relation. �ey are independently interesting, but each will
play a role in the proof of the completeness theorem.

Proposition 2.15. If Γ ` i and Γ ∪ {i} is inconsistent, then
Γ is inconsistent.

Proof. Let the derivation of i from Γ be X1 and the derivation
of ⊥ from Γ ∪ {i} be X2. We can then derive:
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Γ, [i]1

X2

⊥ ¬I1¬i

Γ

X1

i
¬E⊥

In the new derivation, the assumption i is discharged, so it is
a derivation from Γ. �

Proposition 2.16. Γ ` i i� Γ ∪ {¬i} is inconsistent.

Proof. First suppose Γ ` i , i.e., there is a derivation X0 of i
from undischarged assumptions Γ. We obtain a derivation of
⊥ from Γ ∪ {¬i} as follows:

¬i

Γ

X0

i
¬E⊥

Now assume Γ ∪ {¬i} is inconsistent, and let X1 be the
corresponding derivation of ⊥ from undischarged assump-
tions in Γ ∪ {¬i}. We obtain a derivation of i from Γ alone
by using RAA:
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Γ, [¬i]1

X1

⊥ RAAi �

Proposition 2.17. If Γ ` i and ¬i ∈ Γ, then Γ is inconsistent.

Proof. Suppose Γ ` i and ¬i ∈ Γ. �en there is a derivation X
of i from Γ. Consider this simple application of the ¬E rule:

¬i

Γ

X

i
¬E⊥

Since ¬i ∈ Γ, all undischarged assumptions are in Γ, this
shows that Γ ` ⊥. �

Proposition 2.18. If Γ ∪ {i} and Γ ∪ {¬i} are both inconsis-
tent, then Γ is inconsistent.

Proof. �ere are derivations X1 and X2 of ⊥ from Γ ∪ {i} and
⊥ from Γ ∪ {¬i}, respectively. We can then derive
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Γ, [¬i]2

X2

⊥ ¬I2¬¬i

Γ, [i]1

X1

⊥ ¬I1¬i
¬E⊥

Since the assumptionsi and¬i are discharged, this is a deriva-
tion of ⊥ from Γ alone. Hence Γ is inconsistent. �

2.9 Derivability and the Propositional
Connectives

Proposition 2.19. 1. Both i ∧k ` i and i ∧k ` k

2. i,k ` i ∧k .

Proof. 1. We can derive both

i ∧k
∧Ei

i ∧k
∧E

k

2. We can derive:

i k
∧I

i ∧k �

Proposition 2.20. 1. i ∨k,¬i,¬k is inconsistent.
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2. Both i ` i ∨k andk ` i ∨k .

Proof. 1. Consider the following derivation:

i ∨k
¬i [i]1

¬E⊥
¬k [k ]1

¬E⊥ ∨E1⊥

�is is a derivation of⊥ from undischarged assumptions
i ∨k , ¬i , and ¬k .

2. We can derive both

i
∨I

i ∨k
k

∨I
i ∨k �

Proposition 2.21. 1. i, i→k ` k .

2. Both ¬i ` i→k andk ` i→k .

Proof. 1. We can derive:

i→k i
→E

k

2. �is is shown by the following two derivations:
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¬i [i]1
¬E⊥ ⊥E

k →I1
i→k

k
→I

i→k

Note that→I may, but does not have to, discharge the
assumption i . �

2.10 Soundness

A derivation system, such as natural deduction, is sound if it
cannot derive things that do not actually follow. Soundness
is thus a kind of guaranteed safety property for derivation
systems. Depending on which proof theoretic property is in
question, we would like to know for instance, that

1. every derivable formula is a tautology;

2. if a formula is derivable from some others, it is also a
consequence of them;

3. if a set of formulas is inconsistent, it is unsatis�able.

�ese are important properties of a derivation system. If
any of them do not hold, the derivation system is de�cient—
it would derive too much. Consequently, establishing the
soundness of a derivation system is of the utmost importance.
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2. Natural Deduction

�eorem 2.22 (Soundness). If i is derivable from the undis-
charged assumptions Γ, then Γ � i .

Proof. Let X be a derivation of i . We proceed by induction on
the number of inferences in X .

For the induction basis we show the claim if the number
of inferences is 0. In this case, X consists only of a single for-
mula i , i.e., an assumption. �at assumption is undischarged,
since assumptions can only be discharged by inferences, and
there are no inferences. So, any valuation E that satis�es all
of the undischarged assumptions of the proof also satis�es i .

Now for the inductive step. Suppose that X contains =
inferences. �e premise(s) of the lowermost inference are
derived using sub-derivations, each of which contains fewer
than = inferences. We assume the induction hypothesis: �e
premises of the lowermost inference follow from the undis-
charged assumptions of the sub-derivations ending in those
premises. We have to show that the conclusion i follows from
the undischarged assumptions of the entire proof.

We distinguish cases according to the type of the lower-
most inference. First, we consider the possible inferences with
only one premise.

1. Suppose that the last inference is ¬I: �e derivation has
the form
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2.10. Soundness

Γ, [i]=

X1

⊥ ¬I=¬i

By inductive hypothesis, ⊥ follows from the undis-
charged assumptions Γ ∪ {i} of X1. Consider a val-
uation E . We need to show that, if E � Γ, then E � ¬i .
Suppose for reductio that E � Γ, but E 2 ¬i , i.e., E � i .
�is would mean that E � Γ ∪ {i}. �is is contrary to
our inductive hypothesis. So, E � ¬i .

2. �e last inference is ∧E: �ere are two variants: i ork
may be inferred from the premise i ∧k . Consider the
�rst case. �e derivation X looks like this:

Γ

X1

i ∧k
∧Ei

By inductive hypothesis, i ∧k follows from the undis-
charged assumptions Γ of X1. Consider a structure E .
We need to show that, if E � Γ, then E � i . Suppose
E � Γ. By our inductive hypothesis (Γ � i ∧ k ), we
know that E � i ∧k . By de�nition, E � i ∧k i� E � i
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2. Natural Deduction

and E � k . (�e case wherek is inferred from i ∧k is
handled similarly.)

3. �e last inference is ∨I: �ere are two variants: i ∨k
may be inferred from the premise i or the premise k .
Consider the �rst case. �e derivation has the form

Γ

X1

i
∨I

i ∨k

By inductive hypothesis, i follows from the undis-
charged assumptions Γ of X1. Consider a valuation E .
We need to show that, if E � Γ, then E � i ∨k . Suppose
E � Γ; then E � i since Γ � i (the inductive hypothesis).
So it must also be the case that E � i ∨ k . (�e case
where i ∨k is inferred fromk is handled similarly.)

4. �e last inference is→I: i→k is inferred from a sub-
proof with assumption i and conclusionk , i.e.,

Γ, [i]=

X1

k →I=
i→k
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2.10. Soundness

By inductive hypothesis, k follows from the undis-
charged assumptions of X1, i.e., Γ ∪ {i} � k . Consider
a valuation E . �e undischarged assumptions of X are
just Γ, since i is discharged at the last inference. So we
need to show that Γ � i→k . For reductio, suppose that
for some valuation E , E � Γ but E 2 i→k . So, E � i and
E 2 k . But by hypothesis,k is a consequence of Γ∪ {i},
i.e., E � k , which is a contradiction. So, Γ � i→k .

5. �e last inference is ⊥E: Here, X ends in

Γ

X1

⊥ ⊥Ei

By induction hypothesis, Γ � ⊥. We have to show that
Γ � i . Suppose not; then for some E we have E � Γ and
E 2 i . But we always have E 2 ⊥, so this would mean
that Γ 2 ⊥, contrary to the induction hypothesis.

6. �e last inference is RAA: Exercise.

Now let’s consider the possible inferences with several
premises: ∨E, ∧I, and→E.

1. �e last inference is ∧I. i ∧ k is inferred from the
premises i andk and X has the form
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2. Natural Deduction

Γ1

X1

i

Γ2

X2

k
∧I

i ∧k

By induction hypothesis, i follows from the undis-
charged assumptions Γ1 of X1 and k follows from the
undischarged assumptions Γ2 of X2. �e undischarged
assumptions of X are Γ1 ∪ W2, so we have to show that
Γ1 ∪ Γ2 � i ∧k . Consider a valuation E with E � Γ1 ∪ Γ2.
Since E � Γ1, it must be the case that E � i as Γ1 � i ,
and since E � Γ2, E � k since Γ2 � k . Together, E � i ∧k .

2. �e last inference is ∨E: Exercise.

3. �e last inference is→E. k is inferred from the premises
i→k and i . �e derivation X looks like this:

Γ1

X1

i→k

Γ2

X2

i
→E

k �

By induction hypothesis, i→k follows from the undis-
charged assumptions Γ1 of X1 and i follows from the
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undischarged assumptions Γ2 of X2. Consider a valua-
tion E . We need to show that, if E � Γ1 ∪ Γ2, then E � k .
Suppose E � Γ1 ∪ Γ2. Since Γ1 � i→k , E � i→k . Since
Γ2 � i , we have E � i . �is means that E � k (For if
E 2 k , since E � i , we’d have E 2 i → k , contradict-
ing E � i→k ).

4. �e last inference is ¬E: Exercise.

Corollary 2.23. If ` i , then i is a tautology.

Corollary 2.24. If Γ is satis�able, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not
consistent. �en Γ ` ⊥, i.e., there is a derivation of ⊥ from
undischarged assumptions in Γ. By �eorem 2.22, any valu-
ation E that satis�es Γ must satisfy ⊥. Since E 2 ⊥ for every
valuation E , no E can satisfy Γ, i.e., Γ is not satis�able. �

Problems

Problem 2.1. Give derivations of the following:

1. ¬(i→k ) → (i ∧ ¬k )

2. (i→ j) ∨ (k → j) from the assumption (i ∧k ) → j

3. ¬¬i→ i ,
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2. Natural Deduction

4. ¬i→¬k from the assumptionk → i ,

5. ¬i from the assumption (i→¬i),

6. i from the assumptionsk → i and ¬k → i .

Problem 2.2. Prove Proposition 2.13

Problem 2.3. Prove that Γ ` ¬i i� Γ ∪ {i} is inconsistent.

Problem 2.4. Complete the proof of �eorem 2.22.
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Chapter 3

�e Completeness
�eorem

3.1 Introduction

�e completeness theorem is one of the most fundamental
results about logic. It comes in two formulations, the equiv-
alence of which we’ll prove. In its �rst formulation it says
something fundamental about the relationship between se-
mantic consequence and our proof system: if a formula i
follows from some formulas Γ, then there is also a derivation
that establishes Γ ` i . �us, the proof system is as strong as
it can possibly be without proving things that don’t actually
follow.
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3. The Completeness Theorem

In its second formulation, it can be stated as a model ex-
istence result: every consistent set of formulas is satis�able.
Consistency is a proof-theoretic notion: it says that our proof
system is unable to produce certain derivations. But who’s to
say that just because there are no derivations of a certain sort
from Γ, it’s guaranteed that there is valuation E with E � Γ?
Before the completeness theorem was �rst proved—in fact be-
fore we had the proof systems we now do—the great German
mathematician David Hilbert held the view that consistency
of mathematical theories guarantees the existence of the ob-
jects they are about. He put it as follows in a le�er to Go�lob
Frege:

If the arbitrarily given axioms do not contradict
one another with all their consequences, then
they are true and the things de�ned by the axioms
exist. �is is for me the criterion of truth and
existence.

Frege vehemently disagreed. �e second formulation of the
completeness theorem shows that Hilbert was right in at least
the sense that if the axioms are consistent, then some valuation
exists that makes them all true.

�ese aren’t the only reasons the completeness theorem—
or rather, its proof—is important. It has a number of important
consequences, some of which we’ll discuss separately. For
instance, since any derivation that shows Γ ` i is �nite and
so can only use �nitely many of the formulas in Γ, it follows
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3.2. Outline of the Proof

by the completeness theorem that if i is a consequence of Γ,
it is already a consequence of a �nite subset of Γ. �is is
called compactness. Equivalently, if every �nite subset of Γ is
consistent, then Γ itself must be consistent.

Although the compactness theorem follows from the com-
pleteness theorem via the detour through derivations, it is
also possible to use the the proof of the completeness theorem
to establish it directly. For what the proof does is take a set
of formulas with a certain property—consistency—and con-
structs a structure out of this set that has certain properties
(in this case, that it satis�es the set). Almost the very same
construction can be used to directly establish compactness,
by starting from “�nitely satis�able” sets of formulas instead
of consistent ones.

3.2 Outline of the Proof

�e proof of the completeness theorem is a bit complex, and
upon �rst reading it, it is easy to get lost. So let us outline
the proof. �e �rst step is a shi� of perspective, that allows
us to see a route to a proof. When completeness is thought
of as “whenever Γ � i then Γ ` i ,” it may be hard to even
come up with an idea: for to show that Γ ` i we have to
�nd a derivation, and it does not look like the hypothesis that
Γ � i helps us for this in any way. For some proof systems
it is possible to directly construct a derivation, but we will
take a slightly di�erent approach. �e shi� in perspective
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3. The Completeness Theorem

required is this: completeness can also be formulated as: “if Γ
is consistent, it is satis�able.” Perhaps we can use the informa-
tion in Γ together with the hypothesis that it is consistent to
construct a valuation that satis�es every formula in Γ. A�er
all, we know what kind of valuation we are looking for: one
that is as Γ describes it!

If Γ contains only propositional variables, it is easy to
construct a model for it. All we have to do is come up with
a valuation E such that E � ? for all ? ∈ Γ. Well, let E (?) = T
i� ? ∈ Γ.

Now suppose Γ contains some formula ¬k , withk atomic.
We might worry that the construction of E interferes with the
possibility of making ¬k true. But here’s where the consis-
tency of Γ comes in: if ¬k ∈ Γ, thenk ∉ Γ, or else Γ would be
inconsistent. And ifk ∉ Γ, then according to our construction
of E , E 2 k , so E � ¬k . So far so good.

What if Γ contains complex, non-atomic formulas? Say
it contains i ∧k . To make that true, we should proceed as if
both i andk were in Γ. And if i ∨k ∈ Γ, then we will have
to make at least one of them true, i.e., proceed as if one of
them was in Γ.

�is suggests the following idea: we add additional for-
mulas to Γ so as to (a) keep the resulting set consistent and
(b) make sure that for every possible atomic formula i , either
i is in the resulting set, or ¬i is, and (c) such that, whenever
i ∧k is in the set, so are both i andk , if i ∨k is in the set,
at least one of i ork is also, etc. We keep doing this (poten-
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3.3. Complete Consistent Sets of Formulas

tially forever). Call the set of all formulas so added Γ∗. �en
our construction above would provide us with a valuation E
for which we could prove, by induction, that it satis�es all
sentences in Γ∗, and hence also all sentence in Γ since Γ ⊆ Γ∗.
It turns out that guaranteeing (a) and (b) is enough. A set
of sentences for which (b) holds is called complete. So our
task will be to extend the consistent set Γ to a consistent and
complete set Γ∗.

So here’s what we’ll do. First we investigate the properties
of complete consistent sets, in particular we prove that a com-
plete consistent set contains i ∧k i� it contains both i andk ,
i ∨k i� it contains at least one of them, etc. (Proposition 3.2).
We’ll then take the consistent set Γ and show that it can be
extended to a consistent and complete set Γ∗ (Lemma 3.3).
�is set Γ∗ is what we’ll use to de�ne our valuation E (Γ∗). �e
valuation is determined by the propositional variables in Γ∗

(De�nition 3.4). We’ll use the properties of complete consis-
tent sets to show that indeed E (Γ∗) � i i� i ∈ Γ∗ (Lemma 3.5),
and thus in particular, E (Γ∗) � Γ.

3.3 Complete Consistent Sets of Formulas

De�nition 3.1 (Complete set). A set Γ of formulas is com-
plete i� for any formula i , either i ∈ Γ or ¬i ∈ Γ.

Complete sets of sentences leave no questions unanswered.
For any formulai , Γ “says” ifi is true or false. �e importance
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3. The Completeness Theorem

of complete sets extends beyond the proof of the completeness
theorem. A theory which is complete and axiomatizable, for
instance, is always decidable.

Complete consistent sets are important in the complete-
ness proof since we can guarantee that every consistent set
of formulas Γ is contained in a complete consistent set Γ∗.
A complete consistent set contains, for each formula i , either
i or its negation ¬i , but not both. �is is true in particular for
propositional variables, so from a complete consistent set, we
can construct a valuation where the truth value assigned to
propositional variables is de�ned according to which proposi-
tional variables are in Γ∗. �is valuation can then be shown
to make all formulas in Γ∗ (and hence also all those in Γ) true.
�e proof of this la�er fact requires that ¬i ∈ Γ∗ i� i ∉ Γ∗,
(i ∨k ) ∈ Γ∗ i� i ∈ Γ∗ ork ∈ Γ∗, etc.

In what follows, we will o�en tacitly use the properties of
re�exivity, monotonicity, and transitivity of ` (see section 2.7).

Proposition 3.2. Suppose Γ is complete and consistent. �en:

1. If Γ ` i , then i ∈ Γ.

2. i ∧k ∈ Γ i� both i ∈ Γ andk ∈ Γ.

3. i ∨k ∈ Γ i� either i ∈ Γ ork ∈ Γ.

4. i→k ∈ Γ i� either i ∉ Γ ork ∈ Γ.

Proof. Let us suppose for all of the following that Γ is complete
and consistent.
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1. If Γ ` i , then i ∈ Γ.
Suppose that Γ ` i . Suppose to the contrary that i ∉ Γ.
Since Γ is complete, ¬i ∈ Γ. By Proposition 2.17, Γ is
inconsistent. �is contradicts the assumption that Γ is
consistent. Hence, it cannot be the case that i ∉ Γ, so
i ∈ Γ.

2. i ∧k ∈ Γ i� both i ∈ Γ andk ∈ Γ:
For the forward direction, suppose i ∧ k ∈ Γ. �en
by Proposition 2.19, item (1), Γ ` i and Γ ` k . By (1),
i ∈ Γ andk ∈ Γ, as required.
For the reverse direction, let i ∈ Γ and k ∈ Γ. By
Proposition 2.19, item (2), Γ ` i ∧k . By (1), i ∧k ∈ Γ.

3. First we show that if i ∨k ∈ Γ, then either i ∈ Γ or
k ∈ Γ. Suppose i ∨k ∈ Γ but i ∉ Γ andk ∉ Γ. Since Γ
is complete, ¬i ∈ Γ and ¬k ∈ Γ. By Proposition 2.20,
item (1), Γ is inconsistent, a contradiction. Hence, either
i ∈ Γ ork ∈ Γ.
For the reverse direction, suppose that i ∈ Γ ork ∈ Γ.
By Proposition 2.20, item (2), Γ ` i∨k . By (1), i∨k ∈ Γ,
as required.

4. For the forward direction, suppose i → k ∈ Γ, and
suppose to the contrary that i ∈ Γ andk ∉ Γ. On these
assumptions, i→k ∈ Γ and i ∈ Γ. By Proposition 2.21,
item (1), Γ ` k . But then by (1), k ∈ Γ, contradicting
the assumption thatk ∉ Γ.
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3. The Completeness Theorem

For the reverse direction, �rst consider the case where
i ∉ Γ. Since Γ is complete, ¬i ∈ Γ. By Proposition 2.21,
item (2), Γ ` i→k . Again by (1), we get that i→k ∈ Γ,
as required.

Now consider the case where k ∈ Γ. By Proposi-
tion 2.21, item (2) again, Γ ` i→k . By (1), i→k ∈ Γ.
�

3.4 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of
formulas is contained in some set of sentences which is not
just consistent, but also complete. �e proof works by adding
one formula at a time, guaranteeing at each step that the set
remains consistent. We do this so that for every i , either i or
¬i gets added at some stage. �e union of all stages in that
construction then contains either i or its negation ¬i and
is thus complete. It is also consistent, since we made sure at
each stage not to introduce an inconsistency.

Lemma 3.3 (Lindenbaum’s Lemma). Every consistent set Γ
in a language L can be extended to a complete and consistent
set Γ∗.

76



3.4. Lindenbaum’s Lemma

Proof. Let Γ be consistent. Let i0, i1, . . . be an enumeration
of all the formulas of L. De�ne Γ0 = Γ, and

Γ=+1 =

{
Γ= ∪ {i=} if Γ= ∪ {i=} is consistent;
Γ= ∪ {¬i=} otherwise.

Let Γ∗ =
⋃
=≥0 Γ= .

Each Γ= is consistent: Γ0 is consistent by de�nition. If
Γ=+1 = Γ= ∪ {i=}, this is because the la�er is consistent. If it
isn’t, Γ=+1 = Γ= ∪ {¬i=}. We have to verify that Γ= ∪ {¬i=}
is consistent. Suppose it’s not. �en both Γ= ∪ {i=} and
Γ= ∪ {¬i=} are inconsistent. �is means that Γ= would be
inconsistent by Proposition 2.17, contrary to the induction
hypothesis.

For every = and every 8 < =, Γ8 ⊆ Γ= . �is follows by a
simple induction on =. For = = 0, there are no 8 < 0, so the
claim holds automatically. For the inductive step, suppose it
is true for =. We have Γ=+1 = Γ= ∪ {i=} or = Γ= ∪ {¬i=} by
construction. So Γ= ⊆ Γ=+1. If 8 < =, then Γ8 ⊆ Γ= by inductive
hypothesis, and so ⊆ Γ=+1 by transitivity of ⊆.

From this it follows that every �nite subset of Γ∗ is a subset
of Γ= for some=, since eachk ∈ Γ∗ not already in Γ0 is added at
some stage 8 . If = is the last one of these, then allk in the �nite
subset are in Γ= . So, every �nite subset of Γ∗ is consistent. By
Proposition 2.14, Γ∗ is consistent.

Every formula of Frm(L) appears on the list used to de-
�ne Γ∗. If i= ∉ Γ∗, then that is because Γ= ∪ {i=} was incon-
sistent. But then ¬i= ∈ Γ∗, so Γ∗ is complete. �
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3.5 Construction of a Model

We are now ready to de�ne a valuation that makes all i ∈ Γ
true. To do this, we �rst apply Lindenbaum’s Lemma: we
get a complete consistent Γ∗ ⊇ Γ. We let the propositional
variables in Γ∗ determine E (Γ∗).

De�nition 3.4. Suppose Γ∗ is a complete consistent set of
formulas. �en we let

E (Γ∗) (?) =
{

T if ? ∈ Γ∗

F if ? ∉ Γ∗

Lemma 3.5 (Truth Lemma). E (Γ∗) � i i� i ∈ Γ∗.

Proof. We prove both directions simultaneously, and by in-
duction on i .

1. i ≡ ⊥: E (Γ∗) 2 ⊥ by de�nition of satisfaction. On the
other hand, ⊥ ∉ Γ∗ since Γ∗ is consistent.

2. i ≡ ?: E (Γ∗) � ? i� E (Γ∗) (?) = T (by the de�nition of
satisfaction) i� ? ∈ Γ∗ (by the construction of E (Γ∗)).

3. i ≡ ¬k : E (Γ∗) � i i� E (Γ∗) � k (by de�nition of
satisfaction). By induction hypothesis, E (Γ∗) � k i�
k ∉ Γ∗. Since Γ∗ is consistent and complete,k ∉ Γ∗ i�
¬k ∈ Γ∗.
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4. i ≡ k ∧ j : E (Γ∗) � i i� we have both E (Γ∗) � k
and E (Γ∗) � j (by de�nition of satisfaction) i� both
k ∈ Γ∗ and j ∈ Γ∗ (by the induction hypothesis). By
Proposition 3.2(2), this is the case i� (k ∧ j) ∈ Γ∗.

5. i ≡ k ∨ j : E (Γ∗) � i i� E (Γ∗) � k or E (Γ∗) � j
(by de�nition of satisfaction) i� k ∈ Γ∗ or j ∈ Γ∗ (by
induction hypothesis). �is is the case i� (k ∨ j) ∈ Γ∗
(by Proposition 3.2(3)).

6. i ≡ k → j : E (Γ∗) � i i� E (Γ∗) 2 k or E (Γ∗) � j
(by de�nition of satisfaction) i� k ∉ Γ∗ or j ∈ Γ∗ (by
induction hypothesis). �is is the case i� (k → j) ∈ Γ∗
(by Proposition 3.2(4)).

3.6 �e Completeness �eorem

Let’s combine our results: we arrive at the completeness the-
orem.

�eorem 3.6 (Completeness �eorem). Let Γ be a set of
formulas. If Γ is consistent, it is satis�able.

Proof. Suppose Γ is consistent. By Lemma 3.3, there is a Γ∗ ⊇
Γ which is consistent and complete. By Lemma 3.5, E (Γ∗) � i
i� i ∈ Γ∗. From this it follows in particular that for all i ∈ Γ,
E (Γ∗) � i , so Γ is satis�able. �
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3. The Completeness Theorem

Corollary 3.7 (Completeness �eorem, Second Version).
For all Γ and formulas i : if Γ � i then Γ ` i .

Proof. Note that the Γ’s in Corollary 3.7 and �eorem 3.6
are universally quanti�ed. To make sure we do not confuse
ourselves, let us restate �eorem 3.6 using a di�erent variable:
for any set of formulas Δ, if Δ is consistent, it is satis�able. By
contraposition, if Δ is not satis�able, then Δ is inconsistent.
We will use this to prove the corollary.

Suppose that Γ � i . �en Γ ∪ {¬i} is unsatis�able by
Proposition 1.20. Taking Γ ∪ {¬i} as our Δ, the previous
version of �eorem 3.6 gives us that Γ ∪ {¬i} is inconsistent.
By Proposition 2.16, Γ ` i . �

3.7 �e Compactness �eorem

One important consequence of the completeness theorem is
the compactness theorem. �e compactness theorem states
that if each �nite subset of a set of formulas is satis�able, the
entire set is satis�able—even if the set itself is in�nite. �is is
far from obvious. �ere is nothing that seems to rule out, at
�rst glance at least, the possibility of there being in�nite sets of
formulas which are contradictory, but the contradiction only
arises, so to speak, from the in�nite number. �e compactness
theorem says that such a scenario can be ruled out: there are
no unsatis�able in�nite sets of formulas each �nite subset of
which is satis�able. Like the completeness theorem, it has a
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version related to entailment: if an in�nite set of formulas
entails something, already a �nite subset does.

De�nition 3.8. A set Γ of formulas is �nitely satis�able if
and only if every �nite Γ0 ⊆ Γ is satis�able.

�eorem 3.9 (Compactness �eorem). �e following hold
for any sentences Γ and i :

1. Γ � i i� there is a �nite Γ0 ⊆ Γ such that Γ0 � i .

2. Γ is satis�able if and only if it is �nitely satis�able.

Proof. We prove (2). If Γ is satis�able, then there is a valu-
ation E such that E � i for all i ∈ Γ. Of course, this E also
satis�es every �nite subset of Γ, so Γ is �nitely satis�able.

Now suppose that Γ is �nitely satis�able. �en every �nite
subset Γ0 ⊆ Γ is satis�able. By soundness (Corollary 2.24),
every �nite subset is consistent. �en Γ itself must be con-
sistent by Proposition 2.14. By completeness (�eorem 3.6),
since Γ is consistent, it is satis�able. �

3.8 A Direct Proof of the Compactness
�eorem

We can prove the Compactness �eorem directly, without
appealing to the Completeness �eorem, using the same ideas
as in the proof of the completeness theorem. In the proof of
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the Completeness �eorem we started with a consistent set Γ
of formulas, expanded it to a consistent and complete set Γ∗
of formulas, and then showed that in the valuation E (Γ∗) con-
structed from Γ∗, all formulas of Γ are true, so Γ is satis�able.

We can use the same method to show that a �nitely sat-
is�able set of sentences is satis�able. We just have to prove
the corresponding versions of the results leading to the truth
lemma where we replace “consistent” with “�nitely satis�-
able.”

Proposition 3.10. Suppose Γ is complete and �nitely satis�-
able. �en:

1. (i ∧k ) ∈ Γ i� both i ∈ Γ andk ∈ Γ.

2. (i ∨k ) ∈ Γ i� either i ∈ Γ ork ∈ Γ.

3. (i→k ) ∈ Γ i� either i ∉ Γ ork ∈ Γ.

Lemma 3.11. Every �nitely satis�able set Γ can be extended
to a complete and �nitely satis�able set Γ∗.

�eorem 3.12 (Compactness). Γ is satis�able if and only if
it is �nitely satis�able.

Proof. If Γ is satis�able, then there is a valuation E such that
E � i for all i ∈ Γ. Of course, this E also satis�es every �nite
subset of Γ, so Γ is �nitely satis�able.

Now suppose that Γ is �nitely satis�able. By Lemma 3.11,
Γ can be extended to a complete and �nitely satis�able set Γ∗.
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Construct the valuation E (Γ∗) as in De�nition 3.4. �e proof
of the Truth Lemma (Lemma 3.5) goes through if we replace
references to Proposition 3.2. �

Problems

Problem 3.1. Complete the proof of Proposition 3.2.

Problem 3.2. Use Corollary 3.7 to prove �eorem 3.6, thus
showing that the two formulations of the completeness theo-
rem are equivalent.

Problem 3.3. In order for a derivation system to be complete,
its rules must be strong enough to prove every unsatis�able
set inconsistent. Which of the rules of derivation were neces-
sary to prove completeness? Are any of these rules not used
anywhere in the proof? In order to answer these questions,
make a list or diagram that shows which of the rules of deriva-
tion were used in which results that lead up to the proof of
�eorem 3.6. Be sure to note any tacit uses of rules in these
proofs.

Problem 3.4. Prove (1) of �eorem 3.9.

Problem 3.5. Prove Proposition 3.10. Avoid the use of `.

Problem 3.6. Prove Lemma 3.11. (Hint: the crucial step is to
show that if Γ= is �nitely satis�able, then either Γ= ∪ {i=} or
Γ= ∪ {¬i=} is �nitely satis�able.)
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3. The Completeness Theorem

Problem 3.7. Write out the complete proof of the Truth
Lemma (Lemma 3.5) in the version required for the proof
of �eorem 3.12.
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Part II

First-order Logic

Chapter 4

Syntax and Semantics

4.1 Introduction

In order to develop the theory and metatheory of �rst-order
logic, we must �rst de�ne the syntax and semantics of its
expressions. �e expressions of �rst-order logic are terms and
formulas. Terms are formed from variables, constant symbols,
and function symbols. Formulas, in turn, are formed from
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predicate symbols together with terms (these form the small-
est, “atomic” formulas), and then from atomic formulas we
can form more complex ones using logical connectives and
quanti�ers. �ere are many di�erent ways to set down the
formation rules; we give just one possible one. Other systems
will chose di�erent symbols, will select di�erent sets of con-
nectives as primitive, will use parentheses di�erently (or even
not at all, as in the case of so-called Polish notation). What
all approaches have in common, though, is that the formation
rules de�ne the set of terms and formulas inductively. If done
properly, every expression can result essentially in only one
way according to the formation rules. �e inductive de�ni-
tion resulting in expressions that are uniquely readable means
we can give meanings to these expressions using the same
method—inductive de�nition.

Giving the meaning of expressions is the domain of seman-
tics. �e central concept in semantics is that of satisfaction in
a structure. A structure gives meaning to the building blocks
of the language: a domain is a non-empty set of objects. �e
quanti�ers are interpreted as ranging over this domain, con-
stant symbols are assigned elements in the domain, function
symbols are assigned functions from the domain to itself, and
predicate symbols are assigned relations on the domain. �e
domain together with assignments to the basic vocabulary
constitutes a structure. Variables may appear in formulas, and
in order to give a semantics, we also have to assign elements
of the domain to them—this is a variable assignment. �e
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4.2. First-Order Languages

satisfaction relation, �nally, brings these together. A formula
may be satis�ed in a structure M relative to a variable as-
signment B , wri�en as M, B � i . �is relation is also de�ned
by induction on the structure of i , using the truth tables for
the logical connectives to de�ne, say, satisfaction of i ∧k in
terms of satisfaction (or not) of i and k . It then turns out
that the variable assignment is irrelevant if the formula i is
a sentence, i.e., has no free variables, and so we can talk of
sentences being simply satis�ed (or not) in structures.

On the basis of the satisfaction relation M � i for sen-
tences we can then de�ne the basic semantic notions of valid-
ity, entailment, and satis�ability. A sentence is valid, � i , if
every structure satis�es it. It is entailed by a set of sentences,
Γ � i , if every structure that satis�es all the sentences in Γ
also satis�es i . And a set of sentences is satis�able if some
structure satis�es all sentences in it at the same time. Because
formulas are inductively de�ned, and satisfaction is in turn
de�ned by induction on the structure of formulas, we can use
induction to prove properties of our semantics and to relate
the semantic notions de�ned.

4.2 First-Order Languages

Expressions of �rst-order logic are built up from a basic vocab-
ulary containing variables, constant symbols, predicate sym-
bols and sometimes function symbols. From them, together
with logical connectives, quanti�ers, and punctuation sym-
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bols such as parentheses and commas, terms and formulas are
formed.

Informally, predicate symbols are names for properties
and relations, constant symbols are names for individual ob-
jects, and function symbols are names for mappings. �ese,
except for the identity predicate =, are the non-logical symbols
and together make up a language. Any �rst-order language L
is determined by its non-logical symbols. In the most general
case, L contains in�nitely many symbols of each kind.

In the general case, we make use of the following symbols
in �rst-order logic:

1. Logical symbols

a) Logical connectives: ¬ (negation), ∧ (conjunc-
tion), ∨ (disjunction),→ (conditional), ∀ (univer-
sal quanti�er), ∃ (existential quanti�er).

b) �e propositional constant for falsity ⊥.
c) �e two-place identity predicate =.
d) A countably in�nite set of variables: E0, E1, E2, . . .

2. Non-logical symbols, making up the standard language
of �rst-order logic

a) A countably in�nite set of =-place predicate sym-
bols for each = > 0: �=0 , �=1 , �=2 , . . .

b) A countably in�nite set of constant symbols: 20,
21, 22, . . . .
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4.2. First-Order Languages

c) A countably in�nite set of =-place function sym-
bols for each = > 0: 5 =0 , 5 =1 , 5 =2 , . . .

3. Punctuation marks: (, ), and the comma.

Most of our de�nitions and results will be formulated
for the full standard language of �rst-order logic. However,
depending on the application, we may also restrict the lan-
guage to only a few predicate symbols, constant symbols, and
function symbols.

Example 4.1. �e language L� of arithmetic contains a sin-
gle two-place predicate symbol <, a single constant symbol 0,
one one-place function symbol ′, and two two-place function
symbols + and ×.

Example 4.2. �e language of set theory L/ contains only
the single two-place predicate symbol ∈.

Example 4.3. �e language of orders L≤ contains only the
two-place predicate symbol ≤.

Again, these are conventions: o�cially, these are just
aliases, e.g., <, ∈, and ≤ are aliases for �2

0, 0 for 20, ′ for 5 1
0 , +

for 5 2
0 , × for 5 2

1 .
In addition to the primitive connectives and quanti�ers

introduced above, we also use the following de�ned symbols:
↔ (biconditional), truth >
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A de�ned symbol is not o�cially part of the language,
but is introduced as an informal abbreviation: it allows us to
abbreviate formulas which would, if we only used primitive
symbols, get quite long. �is is obviously an advantage. �e
bigger advantage, however, is that proofs become shorter. If a
symbol is primitive, it has to be treated separately in proofs.
�e more primitive symbols, therefore, the longer our proofs.

You may be familiar with di�erent terminology and sym-
bols than the ones we use above. Logic texts (and teachers)
commonly use either ∼, ¬, and ! for “negation”, ∧, ·, and & for
“conjunction”. Commonly used symbols for the “conditional”
or “implication” are→,⇒, and ⊃. Symbols for “biconditional,”
“bi-implication,” or “(material) equivalence” are↔,⇔, and ≡.
�e ⊥ symbol is variously called “falsity,” “falsum,”, “absur-
dity,”, or “bo�om.” �e > symbol is variously called “truth,”
“verum,”, or “top.”

It is conventional to use lower case le�ers (e.g., 0, 1, 2)
from the beginning of the Latin alphabet for constant symbols
(sometimes called names), and lower case le�ers from the end
(e.g., G , ~, I) for variables. �anti�ers combine with variables,
e.g., G ; notational variations include ∀G , (∀G), (G), ΠG ,

∧
G for

the universal quanti�er and ∃G , (∃G), (�G), ΣG ,
∨
G for the

existential quanti�er.
We might treat all the propositional operators and both

quanti�ers as primitive symbols of the language. We might
instead choose a smaller stock of primitive symbols and treat
the other logical operators as de�ned. “Truth functionally
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complete” sets of Boolean operators include {¬,∨}, {¬,∧},
and {¬,→}—these can be combined with either quanti�er for
an expressively complete �rst-order language.

You may be familiar with two other logical operators: the
She�er stroke | (named a�er Henry She�er), and Peirce’s ar-
row ↓, also known as �ine’s dagger. When given their usual
readings of “nand” and “nor” (respectively), these operators
are truth functionally complete by themselves.

4.3 Terms and Formulas

Once a �rst-order language L is given, we can de�ne expres-
sions built up from the basic vocabulary of L. �ese include
in particular terms and formulas.

De�nition 4.4 (Terms). �e set of terms Trm(L) of L is
de�ned inductively by:

1. Every variable is a term.

2. Every constant symbol of L is a term.

3. If 5 is an =-place function symbol and C1, . . . , C= are
terms, then 5 (C1, . . . , C=) is a term.

4. Nothing else is a term.

A term containing no variables is a closed term.
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�e constant symbols appear in our speci�cation of the
language and the terms as a separate category of symbols, but
they could instead have been included as zero-place function
symbols. We could then do without the second clause in the
de�nition of terms. We just have to understand 5 (C1, . . . , C=)
as just 5 by itself if = = 0.

De�nition 4.5 (Formula). �e set of formulas Frm(L) of
the language L is de�ned inductively as follows:

1. ⊥ is an atomic formula.

2. If ' is an =-place predicate symbol of L and C1, . . . , C=
are terms of L, then '(C1, . . . , C=) is an atomic formula.

3. If C1 and C2 are terms of L, then =(C1, C2) is an atomic
formula.

4. If i is a formula, then ¬i is formula.

5. If i andk are formulas, then (i ∧k ) is a formula.

6. If i andk are formulas, then (i ∨k ) is a formula.

7. If i andk are formulas, then (i→k ) is a formula.

8. If i is a formula and G is a variable, then ∀G i is a
formula.

9. If i is a formula and G is a variable, then ∃G i is a
formula.
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4.3. Terms and Formulas

10. Nothing else is a formula.

�e de�nitions of the set of terms and that of formulas
are inductive de�nitions. Essentially, we construct the set of
formulas in in�nitely many stages. In the initial stage, we pro-
nounce all atomic formulas to be formulas; this corresponds
to the �rst few cases of the de�nition, i.e., the cases for ⊥,
'(C1, . . . , C=) and =(C1, C2). “Atomic formula” thus means any
formula of this form.

�e other cases of the de�nition give rules for constructing
new formulas out of formulas already constructed. At the
second stage, we can use them to construct formulas out
of atomic formulas. At the third stage, we construct new
formulas from the atomic formulas and those obtained in
the second stage, and so on. A formula is anything that is
eventually constructed at such a stage, and nothing else.

By convention, we write = between its arguments and
leave out the parentheses: C1 = C2 is an abbreviation for
=(C1, C2). Moreover, ¬=(C1, C2) is abbreviated as C1 ≠ C2. When
writing a formula (k ∗ j) constructed fromk , j using a two-
place connective ∗, we will o�en leave out the outermost pair
of parentheses and write simplyk ∗ j .

Some logic texts require that the variable G must occur
in i in order for ∃G i and ∀G i to count as formulas. Nothing
bad happens if you don’t require this, and it makes things
easier.
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De�nition 4.6. Formulas constructed using the de�ned op-
erators are to be understood as follows:

1. > abbreviates ¬⊥.

2. i↔k abbreviates (i→k ) ∧ (k → i).

If we work in a language for a speci�c application, we will
o�en write two-place predicate symbols and function sym-
bols between the respective terms, e.g., C1 < C2 and (C1 + C2)
in the language of arithmetic and C1 ∈ C2 in the language of
set theory. �e successor function in the language of arith-
metic is even wri�en conventionally a�er its argument: C ′.
O�cially, however, these are just conventional abbreviations
for �2

0 (C1, C2), 5 2
0 (C1, C2), �2

0 (C1, C2) and 5 1
0 (C), respectively.

De�nition 4.7 (Syntactic identity). �e symbol≡ expresses
syntactic identity between strings of symbols, i.e., i ≡ k i� i
and k are strings of symbols of the same length and which
contain the same symbol in each place.

�e ≡ symbol may be �anked by strings obtained by con-
catenation, e.g., i ≡ (k ∨ j) means: the string of symbols i
is the same string as the one obtained by concatenating an
opening parenthesis, the stringk , the ∨ symbol, the string j ,
and a closing parenthesis, in this order. If this is the case, then
we know that the �rst symbol of i is an opening parenthesis,
i contains k as a substring (starting at the second symbol),
that substring is followed by ∨, etc.
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4.4 Unique Readability

�e way we de�ned formulas guarantees that every formula
has a unique reading, i.e., there is essentially only one way of
constructing it according to our formation rules for formulas
and only one way of “interpreting” it. If this were not so,
we would have ambiguous formulas, i.e., formulas that have
more than one reading or intepretation—and that is clearly
something we want to avoid. But more importantly, without
this property, most of the de�nitions and proofs we are going
to give will not go through.

Perhaps the best way to make this clear is to see what
would happen if we had given bad rules for forming formulas
that would not guarantee unique readability. For instance, we
could have forgo�en the parentheses in the formation rules
for connectives, e.g., we might have allowed this:

If i andk are formulas, then so is i→k .

Starting from an atomic formula \ , this would allow us to form
\ → \ . From this, together with \ , we would get \ → \ → \ .
But there are two ways to do this:

1. We take \ to be i and \ → \ to bek .

2. We take i to be \ → \ andk is \ .

Correspondingly, there are two ways to “read” the formula\→
\ → \ . It is of the form k → j where k is \ and j is \ → \ ,
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but it is also of the form k → j with k being \ → \ and j

being \ .
If this happens, our de�nitions will not always work. For

instance, when we de�ne the main operator of a formula,
we say: in a formula of the form k → j , the main operator
is the indicated occurrence of→. But if we can match the
formula \ → \ → \ with k → j in the two di�erent ways
mentioned above, then in one case we get the �rst occurrence
of→ as the main operator, and in the second case the second
occurrence. But we intend the main operator to be a function
of the formula, i.e., every formula must have exactly one main
operator occurrence.

Lemma 4.8. �e number of le� and right parentheses in a
formula i are equal.

Proof. We prove this by induction on the wayi is constructed.
�is requires two things: (a) We have to prove �rst that all
atomic formulas have the property in question (the induction
basis). (b) �en we have to prove that when we construct new
formulas out of given formulas, the new formulas have the
property provided the old ones do.

Let ; (i) be the number of le� parentheses, and A (i) the
number of right parentheses in i , and ; (C) and A (C) similarly
the number of le� and right parentheses in a term C . We leave
the proof that for any term C , ; (C) = A (C) as an exercise.

1. i ≡ ⊥: i has 0 le� and 0 right parentheses.
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2. i ≡ '(C1, . . . , C=): ; (i) = 1 + ; (C1) + · · · + ; (C=) =

1 + A (C1) + · · · + A (C=) = A (i). Here we make use of the
fact, le� as an exercise, that ; (C) = A (C) for any term C .

3. i ≡ C1 = C2: ; (i) = ; (C1) + ; (C2) = A (C1) + A (C2) = A (i).

4. i ≡ ¬k : By induction hypothesis, ; (k ) = A (k ). �us
; (i) = ; (k ) = A (k ) = A (i).

5. i ≡ (k ∗ j): By induction hypothesis, ; (k ) = A (k ) and
; (j) = A (j). �us ; (i) = 1 + ; (k ) + ; (j) = 1 + A (k ) +
A (j) = A (i).

6. i ≡ ∀G k : By induction hypothesis, ; (k ) = A (k ). �us,
; (i) = ; (k ) = A (k ) = A (i).

7. i ≡ ∃G k : Similarly. �

De�nition 4.9 (Proper pre�x). A string of symbols k is a
proper pre�x of a string of symbols i if concatenatingk and
a non-empty string of symbols yields i .

Lemma 4.10. If i is a formula, andk is a proper pre�x of i ,
thenk is not a formula.

Proof. Exercise. �

Proposition 4.11. If i is an atomic formula, then it satisfes
one, and only one of the following conditions.
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1. i ≡ ⊥.

2. i ≡ '(C1, . . . , C=) where ' is an =-place predicate symbol,
C1, . . . , C= are terms, and each of ', C1, . . . , C= is uniquely
determined.

3. i ≡ C1 = C2 where C1 and C2 are uniquely determined
terms.

Proof. Exercise. �

Proposition 4.12 (Unique Readability). Every formula sat-
is�es one, and only one of the following conditions.

1. i is atomic.

2. i is of the form ¬k .

3. i is of the form (k ∧ j).

4. i is of the form (k ∨ j).

5. i is of the form (k → j).

6. i is of the form ∀G k .

7. i is of the form ∃G k .

Moreover, in each casek , ork and j , are uniquely determined.
�is means that, e.g., there are no di�erent pairs k , j and k ′,
j ′ so that i is both of the form (k → j) and (k ′→ j ′).
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Proof. �e formation rules require that if a formula is not
atomic, it must start with an opening parenthesis (, ¬, or with
a quanti�er. On the other hand, every formula that start with
one of the following symbols must be atomic: a predicate
symbol, a function symbol, a constant symbol, ⊥.

So we really only have to show that if i is of the form
(k ∗ j) and also of the form (k ′ ∗′ j ′), then k ≡ k ′, j ≡ j ′,
and ∗ = ∗′.

So suppose both i ≡ (k ∗ j) and i ≡ (k ′ ∗′ j ′). �en
either k ≡ k ′ or not. If it is, clearly ∗ = ∗′ and j ≡ j ′, since
they then are substrings of i that begin in the same place and
are of the same length. �e other case isk 6≡ k ′. Sincek and
k ′ are both substrings of i that begin at the same place, one
must be a proper pre�x of the other. But this is impossible by
Lemma 4.10. �

4.5 Main operator of a Formula

It is o�en useful to talk about the last operator used in con-
structing a formulai . �is operator is called the main operator
of i . Intuitively, it is the “outermost” operator of i . For ex-
ample, the main operator of ¬i is ¬, the main operator of
(i ∨k ) is ∨, etc.

De�nition 4.13 (Main operator). �e main operator of a
formula i is de�ned as follows:

1. i is atomic: i has no main operator.
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2. i ≡ ¬k : the main operator of i is ¬.

3. i ≡ (k ∧ j): the main operator of i is ∧.

4. i ≡ (k ∨ j): the main operator of i is ∨.

5. i ≡ (k → j): the main operator of i is→.

6. i ≡ ∀G k : the main operator of i is ∀.

7. i ≡ ∃G k : the main operator of i is ∃.

In each case, we intend the speci�c indicated occurrence
of the main operator in the formula. For instance, since the
formula ((\ → U) → (U→ \ )) is of the form (k → j) where
k is (\→ U) and j is (U→ \ ), the second occurrence of→ is
the main operator.

�is is a recursive de�nition of a function which maps
all non-atomic formulas to their main operator occurrence.
Because of the way formulas are de�ned inductively, every
formula i satis�es one of the cases in De�nition 4.13. �is
guarantees that for each non-atomic formula i a main oper-
ator exists. Because each formula satis�es only one of these
conditions, and because the smaller formulas from which i is
constructed are uniquely determined in each case, the main
operator occurrence of i is unique, and so we have de�ned a
function.

We call formulas by the following names depending on
which symbol their main operator is:
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Main operator Type of formula Example
none atomic (formula) ⊥, '(C1, . . . , C=), C1 = C2
¬ negation ¬i
∧ conjunction (i ∧k )
∨ disjunction (i ∨k )
→ conditional (i→k )
∀ universal (formula) ∀G i
∃ existential (formula) ∃G i

4.6 Subformulas

It is o�en useful to talk about the formulas that “make up” a
given formula. We call these its subformulas. Any formula
counts as a subformula of itself; a subformula of i other than
i itself is a proper subformula.

De�nition 4.14 (Immediate Subformula). If i is a for-
mula, the immediate subformulas of i are de�ned inductively
as follows:

1. Atomic formulas have no immediate subformulas.

2. i ≡ ¬k : �e only immediate subformula of i isk .

3. i ≡ (k ∗ j): �e immediate subformulas of i are k
and j (∗ is any one of the two-place connectives).

4. i ≡ ∀G k : �e only immediate subformula of i isk .
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5. i ≡ ∃G k : �e only immediate subformula of i isk .

De�nition 4.15 (Proper Subformula). If i is a formula,
the proper subformulas of i are recursively as follows:

1. Atomic formulas have no proper subformulas.

2. i ≡ ¬k : �e proper subformulas of i are k together
with all proper subformulas ofk .

3. i ≡ (k ∗ j): �e proper subformulas of i are k , j ,
together with all proper subformulas of k and those
of j .

4. i ≡ ∀G k : �e proper subformulas of i arek together
with all proper subformulas ofk .

5. i ≡ ∃G k : �e proper subformulas of i arek together
with all proper subformulas ofk .

De�nition 4.16 (Subformula). �e subformulas of i are i
itself together with all its proper subformulas.

Note the subtle di�erence in how we have de�ned imme-
diate subformulas and proper subformulas. In the �rst case,
we have directly de�ned the immediate subformulas of a for-
mula i for each possible form of i . It is an explicit de�nition
by cases, and the cases mirror the inductive de�nition of the
set of formulas. In the second case, we have also mirrored
the way the set of all formulas is de�ned, but in each case
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we have also included the proper subformulas of the smaller
formulask , j in addition to these formulas themselves. �is
makes the de�nition recursive. In general, a de�nition of a
function on an inductively de�ned set (in our case, formulas)
is recursive if the cases in the de�nition of the function make
use of the function itself. To be well de�ned, we must make
sure, however, that we only ever use the values of the function
for arguments that come “before” the one we are de�ning—in
our case, when de�ning “proper subformula” for (k ∗ j) we
only use the proper subformulas of the “earlier” formulask
and j .

4.7 Free Variables and Sentences

De�nition 4.17 (Free occurrences of a variable). �e free
occurrences of a variable in a formula are de�ned inductively
as follows:

1. i is atomic: all variable occurrences in i are free.

2. i ≡ ¬k : the free variable occurrences of i are exactly
those ofk .

3. i ≡ (k ∗ j): the free variable occurrences of i are
those ink together with those in j .

4. i ≡ ∀G k : the free variable occurrences in i are all of
those ink except for occurrences of G .
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5. i ≡ ∃G k : the free variable occurrences in i are all of
those ink except for occurrences of G .

De�nition 4.18 (Bound Variables). An occurrence of a
variable in a formula i is bound if it is not free.

De�nition 4.19 (Scope). If ∀G k is an occurrence of a sub-
formula in a formula i , then the corresponding occurrence
ofk in i is called the scope of the corresponding occurrence
of ∀G . Similarly for ∃G .

Ifk is the scope of a quanti�er occurrence ∀G or ∃G in i ,
then the free occurrences of G ink are bound in∀G k and ∃G k .
We say that these occurrences are bound by the mentioned
quanti�er occurrence.

Example 4.20. Consider the following formula:

∃E0 �
2
0 (E0, E1)︸     ︷︷     ︸
k

k represents the scope of ∃E0. �e quanti�er binds the oc-
curence of E0 ink , but does not bind the occurence of E1. So
E1 is a free variable in this case.

We can now see how this might work in a more compli-
cated formula i :

∀E0 (�1
0 (E0) →�2

0 (E0, E1))︸                      ︷︷                      ︸
k

→∃E1 (�2
1 (E0, E1) ∨ ∀E0

\︷   ︸︸   ︷
¬�1

1 (E0))︸                             ︷︷                             ︸
j
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k is the scope of the �rst ∀E0, j is the scope of ∃E1, and \ is the
scope of the second ∀E0. �e �rst ∀E0 binds the occurrences
of E0 ink , ∃E1 the occurrence of E1 in j , and the second ∀E0
binds the occurrence of E0 in \ . �e �rst occurrence of E1 and
the fourth occurrence of E0 are free in i . �e last occurrence
of E0 is free in \ , but bound in j and i .

De�nition 4.21 (Sentence). A formula i is a sentence i� it
contains no free occurrences of variables.

4.8 Substitution

De�nition 4.22 (Substitution in a term). We de�ne B [C/G],
the result of substituting C for every occurrence of G in B , re-
cursively:

1. B ≡ 2: B [C/G] is just B .

2. B ≡ ~: B [C/G] is also just B , provided ~ is a variable and
~ 6≡ G .

3. B ≡ G : B [C/G] is C .

4. B ≡ 5 (C1, . . . , C=): B [C/G] is 5 (C1 [C/G], . . . , C= [C/G]).

De�nition 4.23. A term C is free for G in i if none of the free
occurrences of G in i occur in the scope of a quanti�er that
binds a variable in C .
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Example 4.24.

1. E8 is free for E1 in ∃E3�
2
4 (E3, E1)

2. 5 2
1 (E1, E2) is not free for E0 in ∀E2�

2
4 (E0, E2)

De�nition 4.25 (Substitution in a formula). If i is a for-
mula, G is a variable, and C is a term free for G ini , theni [C/G]
is the result of substituting C for all free occurrences of G in i .

1. i ≡ ⊥: i [C/G] is ⊥.

2. i ≡ % (C1, . . . , C=): i [C/G] is % (C1 [C/G], . . . , C= [C/G]).

3. i ≡ C1 = C2: i [C/G] is C1 [C/G] = C2 [C/G].

4. i ≡ ¬k : i [C/G] is ¬k [C/G].

5. i ≡ (k ∧ j): i [C/G] is (k [C/G] ∧ j [C/G]).

6. i ≡ (k ∨ j): i [C/G] is (k [C/G] ∨ j [C/G]).

7. i ≡ (k → j): i [C/G] is (k [C/G] → j [C/G]).

8. i ≡ ∀~k : i [C/G] is ∀~k [C/G], provided ~ is a variable
other than G ; otherwise i [C/G] is just i .

9. i ≡ ∃~k : i [C/G] is ∃~k [C/G], provided ~ is a variable
other than G ; otherwise i [C/G] is just i .
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Note that substitution may be vacuous: If G does not occur
in i at all, then i [C/G] is just i .

�e restriction that C must be free for G in i is necessary
to exclude cases like the following. If i ≡ ∃~ G < ~ and C ≡ ~,
then i [C/G] would be ∃~ ~ < ~. In this case the free variable
~ is “captured” by the quanti�er ∃~ upon substitution, and
that is undesirable. For instance, we would like it to be the
case that whenever ∀G k holds, so doesk [C/G]. But consider
∀G ∃~ G < ~ (here k is ∃~ G < ~). It is sentence that is true
about, e.g., the natural numbers: for every number G there
is a number ~ greater than it. If we allowed ~ as a possible
substitution for G , we would end up withk [~/G] ≡ ∃~ ~ < ~,
which is false. We prevent this by requiring that none of the
free variables in C would end up being bound by a quanti�er
in i .

We o�en use the following convention to avoid cumber-
sume notation: If i is a formula with a free variable G , we
write i (G) to indicate this. When it is clear which i and G
we have in mind, and C is a term (assumed to be free for G in
i (G)), then we write i (C) as short for i (G) [C/G].

4.9 Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the
constant symbols, function symbols, and predicate symbols
have no speci�c meaning a�ached to them. Meanings are
given by specifying a structure. It speci�es the domain, i.e.,
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the objects which the constant symbols pick out, the func-
tion symbols operate on, and the quanti�ers range over. In
addition, it speci�es which constant symbols pick out which
objects, how a function symbol maps objects to objects, and
which objects the predicate symbols apply to. Structures are
the basis for semantic notions in logic, e.g., the notion of
consequence, validity, satis�ablity. �ey are variously called
“structures,” “interpretations,” or “models” in the literature.

De�nition 4.26 (Structures). A structure M, for a language
L of �rst-order logic consists of the following elements:

1. Domain: a non-empty set, |M |

2. Interpretation of constant symbols: for each constant
symbol 2 of L, an element 2M ∈ |M |

3. Interpretation of predicate symbols: for each =-place
predicate symbol ' of L (other than =), an =-place rela-
tion 'M ⊆ |M |=

4. Interpretation of function symbols: for each =-place func-
tion symbol 5 of L, an =-place function 5M : |M |= →
|M |

Example 4.27. A structure M for the language of arithmetic
consists of a set, an element of |M |, 0M , as interpretation of
the constant symbol 0, a one-place function ′M : |M | → |M |,
two two-place functions +M and ×M , both |M |2 → |M |, and
a two-place relation <M ⊆ |M |2.
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An obvious example of such a structure is the following:

1. |N | = N

2. 0N = 0

3. ′N (=) = = + 1 for all = ∈ N

4. +N (=,<) = = +< for all =,< ∈ N

5. ×N (=,<) = = ·< for all =,< ∈ N

6. <N = {〈=,<〉 | = ∈ N,< ∈ N, = < <}

�e structure N for L� so de�ned is called the standard model
of arithmetic, because it interprets the non-logical constants
of L� exactly how you would expect.

However, there are many other possible structures for L�.
For instance, we might take as the domain the set Z of integers
instead of N, and de�ne the interpretations of 0, ′, +, ×, <
accordingly. But we can also de�ne structures for L� which
have nothing even remotely to do with numbers.

Example 4.28. A structure M for the language L/ of set
theory requires just a set and a single-two place relation. So
technically, e.g., the set of people plus the relation “G is older
than ~” could be used as a structure for L/ , as well as N
together with = ≥ < for =,< ∈ N.
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A particularly interesting structure for L/ in which the
elements of the domain are actually sets, and the interpreta-
tion of ∈ actually is the relation “G is an element of ~” is the
structure ℌF of hereditarily �nite sets:

1. |ℌF| = ∅ ∪ ℘(∅) ∪ ℘(℘(∅)) ∪ ℘(℘(℘(∅))) ∪ . . . ;

2. ∈ℌF = {〈G,~〉 | G,~ ∈ |ℌF| , G ∈ ~}.

�e stipulations we make as to what counts as a structure
impact our logic. For example, the choice to prevent empty
domains ensures, given the usual account of satisfaction (or
truth) for quanti�ed sentences, that ∃G (i (G) ∨ ¬i (G)) is
valid—that is, a logical truth. And the stipulation that all con-
stant symbols must refer to an object in the domain ensures
that the existential generalization is a sound pa�ern of infer-
ence: i (0), therefore ∃G i (G). If we allowed names to refer
outside the domain, or to not refer, then we would be on our
way to a free logic, in which existential generalization requires
an additional premise: i (0) and ∃G G = 0, therefore ∃G i (G).

4.10 Covered Structures for First-order
Languages

Recall that a term is closed if it contains no variables.

De�nition 4.29 (Value of closed terms). If C is a closed
term of the language L and M is a structure for L, the
value ValM (C) is de�ned as follows:
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1. If C is just the constant symbol 2 , then ValM (2) = 2M .

2. If C is of the form 5 (C1, . . . , C=), then

ValM (C) = 5M (ValM (C1), . . . ,ValM (C=)).

De�nition 4.30 (Covered structure). A structure is cov-
ered if every element of the domain is the value of some
closed term.

Example 4.31. Let L be the language with constant symbols
I4A> , >=4 , CF> , . . . , the binary predicate symbol <, and the
binary function symbols + and ×. �en a structure M for L
is the one with domain |M | = {0, 1, 2, . . .} and assignments
I4A>M = 0, >=4M = 1, CF>M = 2, and so forth. For the binary
relation symbol <, the set <M is the set of all pairs 〈21, 22〉 ∈
|M |2 such that 21 is less than 22: for example, 〈1, 3〉 ∈ <M but
〈2, 2〉 ∉ <M . For the binary function symbol +, de�ne +M in
the usual way—for example, +M (2, 3) maps to 5, and similarly
for the binary function symbol ×. Hence, the value of 5 >DA
is just 4, and the value of ×(CF>, +(CℎA44, I4A>)) (or in in�x

111



4. Syntax and Semantics

notation, CF> × (CℎA44 + I4A>)) is

ValM (×(CF>, +(CℎA44, I4A>)) =
= ×M (ValM (CF>),ValM (+(CℎA44, I4A>)))
= ×M (ValM (CF>), +M (ValM (CℎA44),ValM (I4A>)))
= ×M (CF>M, +M (CℎA44M, I4A>M))
= ×M (2, +M (3, 0))
= ×M (2, 3)
= 6

4.11 Satisfaction of a Formula in a Structure

�e basic notion that relates expressions such as terms and
formulas, on the one hand, and structures on the other, are
those of value of a term and satisfaction of a formula. Infor-
mally, the value of a term is an element of a structure—if the
term is just a constant, its value is the object assigned to the
constant by the structure, and if it is built up using function
symbols, the value is computed from the values of constants
and the functions assigned to the functions in the term. A
formula is satis�ed in a structure if the interpretation given
to the predicates makes the formula true in the domain of the
structure. �is notion of satisfaction is speci�ed inductively:
the speci�cation of the structure directly states when atomic
formulas are satis�ed, and we de�ne when a complex formula
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is satis�ed depending on the main connective or quanti�er
and whether or not the immediate subformulas are satis�ed.
�e case of the quanti�ers here is a bit tricky, as the immediate
subformula of a quanti�ed formula has a free variable, and
structures don’t specify the values of variables. In order to
deal with this di�culty, we also introduce variable assignments
and de�ne satisfaction not with respect to a structure alone,
but with respect to a structure plus a variable assignment.

De�nition 4.32 (Variable Assignment). A variable assign-
ment B for a structure M is a function which maps each vari-
able to an element of |M |, i.e., B : Var→ |M |.

A structure assigns a value to each constant symbol, and
a variable assignment to each variable. But we want to use
terms built up from them to also name elements of the domain.
For this we de�ne the value of terms inductively. For constant
symbols and variables the value is just as the structure or
the variable assignment speci�es it; for more complex terms
it is computed recursively using the functions the structure
assigns to the function symbols.

De�nition 4.33 (Value of Terms). If C is a term of the lan-
guageL, M is a structure forL, and B is a variable assignment
for M, the value ValMB (C) is de�ned as follows:

1. C ≡ 2: ValMB (C) = 2M .

2. C ≡ G : ValMB (C) = B (G).
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3. C ≡ 5 (C1, . . . , C=):

ValMB (C) = 5M (ValMB (C1), . . . ,ValMB (C=)).

De�nition 4.34 (G-Variant). If B is a variable assignment for
a structure M, then any variable assignment B ′ for M which
di�ers from B at most in what it assigns to G is called an
G-variant of B . If B ′ is an G-variant of B we write B ∼G B ′.

Note that an G-variant of an assignment B does not have
to assign something di�erent to G . In fact, every assignment
counts as an G-variant of itself.

De�nition 4.35 (Satisfaction). Satisfaction of a formula i
in a structureM relative to a variable assignment B , in symbols:
M, B � i , is de�ned recursively as follows. (We write M, B 2 i
to mean “not M, B � i .”)

1. i ≡ ⊥: M, B 2 i .

2. i ≡ '(C1, . . . , C=): M, B � i i� 〈ValMB (C1), . . . ,ValMB (C=)〉 ∈
'M .

3. i ≡ C1 = C2: M, B � i i� ValMB (C1) = ValMB (C2).

4. i ≡ ¬k : M, B � i i� M, B 2 k .

5. i ≡ (k ∧ j): M, B � i i� M, B � k and M, B � j .

6. i ≡ (k ∨ j): M, B � i i� M, B � i or M, B � k (or both).
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7. i ≡ (k → j): M, B � i i� M, B 2 k or M, B � j (or
both).

8. i ≡ ∀G k : M, B � i i� for every G-variant B ′ of B ,
M, B ′ � k .

9. i ≡ ∃G k : M, B � i i� there is an G-variant B ′ of B so
that M, B ′ � k .

�e variable assignments are important in the last two
clauses. We cannot de�ne satisfaction of ∀G k (G) by “for all
0 ∈ |M |, M � k (0).” We cannot de�ne satisfaction of ∃G k (G)
by “for at least one 0 ∈ |M |, M � k (0).” �e reason is that 0 is
not symbol of the language, and sok (0) is not a formula (that
is,k [0/G] is unde�ned). We also cannot assume that we have
constant symbols or terms available that name every element
of M, since there is nothing in the de�nition of structures that
requires it. Even in the standard language the set of constant
symbols is countably in�nite, so if |M | is not countable there
aren’t even enough constant symbols to name every object.

Example 4.36. Let L = {0, 1, 5 , '} where 0 and 1 are con-
stant symbols, 5 is a two-place function symbol, and ' is a
two-place predicate symbol. Consider the structureM de�ned
by:

1. |M | = {1, 2, 3, 4}

2. 0M = 1
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3. 1M = 2

4. 5M (G,~) = G + ~ if G + ~ ≤ 3 and = 3 otherwise.

5. 'M = {〈1, 1〉, 〈1, 2〉, 〈2, 3〉, 〈2, 4〉}

�e function B (G) = 1 that assigns 1 ∈ |M | to every variable
is a variable assignment for M.

�en

ValMB (5 (0, 1)) = 5M (ValMB (0),ValMB (1)) .

Since 0 and 1 are constant symbols, ValMB (0) = 0M = 1 and
ValMB (1) = 1M = 2. So

ValMB (5 (0, 1)) = 5M (1, 2) = 1 + 2 = 3.

To compute the value of 5 (5 (0, 1), 0) we have to consider

ValMB (5 (5 (0, 1), 0)) = 5M (ValMB (5 (0, 1)),ValMB (0)) = 5M (3, 1) = 3,

since 3 + 1 > 3. Since B (G) = 1 and ValMB (G) = B (G), we also
have

ValMB (5 (5 (0, 1), G)) = 5M (ValMB (5 (0, 1)),ValMB (G)) = 5M (3, 1) = 3,

An atomic formula '(C1, C2) is satis�ed if the tuple of
values of its arguments, i.e., 〈ValMB (C1),ValMB (C2)〉, is an el-
ement of 'M . So, e.g., we have M, B � '(1, 5 (0, 1)) since
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〈ValM (1),ValM (5 (0, 1))〉 = 〈2, 3〉 ∈ 'M , butM, B 2 '(G, 5 (0, 1))
since 〈1, 3〉 ∉ 'M [B].

To determine if a non-atomic formula i is satis�ed, you
apply the clauses in the inductive de�nition that applies to
the main connective. For instance, the main connective in
'(0, 0) → ('(1, G) ∨ '(G, 1) is the→, and

M, B � '(0, 0) → ('(1, G) ∨ '(G, 1)) i�
M, B 2 '(0, 0) or M, B � '(1, G) ∨ '(G, 1)

Since M, B � '(0, 0) (because 〈1, 1〉 ∈ 'M) we can’t yet
determine the answer and must �rst �gure out if M, B �
'(1, G) ∨ '(G, 1):

M, B � '(1, G) ∨ '(G, 1) i�
M, B � '(1, G) or M, B � '(G, 1)

And this is the case, since M, B � '(G, 1) (because 〈1, 2〉 ∈ 'M).

Recall that an G-variant of B is a variable assignment that
di�ers from B at most in what it assigns to G . For every element
of |M |, there is an G-variant of B : B1 (G) = 1, B2 (G) = 2, B3 (G) =
3, B4 (G) = 4, and with B8 (~) = B (~) = 1 for all variables ~ other
than G . �ese are all the G-variants of B for the structure M,
since |M | = {1, 2, 3, 4}. Note, in particular, that B1 = B is also
an G-variant of B , i.e., B is always an G-variant of itself.
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To determine if an existentially quanti�ed formula∃G i (G)
is satis�ed, we have to determine if M, B ′ � i (G) for at least
one G-variant B ′ of B . So,

M, B � ∃G ('(1, G) ∨ '(G, 1)),

since M, B1 � '(1, G) ∨ '(G, 1) (B3 would also �t the bill). But,

M, B 2 ∃G ('(1, G) ∧ '(G, 1))

since for none of the B8 , M, B8 � '(1, G) ∧ '(G, 1).
To determine if a universally quanti�ed formula ∀G i (G)

is satis�ed, we have to determine if M, B ′ � i (G) for all G-
variants B ′ of B . So,

M, B � ∀G ('(G, 0) → '(0, G)),

since M, B8 � '(G, 0) → '(0, G) for all B8 (M, B1 � '(0, G) and
M, B 9 2 '(G, 0) for 9 = 2, 3, and 4). But,

M, B 2 ∀G ('(0, G) → '(G, 0))

since M, B2 2 '(0, G) → '(G, 0) (because M, B2 � '(0, G) and
M, B2 2 '(G, 0)).

For a more complicated case, consider

∀G ('(0, G) → ∃~ '(G,~)) .

Since M, B3 2 '(0, G) and M, B4 2 '(0, G), the interesting
cases where we have to worry about the consequent of the
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conditional are only B1 and B2. Does M, B1 � ∃~ '(G,~) hold?
It does if there is at least one ~-variant B ′1 of B1 so that M, B ′1 �
'(G,~). In fact, B1 is such a ~-variant (B1 (G) = 1, B1 (~) =

1, and 〈1, 1〉 ∈ 'M), so the answer is yes. To determine if
M, B2 � ∃~ '(G,~) we have to look at the ~-variants of B2.
Here, B2 itself does not satisfy '(G,~) (B2 (G) = 2, B2 (~) = 1,
and 〈2, 1〉 ∉ 'M). However, consider B ′2 ∼~ B2 with B ′2 (~) = 3.
M, B ′2 � '(G,~) since 〈2, 3〉 ∈ 'M , and so M, B2 � ∃~ '(G,~).
In sum, for every G-variant B8 of B , either M, B8 2 '(0, G) (8 = 3,
4) or M, B8 � ∃~ '(G,~) (8 = 1, 2), and so

M, B � ∀G ('(0, G) → ∃~ '(G,~)).

On the other hand,

M, B 2 ∃G ('(0, G) ∧ ∀~ '(G,~)).

�e only G-variants B8 of B with M, B8 � '(0, G) are B1 and B2.
But for each, there is in turn a~-variant B ′8 ∼~ B8 with B ′8 (~) = 4
so that M, B ′8 2 '(G,~) and so M, B8 2 ∀~ '(G,~) for 8 = 1, 2.
In sum, none of the G-variants B8 ∼G B are such that M, B8 �
'(0, G) ∧ ∀~ '(G,~).

4.12 Variable Assignments

A variable assignment B provides a value for every variable—
and there are in�nitely many of them. �is is of course not
necessary. We require variable assignments to assign values
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to all variables simply because it makes things a lot easier. �e
value of a term C , and whether or not a formula i is satis�ed in
a structure with respect to B , only depend on the assignments B
makes to the variables in C and the free variables of i . �is
is the content of the next two propositions. To make the
idea of “depends on” precise, we show that any two variable
assignments that agree on all the variables in C give the same
value, and that i is satis�ed relative to one i� it is satis�ed
relative to the other if two variable assignments agree on all
free variables of i .

Proposition 4.37. If the variables in a term C are among G1,
. . . , G= , and B1 (G8 ) = B2 (G8 ) for 8 = 1, . . . , =, then ValMB1 (C) =
ValMB2 (C).

Proof. By induction on the complexity of C . For the base case,
C can be a constant symbol or one of the variables G1, . . . , G= .
If C = 2 , then ValMB1 (C) = 2M = ValMB2 (C). If C = G8 , B1 (G8 ) =
B2 (G8 ) by the hypothesis of the proposition, and so ValMB1 (C) =
B1 (G8 ) = B2 (G8 ) = ValMB2 (C).

For the inductive step, assume that C = 5 (C1, . . . , C: ) and
that the claim holds for C1, . . . , C: . �en

ValMB1 (C) = ValMB1 (5 (C1, . . . , C: )) =
= 5M (ValMB1 (C1), . . . ,ValMB1 (C: ))
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For 9 = 1, . . . , : , the variables of C 9 are among G1, . . . , G= . So
by induction hypothesis, ValMB1 (C 9 ) = ValMB2 (C 9 ). So,

ValMB1 (C) = ValMB2 (5 (C1, . . . , C: )) =
= 5M (ValMB1 (C1), . . . ,ValMB1 (C: )) =
= 5M (ValMB2 (C1), . . . ,ValMB2 (C: )) =
= ValMB2 (5 (C1, . . . , C: )) = ValMB2 (C) . �

Proposition 4.38. If the free variables in i are among G1,
. . . , G= , and B1 (G8 ) = B2 (G8 ) for 8 = 1, . . . , =, then M, B1 � i
i� M, B2 � i .

Proof. We use induction on the complexity of i . For the base
case, where i is atomic, i can be: ⊥, '(C1, . . . , C: ) for a :-
place predicate ' and terms C1, . . . , C: , or C1 = C2 for terms C1
and C2.

1. i ≡ ⊥: both M, B1 2 i and M, B2 2 i .

2. i ≡ '(C1, . . . , C: ): let M, B1 � i . �en

〈ValMB1 (C1), . . . ,ValMB1 (C: )〉 ∈ '
M .

For 8 = 1, . . . ,: , ValMB1 (C8 ) = ValMB2 (C8 ) by Proposition 4.37.
So we also have 〈ValMB2 (C8 ), . . . ,ValMB2 (C: )〉 ∈ '

M .
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3. i ≡ C1 = C2: suppose M, B1 � i . �en ValMB1 (C1) =
ValMB1 (C2). So,

ValMB2 (C1) = ValMB1 (C1) (by Proposition 4.37)
= ValMB1 (C2) (since M, B1 � C1 = C2)
= ValMB2 (C2) (by Proposition 4.37),

so M, B2 � C1 = C2.

Now assume M, B1 � k i� M, B2 � k for all formulas k
less complex than i . �e induction step proceeds by cases
determined by the main operator of i . In each case, we only
demonstrate the forward direction of the biconditional; the
proof of the reverse direction is symmetrical. In all cases
except those for the quanti�ers, we apply the induction hy-
pothesis to sub-formulas k of i . �e free variables of k are
among those of i . �us, if B1 and B2 agree on the free vari-
ables of i , they also agree on those of k , and the induction
hypothesis applies tok .

1. i ≡ ¬k : if M, B1 � i , then M, B1 2 k , so by the induc-
tion hypothesis, M, B2 2 k , hence M, B2 � i .

2. i ≡ k ∧ j : if M, B1 � i , then M, B1 � k and M, B1 � j ,
so by induction hypothesis, M, B2 � k and M, B2 � j .
Hence, M, B2 � i .
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3. i ≡ k ∨ j : if M, B1 � i , then M, B1 � k or M, B1 � j .
By induction hypothesis, M, B2 � k or M, B2 � j , so
M, B2 � i .

4. i ≡ k → j : if M, B1 � i , then M, B1 2 k or M, B1 � j .
By the induction hypothesis, M, B2 2 k or M, B2 � j , so
M, B2 � i .

5. i ≡ ∃G k : if M, B1 � i , there is an G-variant B ′1 of B1 so
that M, B ′1 � k . Let B ′2 be the G-variant of B2 that assigns
the same thing to G as does B ′1. �e free variables ofk
are among G1, . . . , G= , and G . B ′1 (G8 ) = B ′2 (G8 ), since B ′1
and B ′2 are G-variants of B1 and B2, respectively, and by
hypothesis B1 (G8 ) = B2 (G8 ). B ′1 (G) = B ′2 (G) by the way we
have de�ned B ′2. �en the induction hypothesis applies
tok and B ′1, B ′2, so M, B ′2 � k . Hence, there is an G-variant
of B2 that satis�esk , and so M, B2 � i .

6. i ≡ ∀G k : if M, B1 � i , then for every G-variant B ′1 of B1,
M, B ′1 � k . Take an arbitrary G-variant B ′2 of B2, let B ′1 be
the G-variant of B1 which assigns the same thing to G
as does B ′2. �e free variables ofk are among G1, . . . , G= ,
and G . B ′1 (G8 ) = B ′2 (G8 ), since B ′1 and B ′2 are G-variants of B1
and B2, respectively, and by hypothesis B1 (G8 ) = B2 (G8 ).
B ′1 (G) = B ′2 (G) by the way we have de�ned B ′1. �en the
induction hypothesis applies to k and B ′1, B ′2, and we
have M, B ′2 � k . Since B ′2 is an arbitrary G-variant of B2,
every G-variant of B2 satis�esk , and so M, B2 � i .
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By induction, we get that M, B1 � i i� M, B2 � i whenever the
free variables in i are among G1, . . . , G= and B1 (G8 ) = B2 (G8 )
for 8 = 1, . . . , =. �

Sentences have no free variables, so any two variable as-
signments assign the same things to all the (zero) free variables
of any sentence. �e proposition just proved then means that
whether or not a sentence is satis�ed in a structure relative
to a variable assignment is completely independent of the
assignment. We’ll record this fact. It justi�es the de�nition of
satisfaction of a sentence in a structure (without mentioning
a variable assignment) that follows.

Corollary 4.39. If i is a sentence and B a variable assignment,
then M, B � i i� M, B ′ � i for every variable assignment B ′.

Proof. Let B ′ be any variable assignment. Sincei is a sentence,
it has no free variables, and so every variable assignment B ′
trivially assigns the same things to all free variables of i as
does B . So the condition of Proposition 4.38 is satis�ed, and
we have M, B � i i� M, B ′ � i . �

De�nition 4.40. Ifi is a sentence, we say that a structure M
satis�es i , M � i , i� M, B � i for all variable assignments B .

If M � i , we also simply say that i is true in M.

Proposition 4.41. Let M be a structure, i be a sentence, and
B a variable assignment. M � i i� M, B � i .
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Proof. Exercise. �

Proposition 4.42. Suppose i (G) only contains G free, and M

is a structure. �en:

1. M � ∃G i (G) i� M, B � i (G) for at least one variable
assignment B .

2. M � ∀G i (G) i� M, B � i (G) for all variable assign-
ments B .

Proof. Exercise. �

4.13 Extensionality

Extensionality, sometimes called relevance, can be expressed
informally as follows: the only factors that bears upon the
satisfaction of formulai in a structure M relative to a variable
assignment B , are the size of the domain and the assignments
made by M and B to the elements of the language that actually
appear in i .

One immediate consequence of extensionality is that
where two structures M and M′ agree on all the elements of
the language appearing in a sentence i and have the same
domain, M and M′ must also agree on whether or not i itself
is true.

Proposition 4.43 (Extensionality). Let i be a formula, and
M1 and M2 be structures with |M1 | = |M2 |, and B a variable
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assignment on |M1 | = |M2 |. If 2M1 = 2M2 , 'M1 = 'M2 , and
5M1 = 5M2 for every constant symbol 2 , relation symbol ', and
function symbol 5 occurring in i , then M1, B � i i� M2, B � i .

Proof. First prove (by induction on C ) that for every term,
ValM1

B (C) = ValM2
B (C). �en prove the proposition by induction

on i , making use of the claim just proved for the induction
basis (where i is atomic). �

Corollary 4.44 (Extensionality for Sentences). Let i be
a sentence and M1, M2 as in Proposition 4.43. �en M1 � i i�
M2 � i .

Proof. Follows from Proposition 4.43 by Corollary 4.39. �

Moreover, the value of a term, and whether or not a struc-
ture satis�es a formula, only depends on the values of its
subterms.

Proposition 4.45. Let M be a structure, C and C ′ terms, and B
a variable assignment. Let B ′ ∼G B be the G-variant of B given
by B ′(G) = ValMB (C ′). �en ValMB (C [C ′/G]) = ValMB′ (C).

Proof. By induction on C .

1. If C is a constant, say, C ≡ 2 , then C [C ′/G] = 2 , and
ValMB (2) = 2M = ValMB′ (2).

2. If C is a variable other thanG , say, C ≡ ~, then C [C ′/G] = ~,
and ValMB (~) = ValMB′ (~) since B ′ ∼G B .
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3. If C ≡ G , then C [C ′/G] = C ′. But ValMB′ (G) = ValMB (C ′) by
de�nition of B ′.

4. If C ≡ 5 (C1, . . . , C=) then we have:

ValMB (C [C ′/G]) =
= ValMB (5 (C1 [C ′/G], . . . , C= [C ′/G]))

by de�nition of C [C ′/G]
= 5M (ValMB (C1 [C ′/G]), . . . ,ValMB (C= [C ′/G]))

by de�nition of ValMB (5 (. . . ))
= 5M (ValMB′ (C1), . . . ,ValMB′ (C=))

by induction hypothesis
= ValMB′ (C) by de�nition of ValMB′ (5 (. . . )) �

Proposition 4.46. Let M be a structure, i a formula, C a term,
and B a variable assignment. Let B ′ ∼G B be the G-variant of B
given by B ′(G) = ValMB (C). �en M, B � i [C/G] i� M, B ′ � i .

Proof. Exercise. �

4.14 Semantic Notions

Give the de�nition of structures for �rst-order languages, we
can de�ne some basic semantic properties of and relationships
between sentences. �e simplest of these is the notion of
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validity of a sentence. A sentence is valid if it is satis�ed in
every structure. Valid sentences are those that are satis�ed
regardless of how the non-logical symbols in it are interpreted.
Valid sentences are therefore also called logical truths—they
are true, i.e., satis�ed, in any structure and hence their truth
depends only on the logical symbols occurring in them and
their syntactic structure, but not on the non-logical symbols
or their interpretation.

De�nition 4.47 (Validity). A sentence i is valid, � i , i�
M � i for every structure M.

De�nition 4.48 (Entailment). A set of sentences Γ entails
a sentence i , Γ � i , i� for every structure M with M � Γ,
M � i .

De�nition 4.49 (Satis�ability). A set of sentences Γ is sat-
is�able if M � Γ for some structure M. If Γ is not satis�able
it is called unsatis�able.

Proposition 4.50. A sentence i is valid i� Γ � i for every set
of sentences Γ.

Proof. For the forward direction, let i be valid, and let Γ be a
set of sentences. Let M be a structure so that M � Γ. Since i
is valid, M � i , hence Γ � i .

For the contrapositive of the reverse direction, let i be
invalid, so there is a structure M with M 2 i . When Γ = {>},
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since > is valid, M � Γ. Hence, there is a structure M so that
M � Γ but M 2 i , hence Γ does not entail i . �

Proposition 4.51. Γ � i i� Γ ∪ {¬i} is unsatis�able.

Proof. For the forward direction, suppose Γ � i and suppose
to the contrary that there is a structure M so that M � Γ ∪
{¬i}. Since M � Γ and Γ � i , M � i . Also, since M �
Γ ∪ {¬i}, M � ¬i , so we have both M � i and M 2 i , a
contradiction. Hence, there can be no such structure M, so
Γ ∪ {i} is unsatis�able.

For the reverse direction, suppose Γ∪{¬i} is unsatis�able.
So for every structure M, either M 2 Γ or M � i . Hence, for
every structure M with M � Γ, M � i , so Γ � i . �

Proposition 4.52. If Γ ⊆ Γ′ and Γ � i , then Γ′ � i .

Proof. Suppose that Γ ⊆ Γ′ and Γ � i . Let M be such that
M � Γ′; then M � Γ, and since Γ � i , we get that M � i .
Hence, whenever M � Γ′, M � i , so Γ′ � i . �

�eorem 4.53 (Semantic Deduction �eorem). Γ∪{i} �
k i� Γ � i→k .

Proof. For the forward direction, let Γ ∪ {i} � k and let M
be a structure so that M � Γ. If M � i , then M � Γ ∪ {i}, so
since Γ ∪ {i} entailsk , we get M � k . �erefore, M � i→k ,
so Γ � i→k .
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For the reverse direction, let Γ � i → k and M be a
structure so that M � Γ ∪ {i}. �en M � Γ, so M � i →k ,
and since M � i , M � k . Hence, whenever M � Γ ∪ {i},
M � k , so Γ ∪ {i} � k . �

Proposition 4.54. Let M be a structure, and i (G) a formula
with one free variable G , and C a closed term. �en:

1. i (C) � ∃G i (G)

2. ∀G i (G) � i (C)

Proof. 1. Suppose M � i (C). Let B be a variable assign-
ment with B (G) = ValM (C). �en M, B � i (C) since i (C)
is a sentence. By Proposition 4.46, M, B � i (G). By
Proposition 4.42, M � ∃G i (G).

2. Suppose M � ∀G i (G). Let B be a variable assignment
with B (G) = ValM (C). By Proposition 4.42, M, B � i (G).
By Proposition 4.46, M, B � i (C). By Proposition 4.41,
M � i (C) since i (C) is a sentence. �

Problems

Problem 4.1. Prove Lemma 4.10.

Problem 4.2. Prove Proposition 4.11 (Hint: Formulate and
prove a version of Lemma 4.10 for terms.)
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Problem 4.3. Give an inductive de�nition of the bound vari-
able occurrences along the lines of De�nition 4.17.

Problem 4.4. Is N, the standard model of arithmetic, cov-
ered? Explain.

Problem 4.5. Let L = {2, 5 , �} with one constant symbol,
one one-place function symbol and one two-place predicate
symbol, and let the structure M be given by

1. |M | = {1, 2, 3}

2. 2M = 3

3. 5M (1) = 2, 5M (2) = 3, 5M (3) = 2

4. �M = {〈1, 2〉, 〈2, 3〉, 〈3, 3〉}

(a) Let B (E) = 1 for all variables E . Find out whether

M, B � ∃G (�(5 (I), 2) → ∀~ (�(~, G) ∨�(5 (~), G)))

Explain why or why not.
(b) Give a di�erent structure and variable assignment in

which the formula is not satis�ed.

Problem 4.6. Complete the proof of Proposition 4.38.

Problem 4.7. Prove Proposition 4.41

Problem 4.8. Prove Proposition 4.42.
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Problem 4.9. SupposeL is a language without function sym-
bols. Given a structure M, 2 a constant symbol and 0 ∈ |M |,
de�ne M[0/2] to be the structure that is just like M, except
that 2M [0/2 ] = 0. De�ne M | |= i for sentences i by:

1. i ≡ ⊥: not M | |= i .

2. i ≡ '(31, . . . , 3=): M | |= i i� 〈3M1 , . . . , 3M= 〉 ∈ 'M .

3. i ≡ 31 = 32: M | |= i i� 3M1 = 3M2 .

4. i ≡ ¬k : M | |= i i� not M | |= k .

5. i ≡ (k ∧ j): M | |= i i� M | |= k and M | |= j .

6. i ≡ (k ∨ j): M | |= i i� M | |= k or M | |= j (or both).

7. i ≡ (k → j): M | |= i i� not M | |= k or M | |= j (or
both).

8. i ≡ ∀G k : M | |= i i� for all 0 ∈ |M |, M[0/2] | |=
k [2/G], if 2 does not occur ink .

9. i ≡ ∃G k : M | |= i i� there is an 0 ∈ |M | such that
M[0/2] | |= k [2/G], if 2 does not occur ink .

Let G1, . . . , G= be all free variables in i , 21, . . . , 2= constant
symbols not in i , 01, . . . , 0= ∈ |M |, and B (G8 ) = 08 .

Show thatM, B � i i�M[01/21, . . . , 0=/2=] | |= i [21/G1] . . . [2=/G=].
(�is problem shows that it is possible to give a semantics

for �rst-order logic that makes do without variable assign-
ments.)
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Problem 4.10. Suppose that 5 is a function symbol not
in i (G,~). Show that there is a structure M such that M �
∀G ∃~ i (G,~) i� there is an M′ such that M′ � ∀G i (G, 5 (G)).

(�is problem is a special case of what’s known as Skolem’s
�eorem; ∀G i (G, 5 (G)) is called a Skolem normal form of
∀G ∃~ i (G,~).)

Problem 4.11. Carry out the proof of Proposition 4.43 in
detail.

Problem 4.12. Prove Proposition 4.46

Problem 4.13. 1. Show that Γ � ⊥ i� Γ is unsatis�able.

2. Show that Γ ∪ {i} � ⊥ i� Γ � ¬i .

3. Suppose 2 does not occur in i or Γ. Show that Γ � ∀G i
i� Γ � i [2/G].

Problem 4.14. Complete the proof of Proposition 4.54.
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Chapter 5

�eories and �eir Models

5.1 Introduction

�e development of the axiomatic method is a signi�cant
achievement in the history of science, and is of special impor-
tance in the history of mathematics. An axiomatic develop-
ment of a �eld involves the clari�cation of many questions:
What is the �eld about? What are the most fundamental con-
cepts? How are they related? Can all the concepts of the �eld
be de�ned in terms of these fundamental concepts? What
laws do, and must, these concepts obey?

�e axiomatic method and logic were made for each other.
Formal logic provides the tools for formulating axiomatic
theories, for proving theorems from the axioms of the theory
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in a precisely speci�ed way, for studying the properties of all
systems satisfying the axioms in a systematic way.

De�nition 5.1. A set of sentences Γ is closed i�, whenever
Γ � i then i ∈ Γ. �e closure of a set of sentences Γ is
{i | Γ � i}.

We say that Γ is axiomatized by a set of sentences Δ if Γ
is the closure of Δ.

We can think of an axiomatic theory as the set of sen-
tences that is axiomatized by its set of axioms Δ. In other
words, when we have a �rst-order language which contains
non-logical symbols for the primitives of the axiomatically
developed science we wish to study, together with a set of
sentences that express the fundamental laws of the science,
we can think of the theory as represented by all the sentences
in this language that are entailed by the axioms. �is ranges
from simple examples with only a single primitive and sim-
ple axioms, such as the theory of partial orders, to complex
theories such as Newtonian mechanics.

�e important logical facts that make this formal approach
to the axiomatic method so important are the following. Sup-
pose Γ is an axiom system for a theory, i.e., a set of sentences.

1. We can state precisely when an axiom system captures
an intended class of structures. �at is, if we are inter-
ested in a certain class of structures, we will successfully
capture that class by an axiom system Γ i� the struc-
tures are exactly those M such that M � Γ.
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2. We may fail in this respect because there are M such
thatM � Γ, butM is not one of the structures we intend.
�is may lead us to add axioms which are not true in M.

3. If we are successful at least in the respect that Γ is true
in all the intended structures, then a sentence i is true
in all intended structures whenever Γ � i . �us we can
use logical tools (such as proof methods) to show that
sentences are true in all intended structures simply by
showing that they are entailed by the axioms.

4. Sometimes we don’t have intended structures in mind,
but instead start from the axioms themselves: we begin
with some primitives that we want to satisfy certain
laws which we codify in an axiom system. One thing
that we would like to verify right away is that the ax-
ioms do not contradict each other: if they do, there can
be no concepts that obey these laws, and we have tried
to set up an incoherent theory. We can verify that this
doesn’t happen by �nding a model of Γ. And if there
are models of our theory, we can use logical methods to
investigate them, and we can also use logical methods
to construct models.

5. �e independence of the axioms is likewise an impor-
tant question. It may happen that one of the axioms is
actually a consequence of the others, and so is redun-
dant. We can prove that an axiom i in Γ is redundant
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by proving Γ \ {i} � i . We can also prove that an ax-
iom is not redundant by showing that (Γ \ {i}) ∪ {¬i}
is satis�able. For instance, this is how it was shown
that the parallel postulate is independent of the other
axioms of geometry.

6. Another important question is that of de�nability of
concepts in a theory: �e choice of the language de-
termines what the models of a theory consists of. But
not every aspect of a theory must be represented sep-
arately in its models. For instance, every ordering ≤
determines a corresponding strict ordering <—given
one, we can de�ne the other. So it is not necessary that
a model of a theory involving such an order must also
contain the corresponding strict ordering. When is it
the case, in general, that one relation can be de�ned
in terms of others? When is it impossible to de�ne a
relation in terms of other (and hence must add it to the
primitives of the language)?

5.2 Expressing Properties of Structures

It is o�en useful and important to express conditions on func-
tions and relations, or more generally, that the functions and
relations in a structure satisfy these conditions. For instance,
we would like to have ways of distinguishing those structures
for a language which “capture” what we want the predicate
symbols to “mean” from those that do not. Of course we’re
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completely free to specify which structures we “intend,” e.g.,
we can specify that the interpretation of the predicate sym-
bol ≤ must be an ordering, or that we are only interested in
interpretations of L in which the domain consists of sets and
∈ is interpreted by the “is an element of” relation. But can we
do this with sentences of the language? In other words, which
conditions on a structure M can we express by a sentence
(or perhaps a set of sentences) in the language of M? �ere
are some conditions that we will not be able to express. For
instance, there is no sentence of L� which is only true in
a structure M if |M | = N. We cannot express “the domain
contains only natural numbers.” But there are “structural
properties” of structures that we perhaps can express. Which
properties of structures can we express by sentences? Or,
to put it another way, which collections of structures can
we describe as those making a sentence (or set of sentences)
true?

De�nition 5.2 (Model of a set). Let Γ be a set of sentences
in a language L. We say that a structure M is a model of Γ if
M � i for all i ∈ Γ.

Example 5.3. �e sentence ∀G G ≤ G is true in M i� ≤M
is a re�exive relation. �e sentence ∀G ∀~ ((G ≤ ~ ∧ ~ ≤
G) → G = ~) is true in M i� ≤M is anti-symmetric. �e
sentence ∀G ∀~ ∀I ((G ≤ ~ ∧ ~ ≤ I) → G ≤ I) is true in M i�
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≤M is transitive. �us, the models of

{ ∀G G ≤ G,
∀G ∀~ ((G ≤ ~ ∧ ~ ≤ G) → G = ~),
∀G ∀~ ∀I ((G ≤ ~ ∧ ~ ≤ I) → G ≤ I) }

are exactly those structures in which ≤M is re�exive, anti-
symmetric, and transitive, i.e., a partial order. Hence, we can
take them as axioms for the �rst-order theory of partial orders.

5.3 Examples of First-Order �eories

Example 5.4. �e theory of strict linear orders in the lan-
guage L< is axiomatized by the set

∀G ¬G < G,

∀G ∀~ ((G < ~ ∨ ~ < G) ∨ G = ~),
∀G ∀~ ∀I ((G < ~ ∧ ~ < I) → G < I)

It completely captures the intended structures: every strict
linear order is a model of this axiom system, and vice versa,
if ' is a linear order on a set - , then the structure M with
|M | = - and <M = ' is a model of this theory.

Example 5.5. �e theory of groups in the language 1 (con-
stant symbol), · (two-place function symbol) is axiomatized
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by

∀G (G · 1) = G
∀G ∀~ ∀I (G · (~ · I)) = ((G · ~) · I)
∀G ∃~ (G · ~) = 1

Example 5.6. �e theory of Peano arithmetic is axiomatized
by the following sentences in the language of arithmetic L�.

∀G ∀~ (G ′ = ~ ′→ G = ~)
∀G 0 ≠ G ′

∀G (G + 0) = G
∀G ∀~ (G + ~ ′) = (G + ~) ′

∀G (G × 0) = 0
∀G ∀~ (G × ~ ′) = ((G × ~) + G)
∀G ∀~ (G < ~↔∃I (I ′ + G) = ~))

plus all sentences of the form

(i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G)

Since there are in�nitely many sentences of the la�er form,
this axiom system is in�nite. �e la�er form is called the
induction schema. (Actually, the induction schema is a bit
more complicated than we let on here.)

�e last axiom is an explicit de�nition of <.
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Example 5.7. �e theory of pure sets plays an important role
in the foundations (and in the philosophy) of mathematics.
A set is pure if all its elements are also pure sets. �e empty
set counts therefore as pure, but a set that has something as
an element that is not a set would not be pure. So the pure
sets are those that are formed just from the empty set and no
“urelements,” i.e., objects that are not themselves sets.

�e following might be considered as an axiom system
for a theory of pure sets:

∃G ¬∃~ ~ ∈ G
∀G ∀~ (∀I (I ∈ G ↔ I ∈ ~) → G = ~)
∀G ∀~ ∃I ∀D (D ∈ I↔ (D = G ∨ D = ~))
∀G ∃~ ∀I (I ∈ ~↔∃D (I ∈ D ∧ D ∈ G))

plus all sentences of the form

∃G ∀~ (~ ∈ G ↔ i (~))

�e �rst axiom says that there is a set with no elements (i.e.,
∅ exists); the second says that sets are extensional; the third
that for any sets- and . , the set {-,. } exists; the fourth that
for any set - , the set ∪- exists, where ∪- is the union of all
the elements of - .

�e sentences mentioned last are collectively called the
naive comprehension scheme. It essentially says that for every
i (G), the set {G | i (G)} exists—so at �rst glance a true, useful,
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and perhaps even necessary axiom. It is called “naive” because,
as it turns out, it makes this theory unsatis�able: if you take
i (~) to be ¬~ ∈ ~, you get the sentence

∃G ∀~ (~ ∈ G ↔¬~ ∈ ~)

and this sentence is not satis�ed in any structure.

Example 5.8. In the area of mereology, the relation of part-
hood is a fundamental relation. Just like theories of sets, there
are theories of parthood that axiomatize various conceptions
(sometimes con�icting) of this relation.

�e language of mereology contains a single two-place
predicate symbol % , and % (G,~) “means” that G is a part of ~.
When we have this interpretation in mind, a structure for this
language is called a parthood structure. Of course, not every
structure for a single two-place predicate will really deserve
this name. To have a chance of capturing “parthood,” %M must
satisfy some conditions, which we can lay down as axioms for
a theory of parthood. For instance, parthood is a partial order
on objects: every object is a part (albeit an improper part) of
itself; no two di�erent objects can be parts of each other; a
part of a part of an object is itself part of that object. Note that
in this sense “is a part of” resembles “is a subset of,” but does
not resemble “is an element of” which is neither re�exive nor
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transitive.

∀G % (G, G),
∀G ∀~ ((% (G,~) ∧ % (~, G)) → G = ~),
∀G ∀~ ∀I ((% (G,~) ∧ % (~, I)) → % (G, I)),

Moreover, any two objects have a mereological sum (an object
that has these two objects as parts, and is minimal in this
respect).

∀G ∀~ ∃I ∀D (% (I,D) ↔ (% (G,D) ∧ % (~,D)))

�ese are only some of the basic principles of parthood consid-
ered by metaphysicians. Further principles, however, quickly
become hard to formulate or write down without �rst intro-
ducting some de�ned relations. For instance, most metaphysi-
cians interested in mereology also view the following as a
valid principle: whenever an object G has a proper part ~, it
also has a part I that has no parts in common with ~, and so
that the fusion of ~ and I is G .

5.4 Expressing Relations in a Structure

One main use formulas can be put to is to express properties
and relations in a structure M in terms of the primitives of
the language L of M. By this we mean the following: the
domain ofM is a set of objects. �e constant symbols, function
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symbols, and predicate symbols are interpreted in M by some
objects in|M |, functions on |M |, and relations on |M |. For
instance, if�2

0 is in L, then M assigns to it a relation ' = �2
0
M .

�en the formula�2
0 (E1, E2) expresses that very relation, in the

following sense: if a variable assignment B maps E1 to 0 ∈ |M |
and E2 to 1 ∈ |M |, then

'01 i� M, B � �2
0 (E1, E2).

Note that we have to involve variable assignments here: we
can’t just say “'01 i� M � �2

0 (0, 1)” because 0 and 1 are not
symbols of our language: they are elements of |M |.

Since we don’t just have atomic formulas, but can combine
them using the logical connectives and the quanti�ers, more
complex formulas can de�ne other relations which aren’t
directly built into M. We’re interested in how to do that, and
speci�cally, which relations we can de�ne in a structure.

De�nition 5.9. Let i (E1, . . . , E=) be a formula of L in which
only E1,. . . , E= occur free, and let M be a structure for L.
i (E1, . . . , E=) expresses the relation ' ⊆ |M |= i�

'01 . . . 0= i� M, B � i (E1, . . . , E=)

for any variable assignment B with B (E8 ) = 08 (8 = 1, . . . , =).

Example 5.10. In the standard model of arithmetic N, the
formula E1 < E2 ∨ E1 = E2 expresses the ≤ relation on N.
�e formula E2 = E

′
1 expresses the successor relation, i.e., the
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relation ' ⊆ N2 where '=< holds if< is the successor of =.
�e formula E1 = E

′
2 expresses the predecessor relation. �e

formulas ∃E3 (E3 ≠ 0 ∧ E2 = (E1 + E3)) and ∃E3 (E1 + E3
′) = E2

both express the < relation. �is means that the predicate
symbol < is actually super�uous in the language of arithmetic;
it can be de�ned.

�is idea is not just interesting in speci�c structures, but
generally whenever we use a language to describe an intended
model or models, i.e., when we consider theories. �ese the-
ories o�en only contain a few predicate symbols as basic
symbols, but in the domain they are used to describe o�en
many other relations play an important role. If these other
relations can be systematically expressed by the relations that
interpret the basic predicate symbols of the language, we say
we can de�ne them in the language.

5.5 �e �eory of Sets

Almost all of mathematics can be developed in the theory
of sets. Developing mathematics in this theory involves a
number of things. First, it requires a set of axioms for the
relation ∈. A number of di�erent axiom systems have been
developed, sometimes with con�icting properties of ∈. �e
axiom system known as ZFC, Zermelo-Fraenkel set theory
with the axiom of choice stands out: it is by far the most
widely used and studied, because it turns out that its axioms
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su�ce to prove almost all the things mathematicians expect
to be able to prove. But before that can be established, it �rst
is necessary to make clear how we can even express all the
things mathematicians would like to express. For starters, the
language contains no constant symbols or function symbols,
so it seems at �rst glance unclear that we can talk about
particular sets (such as ∅ or N), can talk about operations on
sets (such as - ∪ . and ℘(- )), let alone other constructions
which involve things other than sets, such as relations and
functions.

To begin with, “is an element of” is not the only relation
we are interested in: “is a subset of” seems almost as important.
But we can de�ne “is a subset of” in terms of “is an element of.”
To do this, we have to �nd a formulai (G,~) in the language of
set theory which is satis�ed by a pair of sets 〈-,. 〉 i� - ⊆ . .
But - is a subset of . just in case all elements of - are also
elements of . . So we can de�ne ⊆ by the formula

∀I (I ∈ G → I ∈ ~)

Now, whenever we want to use the relation ⊆ in a formula,
we could instead use that formula (with G and ~ suitably
replaced, and the bound variable I renamed if necessary). For
instance, extensionality of sets means that if any sets G and ~
are contained in each other, then G and~ must be the same set.
�is can be expressed by ∀G ∀~ ((G ⊆ ~ ∧ ~ ⊆ G) → G = ~),
or, if we replace ⊆ by the above de�nition, by

∀G ∀~ ((∀I (I ∈ G → I ∈ ~) ∧ ∀I (I ∈ ~→ I ∈ G)) → G = ~).
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�is is in fact one of the axioms of ZFC, the “axiom of exten-
sionality.”

�ere is no constant symbol for ∅, but we can express
“G is empty” by ¬∃~ ~ ∈ G . �en “∅ exists” becomes the
sentence ∃G ¬∃~ ~ ∈ G . �is is another axiom of ZFC. (Note
that the axiom of extensionality implies that there is only
one empty set.) Whenever we want to talk about ∅ in the
language of set theory, we would write this as “there is a set
that’s empty and . . . ” As an example, to express the fact that
∅ is a subset of every set, we could write

∃G (¬∃~ ~ ∈ G ∧ ∀I G ⊆ I)

where, of course, G ⊆ I would in turn have to be replaced by
its de�nition.

To talk about operations on sets, such has - ∪ . and
℘(- ), we have to use a similar trick. �ere are no function
symbols in the language of set theory, but we can express the
functional relations - ∪ . = / and ℘(- ) = . by

∀D ((D ∈ G ∨ D ∈ ~) ↔ D ∈ I)
∀D (D ⊆ G ↔ D ∈ ~)

since the elements of - ∪. are exactly the sets that are either
elements of - or elements of . , and the elements of ℘(- ) are
exactly the subsets of- . However, this doesn’t allow us to use
G ∪~ or ℘(G) as if they were terms: we can only use the entire
formulas that de�ne the relations - ∪ . = / and ℘(- ) = . .
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In fact, we do not know that these relations are ever satis�ed,
i.e., we do not know that unions and power sets always exist.
For instance, the sentence ∀G ∃~ ℘(G) = ~ is another axiom
of ZFC (the power set axiom).

Now what about talk of ordered pairs or functions? Here
we have to explain how we can think of ordered pairs and
functions as special kinds of sets. One way to de�ne the
ordered pair 〈G,~〉 is as the set {{G}, {G,~}}. But like before,
we cannot introduce a function symbol that names this set; we
can only de�ne the relation 〈G,~〉 = I, i.e., {{G}, {G,~}} = I:

∀D (D ∈ I↔(∀E (E ∈ D↔E = G)∨∀E (E ∈ D↔(E = G∨E = ~))))

�is says that the elements D of I are exactly those sets which
either have G as its only element or have G and ~ as its only
elements (in other words, those sets that are either identical
to {G} or identical to {G,~}). Once we have this, we can say
further things, e.g., that - × . = / :

∀I (I ∈ / ↔∃G ∃~ (G ∈ - ∧ ~ ∈ . ∧ 〈G,~〉 = I))

A function 5 : - → . can be thought of as the relation
5 (G) = ~, i.e., as the set of pairs {〈G,~〉 | 5 (G) = ~}. We
can then say that a set 5 is a function from - to . if (a) it
is a relation ⊆ - × . , (b) it is total, i.e., for all G ∈ - there
is some ~ ∈ . such that 〈G,~〉 ∈ 5 and (c) it is functional,
i.e., whenever 〈G,~〉, 〈G,~ ′〉 ∈ 5 , ~ = ~ ′ (because values of
functions must be unique). So “5 is a function from - to . ”
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can be wri�en as:

∀D (D ∈ 5 →∃G ∃~ (G ∈ - ∧ ~ ∈ . ∧ 〈G,~〉 = D)) ∧
∀G (G ∈ - → (∃~ (~ ∈ . ∧maps(5 , G,~)) ∧

(∀~ ∀~ ′ ((maps(5 , G,~) ∧maps(5 , G,~ ′)) → ~ = ~ ′)))

where maps(5 , G,~) abbreviates ∃E (E ∈ 5 ∧ 〈G,~〉 = E) (this
formula expresses “5 (G) = ~”).

It is now also not hard to express that 5 : - → . is injec-
tive, for instance:

5 : - → . ∧ ∀G ∀G ′ ((G ∈ - ∧ G ′ ∈ - ∧
∃~ (maps(5 , G,~) ∧maps(5 , G ′, ~))) → G = G ′)

A function 5 : - → . is injective i�, whenever 5 maps G, G ′ ∈
- to a single ~, G = G ′. If we abbreviate this formula as
inj(5 , -,. ), we’re already in a position to state in the language
of set theory something as non-trivial as Cantor’s theorem:
there is no injective function from ℘(- ) to - :

∀- ∀. (℘(- ) = . →¬∃5 inj(5 , . , - ))

One might think that set theory requires another axiom
that guarantees the existence of a set for every de�ning prop-
erty. If i (G) is a formula of set theory with the variable G free,
we can consider the sentence

∃~ ∀G (G ∈ ~↔ i (G)) .
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�is sentence states that there is a set ~ whose elements are
all and only those G that satisfy i (G). �is schema is called
the “comprehension principle.” It looks very useful; unfor-
tunately it is inconsistent. Take i (G) ≡ ¬G ∈ G , then the
comprehension principle states

∃~ ∀G (G ∈ ~↔ G ∉ G),

i.e., it states the existence of a set of all sets that are not
elements of themselves. No such set can exist—this is Russell’s
Paradox. ZFC, in fact, contains a restricted—and consistent—
version of this principle, the separation principle:

∀I ∃~ ∀G (G ∈ ~↔ (G ∈ I ∧ i (G)) .

5.6 Expressing the Size of Structures

�ere are some properties of structures we can express even
without using the non-logical symbols of a language. For
instance, there are sentences which are true in a structure i�
the domain of the structure has at least, at most, or exactly a
certain number = of elements.
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Proposition 5.11. �e sentence

i≥= ≡ ∃G1 ∃G2 . . . ∃G=
(G1 ≠ G2 ∧ G1 ≠ G3 ∧ G1 ≠ G4 ∧ · · · ∧ G1 ≠ G= ∧

G2 ≠ G3 ∧ G2 ≠ G4 ∧ · · · ∧ G2 ≠ G= ∧
...

G=−1 ≠ G=)

is true in a structure M i� |M | contains at least = elements.
Consequently, M � ¬i≥=+1 i� |M | contains at most = elements.

Proposition 5.12. �e sentence

i== ≡ ∃G1 ∃G2 . . . ∃G=
(G1 ≠ G2 ∧ G1 ≠ G3 ∧ G1 ≠ G4 ∧ · · · ∧ G1 ≠ G= ∧

G2 ≠ G3 ∧ G2 ≠ G4 ∧ · · · ∧ G2 ≠ G= ∧
...

G=−1 ≠ G= ∧
∀~ (~ = G1 ∨ · · · ∨ ~ = G=))

is true in a structure M i� |M | contains exactly = elements.

Proposition 5.13. A structure is in�nite i� it is a model of

{i≥1, i≥2, i≥3, . . . }.
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�ere is no single purely logical sentence which is true
in M i� |M | is in�nite. However, one can give sentences with
non-logical predicate symbols which only have in�nite models
(although not every in�nite structure is a model of them).
�e property of being a �nite structure, and the property
of being a uncountable structure cannot even be expressed
with an in�nite set of sentences. �ese facts follow from the
compactness and Löwenheim-Skolem theorems.

Problems

Problem 5.1. Find formulas in L� which de�ne the follow-
ing relations:

1. = is between 8 and 9 ;

2. = evenly divides< (i.e.,< is a multiple of =);

3. = is a prime number (i.e., no number other than 1 and
= evenly divides =).

Problem 5.2. Suppose the formula i (E1, E2) expresses the
relation' ⊆ |M |2 in a structureM. Find formulas that express
the following relations:

1. the inverse '−1 of ';

2. the relative product ' | ';

Can you �nd a way to express '+, the transitive closure of '?
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Problem 5.3. Let L be the language containing a 2-place
predicate symbol < only (no other constant symbols, function
symbols or predicate symbols— except of course =). Let N be
the structure such that |N | = N, and <N = {〈=,<〉 | = < <}.
Prove the following:

1. {0} is de�nable in N;

2. {1} is de�nable in N;

3. {2} is de�nable in N;

4. for each = ∈ N, the set {=} is de�nable in N;

5. every �nite subset of |N | is de�nable in N;

6. every co-�nite subset of |N | is de�nable in N (where
- ⊆ N is co-�nite i� N \ - is �nite).

Problem 5.4. Show that the comprehension principle is in-
consistent by giving a derivation that shows

∃~ ∀G (G ∈ ~↔ G ∉ G) ` ⊥.

It may help to �rst show (�→¬�) ∧ (¬�→�) ` ⊥.
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Chapter 6

Natural Deduction

6.1 Introduction

To de�ne a derivation system for �rst-order logic we will use
what we already have for propositional logic and add rules
for the quanti�ers.
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6.2 �anti�er Rules

Rules for ∀

i (0)
∀I∀G i (G)

∀G i (G)
∀E

i (C)

In the rules for ∀, C is a ground term (a term that does not
contain any variables), and 0 is a constant symbol which
does not occur in the conclusion ∀G i (G), or in any assump-
tion which is undischarged in the derivation ending with the
premise i (0). We call 0 the eigenvariable of the ∀I inference.

Rules for ∃

i (C)
∃I∃G i (G)

∃G i (G)

[i (0)]=

j
∃E=j

Again, C is a ground term, and 0 is a constant which does
not occur in the premise ∃G i (G), in the conclusion j , or any
assumption which is undischarged in the derivations ending
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with the two premises (other than the assumptions i (0)). We
call 0 the eigenvariable of the ∃E inference.

�e condition that an eigenvariable neither occur in the
premises nor in any assumption that is undischarged in the
derivations leading to the premises for the ∀I or ∃E inference
is called the eigenvariable condition.

We use the term “eigenvariable” even though 0 in the
above rules is a constant. �is has historical reasons.

In ∃I and ∀E there are no restrictions, and the term C can
be anything, so we do not have to worry about any conditions.
On the other hand, in the ∃E and ∀I rules, the eigenvariable
condition requires that the constant symbol 0 does not occur
anywhere in the conclusion or in an undischarged assumption.
�e condition is necessary to ensure that the system is sound,
i.e., only derives sentences from undischarged assumptions
from which they follow. Without this condition, the following
would be allowed:

∃G i (G)
[i (0)]1

*∀I∀G i (G)
∃E∀G i (G)

However, ∃G i (G) 2 ∀G i (G).

6.3 Derivations with �anti�ers

Example 6.1. When dealing with quanti�ers, we have to
make sure not to violate the eigenvariable condition, and
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sometimes this requires us to play around with the order of
carrying out certain inferences. In general, it helps to try and
take care of rules subject to the eigenvariable condition �rst
(they will be lower down in the �nished proof).

Let’s see how we’d give a derivation of the formula
∃G ¬i (G) → ¬∀G i (G). Starting as usual, we write

∃G ¬i (G) → ¬∀G i (G)

We start by writing down what it would take to justify that
last step using the→I rule.

[∃G ¬i (G)]1

¬∀G i (G) →I1∃G ¬i (G) → ¬∀G i (G)

Since there is no obvious rule to apply to ¬∀G i (G), we will
proceed by se�ing up the derivation so we can use the ∃E rule.
Here we must pay a�ention to the eigenvariable condition,
and choose a constant that does not appear in ∃G i (G) or any
assumptions that it depends on. (Since no constant symbols
appear, however, any choice will do �ne.)
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[∃G ¬i (G)]1

[¬i (0)]2

¬∀G i (G)
∃E2¬∀G i (G) →I1∃G ¬i (G) → ¬∀G i (G)

In order to derive ¬∀G i (G), we will a�empt to use the ¬I
rule: this requires that we derive a contradiction, possibly
using ∀G i (G) as an additional assumption. Of course, this
contradiction may involve the assumption ¬i (0) which will
be discharged by the→I inference. We can set it up as follows:

[∃G ¬i (G)]1

[¬i (0)]2, [∀G i (G)]3

⊥ ¬I3¬∀G i (G)
∃E2¬∀G i (G) →I1∃G ¬i (G) → ¬∀G i (G)

It looks like we are close to ge�ing a contradiction. �e easiest
rule to apply is the ∀E, which has no eigenvariable conditions.
Since we can use any term we want to replace the universally
quanti�ed G , it makes the most sense to continue using 0 so
we can reach a contradiction.
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[∃G ¬i (G)]1

[¬i (0)]2
[∀G i (G)]3

∀E
i (0)

¬E⊥ ¬I3¬∀G i (G)
∃E2¬∀G i (G) →I1∃G ¬i (G) → ¬∀G i (G)

It is important, especially when dealing with quanti�ers,
to double check at this point that the eigenvariable condition
has not been violated. Since the only rule we applied that
is subject to the eigenvariable condition was ∃E, and the
eigenvariable 0 does not occur in any assumptions it depends
on, this is a correct derivation.

Example 6.2. Sometimes we may derive a formula from
other formulas. In these cases, we may have undischarged
assumptions. It is important to keep track of our assumptions
as well as the end goal.

Let’s see how we’d give a derivation of the formula
∃G j (G, 1) from the assumptions∃G (i (G)∧k (G)) and∀G (k (G)→
j (G, 1)). Starting as usual, we write the conclusion at the
bo�om.

∃G j (G, 1)

We have two premises to work with. To use the �rst, i.e.,
try to �nd a derivation of ∃G j (G, 1) from ∃G (i (G)∧k (G)) we
would use the ∃E rule. Since it has an eigenvariable condition,
we will apply that rule �rst. We get the following:
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∃G (i (G) ∧k (G))

[i (0) ∧k (0)]1

∃G j (G, 1)
∃E1∃G j (G, 1)

�e two assumptions we are working with sharek . It may be
useful at this point to apply ∧E to separate outk (0).

∃G (i (G) ∧k (G))

[i (0) ∧k (0)]1
∧E

k (0)

∃G j (G, 1)
∃E1∃G j (G, 1)

�e second assumption we have to work with is∀G (k (G)→
j (G, 1)). Since there is no eigenvariable condition we can
instantiate G with the constant symbol 0 using ∀E to get
k (0) → j (0, 1). We now have bothk (0) → j (0, 1) andk (0).
Our next move should be a straightforward application of the
→E rule.
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∃G (i (G) ∧k (G))

∀G (k (G) → j (G, 1))
∀E

k (0) → j (0, 1)
[i (0) ∧k (0)]1

∧E
k (0)

→E
j (0, 1)

∃G j (G, 1)
∃E1∃G j (G, 1)

We are so close! One application of ∃I and we have reached
our goal.

∃G (i (G) ∧k (G))

∀G (k (G) → j (G, 1))
∀E

k (0) → j (0, 1)
[i (0) ∧k (0)]1

∧E
k (0)

→E
j (0, 1)

∃I∃G j (G, 1)
∃E1∃G j (G, 1)

Since we ensured at each step that the eigenvariable condi-
tions were not violated, we can be con�dent that this is a
correct derivation.

Example 6.3. Give a derivation of the formula ¬∀G i (G)
from the assumptions∀G i (G)→∃~k (~) and ¬∃~k (~). Start-
ing as usual, we write the target formula at the bo�om.

¬∀G i (G)
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�e last line of the derivation is a negation, so let’s try us-
ing ¬I. �is will require that we �gure out how to derive a
contradiction.

[∀G i (G)]1

⊥ ¬I1¬∀G i (G)

So far so good. We can use ∀E but it’s not obvious if that
will help us get to our goal. Instead, let’s use one of our
assumptions. ∀G i (G) → ∃~k (~) together with ∀G i (G) will
allow us to use the→E rule.

∀G i (G) → ∃~k (~) [∀G i (G)]1
→E∃~k (~)

⊥ ¬I1¬∀G i (G)

We now have one �nal assumption to work with, and it looks
like this will help us reach a contradiction by using ¬E.

¬∃~k (~)
∀G i (G) → ∃~k (~) [∀G i (G)]1

→E∃~k (~)
¬E⊥ ¬I1¬∀G i (G)
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6.4 Proof-�eoretic Notions

Just as we’ve de�ned a number of important semantic notions
(validity, entailment, satis�abilty), we now de�ne correspond-
ing proof-theoretic notions. �ese are not de�ned by appeal to
satisfaction of sentences in structures, but by appeal to the
derivability or non-derivability of certain sentences from oth-
ers. It was an important discovery that these notions coincide.
�at they do is the content of the soundness and completeness
theorems.

De�nition 6.4 (�eorems). A sentence i is a theorem if
there is a derivation of i in natural deduction in which all
assumptions are discharged. We write ` i if i is a theorem
and 0 i if it is not.

De�nition 6.5 (Derivability). A sentence i is derivable
from a set of sentences Γ, Γ ` i , if there is a derivation
with conclusion i and in which every assumption is either
discharged or is in Γ. If i is not derivable from Γ we write
Γ 0 i .

De�nition 6.6 (Consistency). A set of sentences Γ is incon-
sistent i� Γ ` ⊥. If Γ is not inconsistent, i.e., if Γ 0 ⊥, we say
it is consistent.

Proposition 6.7 (Re�exivity). If i ∈ Γ, then Γ ` i .

Proof. �e assumption i by itself is a derivation of i where
every undischarged assumption (i.e., i) is in Γ. �
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Proposition 6.8 (Monotony). If Γ ⊆ Δ and Γ ` i , then Δ `
i .

Proof. Any derivation of i from Γ is also a derivation of i
from Δ. �

Proposition 6.9 (Transitivity). If Γ ` i and {i} ∪ Δ ` k ,
then Γ ∪ Δ ` k .

Proof. If Γ ` i , there is a derivation X0 of i with all undis-
charged assumptions in Γ. If {i}∪Δ ` k , then there is a deriva-
tion X1 of k with all undischarged assumptions in {i} ∪ Δ.
Now consider:

Δ, [i]1

X1

k →I1
i→k

Γ

X0

i
→E

k

�e undischarged assumptions are now all among Γ ∪ Δ, so
this shows Γ ∪ Δ ` k . �

When Γ = {i1, i2, . . . , i: } is a �nite set we may use the
simpli�ed notation i1, i2, . . . , i: ` k for Γ ` k , in particular
i ` k means that {i} ` k .

Note that if Γ ` i and i ` k , then Γ ` k . It follows also
that if i1, . . . , i= ` k and Γ ` i8 for each 8 , then Γ ` k .
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Proposition 6.10. �e following are equivalent.

1. Γ is inconsistent.

2. Γ ` i for every sentence i .

3. Γ ` i and Γ ` ¬i for some sentence i .

Proof. Exercise. �

Proposition 6.11 (Compactness). 1. If Γ ` i then there
is a �nite subset Γ0 ⊆ Γ such that Γ0 ` i .

2. If every �nite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ` i , then there is a derivation X of i from Γ.
Let Γ0 be the set of undischarged assumptions of X . Since
any derivation is �nite, Γ0 can only contain �nitely
many sentences. So, X is a derivation of i from a �-
nite Γ0 ⊆ Γ.

2. �is is the contrapositive of (1) for the special case
i ≡ ⊥. �

6.5 Derivability and Consistency

We will now establish a number of properties of the derivabil-
ity relation. �ey are independently interesting, but each will
play a role in the proof of the completeness theorem.
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Proposition 6.12. If Γ ` i and Γ ∪ {i} is inconsistent, then
Γ is inconsistent.

Proof. Let the derivation of i from Γ be X1 and the derivation
of ⊥ from Γ ∪ {i} be X2. We can then derive:

Γ, [i]1

X2

⊥ ¬I1¬i

Γ

X1

i
¬E⊥

In the new derivation, the assumption i is discharged, so it is
a derivation from Γ. �

Proposition 6.13. Γ ` i i� Γ ∪ {¬i} is inconsistent.

Proof. First suppose Γ ` i , i.e., there is a derivation X0 of i
from undischarged assumptions Γ. We obtain a derivation of
⊥ from Γ ∪ {¬i} as follows:

¬i

Γ

X0

i
¬E⊥
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Now assume Γ ∪ {¬i} is inconsistent, and let X1 be the
corresponding derivation of ⊥ from undischarged assump-
tions in Γ ∪ {¬i}. We obtain a derivation of i from Γ alone
by using RAA:

Γ, [¬i]1

X1

⊥ RAAi �

Proposition 6.14. If Γ ` i and ¬i ∈ Γ, then Γ is inconsistent.

Proof. Suppose Γ ` i and ¬i ∈ Γ. �en there is a derivation X
of i from Γ. Consider this simple application of the ¬E rule:

¬i

Γ

X

i
¬E⊥

Since ¬i ∈ Γ, all undischarged assumptions are in Γ, this
shows that Γ ` ⊥. �

Proposition 6.15. If Γ ∪ {i} and Γ ∪ {¬i} are both inconsis-
tent, then Γ is inconsistent.
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Proof. �ere are derivations X1 and X2 of ⊥ from Γ ∪ {i} and
⊥ from Γ ∪ {¬i}, respectively. We can then derive

Γ, [¬i]2

X2

⊥ ¬I2¬¬i

Γ, [i]1

X1

⊥ ¬I1¬i
¬E⊥

Since the assumptionsi and¬i are discharged, this is a deriva-
tion of ⊥ from Γ alone. Hence Γ is inconsistent. �

6.6 Derivability and the Propositional
Connectives

Proposition 6.16. 1. Both i ∧k ` i and i ∧k ` k

2. i,k ` i ∧k .

Proof. 1. We can derive both

i ∧k
∧Ei

i ∧k
∧E

k

2. We can derive:

i k
∧I

i ∧k �
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Proposition 6.17. 1. i ∨k,¬i,¬k is inconsistent.

2. Both i ` i ∨k andk ` i ∨k .

Proof. 1. Consider the following derivation:

i ∨k
¬i [i]1

¬E⊥
¬k [k ]1

¬E⊥ ∨E1⊥

�is is a derivation of⊥ from undischarged assumptions
i ∨k , ¬i , and ¬k .

2. We can derive both

i
∨I

i ∨k
k

∨I
i ∨k �

Proposition 6.18. 1. i, i→k ` k .

2. Both ¬i ` i→k andk ` i→k .

Proof. 1. We can derive:

i→k i
→E

k

2. �is is shown by the following two derivations:
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¬i [i]1
¬E⊥ ⊥E

k →I1
i→k

k
→I

i→k

Note that→I may, but does not have to, discharge the
assumption i . �

6.7 Derivability and the �anti�ers

�eorem 6.19. If 2 is a constant not occurring in Γ or i (G)
and Γ ` i (2), then Γ ` ∀G i (G).

Proof. Let X be a derivation of i (2) from Γ. By adding a ∀I
inference, we obtain a proof of ∀G i (G). Since 2 does not occur
in Γ or i (G), the eigenvariable condition is satis�ed. �

Proposition 6.20. 1. i (C) ` ∃G i (G).

2. ∀G i (G) ` i (C).

Proof. 1. �e following is a derivation of∃G i (G) fromi (C):

i (C)
∃I∃G i (G)

2. �e following is a derivation of i (C) from ∀G i (G):
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∀G i (G)
∀E

i (C) �

6.8 Soundness

A derivation system, such as natural deduction, is sound if it
cannot derive things that do not actually follow. Soundness
is thus a kind of guaranteed safety property for derivation
systems. Depending on which proof theoretic property is in
question, we would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a
consequence of them;

3. if a set of sentences is inconsistent, it is unsatis�able.

�ese are important properties of a derivation system. If
any of them do not hold, the derivation system is de�cient—
it would derive too much. Consequently, establishing the
soundness of a derivation system is of the utmost importance.

�eorem 6.21 (Soundness). If i is derivable from the undis-
charged assumptions Γ, then Γ � i .

Proof. Let X be a derivation of i . We proceed by induction on
the number of inferences in X .
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For the induction basis we show the claim if the number
of inferences is 0. In this case, X consists only of a single sen-
tence i , i.e., an assumption. �at assumption is undischarged,
since assumptions can only be discharged by inferences, and
there are no inferences. So, any structure M that satis�es all
of the undischarged assumptions of the proof also satis�es i .

Now for the inductive step. Suppose that X contains =
inferences. �e premise(s) of the lowermost inference are
derived using sub-derivations, each of which contains fewer
than = inferences. We assume the induction hypothesis: �e
premises of the lowermost inference follow from the undis-
charged assumptions of the sub-derivations ending in those
premises. We have to show that the conclusion i follows from
the undischarged assumptions of the entire proof.

We distinguish cases according to the type of the lower-
most inference. First, we consider the possible inferences with
only one premise.

1. Suppose that the last inference is ¬I: �e derivation has
the form

Γ, [i]=

X1

⊥ ¬I=¬i

By inductive hypothesis, ⊥ follows from the undis-
charged assumptions Γ ∪ {i} of X1. Consider a struc-
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ture M. We need to show that, if M � Γ, then M � ¬i .
Suppose for reductio that M � Γ, but M 2 ¬i , i.e.,
M � i . �is would mean that M � Γ ∪ {i}. �is is
contrary to our inductive hypothesis. So, M � ¬i .

2. �e last inference is ∧E: �ere are two variants: i ork
may be inferred from the premise i ∧k . Consider the
�rst case. �e derivation X looks like this:

Γ

X1

i ∧k
∧Ei

By inductive hypothesis, i ∧k follows from the undis-
charged assumptions Γ of X1. Consider a structure M.
We need to show that, if M � Γ, then M � i . Suppose
M � Γ. By our inductive hypothesis (Γ � i ∧ k ), we
know that M � i ∧ k . By de�nition, M � i ∧ k i�
M � i and M � k . (�e case wherek is inferred from
i ∧k is handled similarly.)

3. �e last inference is ∨I: �ere are two variants: i ∨k
may be inferred from the premise i or the premise k .
Consider the �rst case. �e derivation has the form
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Γ

X1

i
∨I

i ∨k

By inductive hypothesis, i follows from the undis-
charged assumptions Γ of X1. Consider a structure M.
We need to show that, if M � Γ, then M � i ∨k . Sup-
pose M � Γ; then M � i since Γ � i (the inductive
hypothesis). So it must also be the case that M � i ∨k .
(�e case where i ∨ k is inferred from k is handled
similarly.)

4. �e last inference is→I: i→k is inferred from a sub-
proof with assumption i and conclusionk , i.e.,

Γ, [i]=

X1

k →I=
i→k

By inductive hypothesis, k follows from the undis-
charged assumptions of X1, i.e., Γ ∪ {i} � k . Consider
a structure M. �e undischarged assumptions of X are
just Γ, since i is discharged at the last inference. So we
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need to show that Γ � i → k . For reductio, suppose
that for some structure M, M � Γ but M 2 i→k . So,
M � i and M 2 k . But by hypothesis, k is a conse-
quence of Γ ∪ {i}, i.e., M � k , which is a contradiction.
So, Γ � i→k .

5. �e last inference is ⊥E: Here, X ends in

Γ

X1

⊥ ⊥Ei

By induction hypothesis, Γ � ⊥. We have to show that
Γ � i . Suppose not; then for some M we have M � Γ
and M 2 i . But we always have M 2 ⊥, so this would
mean that Γ 2 ⊥, contrary to the induction hypothesis.

6. �e last inference is RAA: Exercise.

7. �e last inference is ∀I: �en X has the form

Γ

X1

i (0)
∀I∀G i (G)
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�e premise i (0) is a consequence of the undischarged
assumptions Γ by induction hypothesis. Consider some
structure, M, such that M � Γ. We need to show that
M � ∀G i (G). Since ∀G i (G) is a sentence, this means
we have to show that for every variable assignment B ,
M, B � i (G) (Proposition 4.42). Since Γ consists entirely
of sentences, M, B � k for all k ∈ Γ by De�nition 4.35.
Let M′ be like M except that 0M′ = B (G). Since 0 does
not occur in Γ, M′ � Γ by Corollary 4.44. Since Γ �
i (0), M′ � i (0). Since i (0) is a sentence, M′, B �
i (0) by Proposition 4.41. M′, B � i (G) i� M′ � i (0)
by Proposition 4.46 (recall that i (0) is just i (G) [0/G]).
So, M′, B � i (G). Since 0 does not occur in i (G), by
Proposition 4.43, M, B � i (G). But B was an arbitrary
variable assignment, so M � ∀G i (G).

8. �e last inference is ∃I: Exercise.

9. �e last inference is ∀E: Exercise.

Now let’s consider the possible inferences with several
premises: ∨E, ∧I,→E, and ∃E.

1. �e last inference is ∧I. i ∧ k is inferred from the
premises i andk and X has the form
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Γ1

X1

i

Γ2

X2

k
∧I

i ∧k

By induction hypothesis, i follows from the undis-
charged assumptions Γ1 of X1 and k follows from the
undischarged assumptions Γ2 of X2. �e undischarged
assumptions of X are Γ1 ∪ W2, so we have to show that
Γ1∪Γ2 � i∧k . Consider a structure M with M � Γ1∪Γ2.
Since M � Γ1, it must be the case that M � i as Γ1 � i ,
and since M � Γ2, M � k since Γ2 � k . Together,
M � i ∧k .

2. �e last inference is ∨E: Exercise.

3. �e last inference is→E. k is inferred from the premises
i→k and i . �e derivation X looks like this:

Γ1

X1

i→k

Γ2

X2

i
→E

k

By induction hypothesis, i→k follows from the undis-
charged assumptions Γ1 of X1 and i follows from the
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undischarged assumptions Γ2 of X2. Consider a struc-
ture M. We need to show that, if M � Γ1 ∪ Γ2, then
M � k . Suppose M � Γ1 ∪ Γ2. Since Γ1 � i → k ,
M � i→k . Since Γ2 � i , we have M � i . �is means
that M � k (For if M 2 k , since M � i , we’d have
M 2 i→k , contradicting M � i→k ).

4. �e last inference is ¬E: Exercise.

5. �e last inference is ∃E: Exercise. �

Corollary 6.22. If ` i , then i is valid.

Corollary 6.23. If Γ is satis�able, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not
consistent. �en Γ ` ⊥, i.e., there is a derivation of ⊥ from
undischarged assumptions in Γ. By �eorem 6.21, any struc-
ture M that satis�es Γ must satisfy ⊥. Since M 2 ⊥ for every
structure M, no M can satisfy Γ, i.e., Γ is not satis�able. �

6.9 Derivations with Identity predicate

Derivations with identity predicate require additional infer-
ence rules.
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=I
C = C

C1 = C2 i (C1)
=E

i (C2)
C1 = C2 i (C2)

=E
i (C1)

In the above rules, C , C1, and C2 are closed terms. �e =I
rule allows us to derive any identity statement of the form
C = C outright, from no assumptions.

Example 6.24. If B and C are closed terms, then i (B), B = C `
i (C):

B = C i (B)
=E

i (C)

�is may be familiar as the “principle of substitutability of
identicals,” or Leibniz’ Law.

Example 6.25. We derive the sentence

∀G ∀~ ((i (G) ∧ i (~)) → G = ~)

from the sentence

∃G ∀~ (i (~) → ~ = G)

We develop the derivation backwards:
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∃G ∀~ (i (~) → ~ = G) [i (0) ∧ i (1)]1

0 = 1 →I1((i (0) ∧ i (1)) → 0 = 1)
∀I∀~ ((i (0) ∧ i (~)) → 0 = ~)
∀I∀G ∀~ ((i (G) ∧ i (~)) → G = ~)

We’ll now have to use the main assumption: since it is an
existential formula, we use ∃E to derive the intermediary
conclusion 0 = 1.

∃G ∀~ (i (~) → ~ = G)

[∀~ (i (~) → ~ = 2)]2

[i (0) ∧ i (1)]1

0 = 1
∃E2

0 = 1 →I1((i (0) ∧ i (1)) → 0 = 1)
∀I∀~ ((i (0) ∧ i (~)) → 0 = ~)
∀I∀G ∀~ ((i (G) ∧ i (~)) → G = ~)

�e sub-derivation on the top right is completed by using its
assumptions to show that 0 = 2 and 1 = 2 . �is requires two
separate derivations. �e derivation for 0 = 2 is as follows:
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[∀~ (i (~) → ~ = 2)]2
∀E

i (0) → 0 = 2

[i (0) ∧ i (1)]1
∧E

i (0)
→E0 = 2

From 0 = 2 and 1 = 2 we derive 0 = 1 by =E.

6.10 Soundness with Identity predicate

Proposition 6.26. Natural deduction with rules for = is sound.

Proof. Any formula of the form C = C is valid, since for every
structure M, M � C = C . (Note that we assume the term C to be
ground, i.e., it contains no variables, so variable assignments
are irrelevant).

Suppose the last inference in a derivation is =E, i.e., the
derivation has the following form:

Γ1

X1

C1 = C2

Γ2

X2

i (C1)
=E

i (C2)

�e premises C1 = C2 and i (C1) are derived from undischarged
assumptions Γ1 and Γ2, respectively. We want to show that
i (C2) follows from Γ1 ∪ Γ2. Consider a structure M with
M � Γ1 ∪ Γ2. By induction hypothesis, M � i (C1) and
M � C1 = C2. �erefore, ValM (C1) = ValM (C2). Let B be any
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variable assignment, and B ′ be the G-variant given by B ′(G) =
ValM (C1) = ValM (C2). By Proposition 4.46, M, B � i (C1) i�
M, B ′ � i (G) i� M, B � i (C2). Since M � i (C1), we have
M � i (C2). �

Problems

Problem 6.1. Give derivations of the following:

1. ∃~ i (~) →k from the assumption ∀G (i (G) →k )

2. ∃G (i (G) → ∀~ i (~))

Problem 6.2. Prove Proposition 6.10

Problem 6.3. Prove that Γ ` ¬i i� Γ ∪ {i} is inconsistent.

Problem 6.4. Complete the proof of �eorem 6.21.

Problem 6.5. Prove that = is both symmetric and transi-
tive, i.e., give derivations of ∀G ∀~ (G = ~ → ~ = G) and
∀G ∀~ ∀I ((G = ~ ∧ ~ = I) → G = I)

Problem 6.6. Give derivations of the following formulas:

1. ∀G ∀~ ((G = ~ ∧ i (G)) → i (~))

2. ∃G i (G) ∧∀~ ∀I ((i (~) ∧i (I))→~ = I)→∃G (i (G) ∧
∀~ (i (~) → ~ = G))
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Chapter 7

�e Completeness
�eorem

7.1 Introduction

�e completeness theorem is one of the most fundamental
results about logic. It comes in two formulations, the equiv-
alence of which we’ll prove. In its �rst formulation it says
something fundamental about the relationship between se-
mantic consequence and our proof system: if a sentence i
follows from some sentences Γ, then there is also a derivation
that establishes Γ ` i . �us, the proof system is as strong as
it can possibly be without proving things that don’t actually
follow.
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In its second formulation, it can be stated as a model
existence result: every consistent set of sentences is satis�able.
Consistency is a proof-theoretic notion: it says that our proof
system is unable to produce certain derivations. But who’s to
say that just because there are no derivations of a certain sort
from Γ, it’s guaranteed that there is a structure M? Before
the completeness theorem was �rst proved—in fact before
we had the proof systems we now do—the great German
mathematician David Hilbert held the view that consistency of
mathematical theories guarantees the existence of the objects
they are about. He put it as follows in a le�er to Go�lob Frege:

If the arbitrarily given axioms do not contradict
one another with all their consequences, then
they are true and the things de�ned by the axioms
exist. �is is for me the criterion of truth and
existence.

Frege vehemently disagreed. �e second formulation of the
completeness theorem shows that Hilbert was right in at least
the sense that if the axioms are consistent, then some structure
exists that makes them all true.

�ese aren’t the only reasons the completeness theorem—
or rather, its proof—is important. It has a number of important
consequences, some of which we’ll discuss separately. For
instance, since any derivation that shows Γ ` i is �nite and
so can only use �nitely many of the sentences in Γ, it follows
by the completeness theorem that if i is a consequence of Γ,
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it is already a consequence of a �nite subset of Γ. �is is
called compactness. Equivalently, if every �nite subset of Γ is
consistent, then Γ itself must be consistent.

Although the compactness theorem follows from the com-
pleteness theorem via the detour through derivations, it is
also possible to use the the proof of the completeness theo-
rem to establish it directly. For what the proof does is take
a set of sentences with a certain property—consistency—and
constructs a structure out of this set that has certain prop-
erties (in this case, that it satis�es the set). Almost the very
same construction can be used to directly establish compact-
ness, by starting from “�nitely satis�able” sets of sentences
instead of consistent ones. �e construction also yields other
consequences, e.g., that any satis�able set of sentences has
a �nite or countably in�nite model. (�is result is called the
Löwenheim-Skolem theorem.) In general, the construction of
structures from sets of sentences is used o�en in logic, and
sometimes even in philosophy.

7.2 Outline of the Proof

�e proof of the completeness theorem is a bit complex, and
upon �rst reading it, it is easy to get lost. So let us outline the
proof. �e �rst step is a shi� of perspective, that allows us
to see a route to a proof. When completeness is thought of
as “whenever Γ � i then Γ ` i ,” it may be hard to even come
up with an idea: for to show that Γ ` i we have to �nd a
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derivation, and it does not look like the hypothesis that Γ � i
helps us for this in any way. For some proof systems it is
possible to directly construct a derivation, but we will take a
slightly di�erent approach. �e shi� in perspective required
is this: completeness can also be formulated as: “if Γ is consis-
tent, it is satis�able.” Perhaps we can use the information in Γ
together with the hypothesis that it is consistent to construct
a structure that satis�es every sentence in Γ. A�er all, we
know what kind of structure we are looking for: one that is
as Γ describes it!

If Γ contains only atomic sentences, it is easy to construct
a model for it. Suppose the atomic sentences are all of the
form % (01, . . . , 0=) where the 08 are constant symbols. All we
have to do is come up with a domain |M | and an assignment
for % so that M � % (01, . . . , 0=). But that’s not very hard:
put |M | = N, 2M

8
= 8 , and for every % (01, . . . , 0=) ∈ Γ, put

the tuple 〈:1, . . . , :=〉 into %M , where :8 is the index of the
constant symbol 08 (i.e., 08 ≡ 2:8 ).

Now suppose Γ contains some formula ¬k , withk atomic.
We might worry that the construction of M interferes with
the possibility of making ¬k true. But here’s where the consis-
tency of Γ comes in: if ¬k ∈ Γ, thenk ∉ Γ, or else Γ would be
inconsistent. And ifk ∉ Γ, then according to our construction
of M, M 2 k , so M � ¬k . So far so good.

What if Γ contains complex, non-atomic formulas? Say
it contains i ∧k . To make that true, we should proceed as if
both i andk were in Γ. And if i ∨k ∈ Γ, then we will have

188



7.2. Outline of the Proof

to make at least one of them true, i.e., proceed as if one of
them was in Γ.

�is suggests the following idea: we add additional for-
mulas to Γ so as to (a) keep the resulting set consistent and
(b) make sure that for every possible atomic sentence i , either
i is in the resulting set, or ¬i is, and (c) such that, whenever
i ∧k is in the set, so are both i andk , if i ∨k is in the set,
at least one of i ork is also, etc. We keep doing this (poten-
tially forever). Call the set of all formulas so added Γ∗. �en
our construction above would provide us with a structure M

for which we could prove, by induction, that it satis�es all
sentences in Γ∗, and hence also all sentence in Γ since Γ ⊆ Γ∗.
It turns out that guaranteeing (a) and (b) is enough. A set
of sentences for which (b) holds is called complete. So our
task will be to extend the consistent set Γ to a consistent and
complete set Γ∗.

�ere is one wrinkle in this plan: if ∃G i (G) ∈ Γ we would
hope to be able to pick some constant symbol 2 and add i (2)
in this process. But how do we know we can always do that?
Perhaps we only have a few constant symbols in our language,
and for each one of them we have ¬i (2) ∈ Γ. We can’t also
add i (2), since this would make the set inconsistent, and we
wouldn’t know whether M has to make i (2) or ¬i (2) true.
Moreover, it might happen that Γ contains only sentences
in a language that has no constant symbols at all (e.g., the
language of set theory).

�e solution to this problem is to simply add in�nitely
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many constants at the beginning, plus sentences that connect
them with the quanti�ers in the right way. (Of course, we
have to verify that this cannot introduce an inconsistency.)

Our original construction works well if we only have
constant symbols in the atomic sentences. But the language
might also contain function symbols. In that case, it might
be tricky to �nd the right functions on N to assign to these
function symbols to make everything work. So here’s another
trick: instead of using 8 to interpret 28 , just take the set of
constant symbols itself as the domain. �en M can assign
every constant symbol to itself: 2M

8
= 28 . But why not go all

the way: let |M | be all terms of the language! If we do this,
there is an obvious assignment of functions (that take terms
as arguments and have terms as values) to function symbols:
we assign to the function symbol 5 =8 the function which, given
= terms C1, . . . , C= as input, produces the term 5 =8 (C1, . . . , C=) as
value.

�e last piece of the puzzle is what to do with =. �e
predicate symbol = has a �xed interpretation: M � C = C ′ i�
ValM (C) = ValM (C ′). Now if we set things up so that the value
of a term C is C itself, then this structure will make no sentence
of the form C = C ′ true unless C and C ′ are one and the same
term. And of course this is a problem, since basically every
interesting theory in a language with function symbols will
have as theorems sentences C = C ′ where C and C ′ are not the
same term (e.g., in theories of arithmetic: (0+0) = 0). To solve
this problem, we change the domain of M: instead of using
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terms as the objects in |M |, we use sets of terms, and each set
is so that it contains all those terms which the sentences in Γ
require to be equal. So, e.g., if Γ is a theory of arithmetic, one
of these sets will contain: 0, (0 + 0), (0 × 0), etc. �is will be
the set we assign to 0, and it will turn out that this set is also
the value of all the terms in it, e.g., also of (0 + 0). �erefore,
the sentence (0 + 0) = 0 will be true in this revised structure.

So here’s what we’ll do. First we investigate the properties
of complete consistent sets, in particular we prove that a com-
plete consistent set contains i ∧k i� it contains both i andk ,
i ∨k i� it contains at least one of them, etc. (Proposition 7.2).
�en we de�ne and investigate “saturated” sets of sentences.
A saturated set is one which contains conditionals that link
each quanti�ed sentence to instances of it (De�nition 7.5). We
show that any consistent set Γ can always be extended to a
saturated set Γ′ (Lemma 7.6). If a set is consistent, saturated,
and complete it also has the property that it contains ∃G i (G)
i� it contains i (C) for some closed term C and ∀G i (G) i� it
contains i (C) for all closed terms C (Proposition 7.7). We’ll
then take the saturated consistent set Γ′ and show that it can
be extended to a saturated, consistent, and complete set Γ∗
(Lemma 7.8). �is set Γ∗ is what we’ll use to de�ne our term
model M(Γ∗). �e term model has the set of closed terms as
its domain, and the interpretation of its predicate symbols is
given by the atomic sentences in Γ∗ (De�nition 7.9). We’ll use
the properties of saturated, complete consistent sets to show
that indeed M(Γ∗) � i i� i ∈ Γ∗ (Lemma 7.11), and thus in
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particular, M(Γ∗) � Γ. Finally, we’ll consider how to de�ne a
term model if Γ contains = as well (De�nition 7.15) and show
that it satis�es Γ∗ (Lemma 7.17).

7.3 Complete Consistent Sets of Sentences

De�nition 7.1 (Complete set). A set Γ of sentences is com-
plete i� for any sentence i , either i ∈ Γ or ¬i ∈ Γ.

Complete sets of sentences leave no questions unanswered.
For any sentence i , Γ “says” if i is true or false. �e im-
portance of complete sets extends beyond the proof of the
completeness theorem. A theory which is complete and ax-
iomatizable, for instance, is always decidable.

Complete consistent sets are important in the complete-
ness proof since we can guarantee that every consistent set
of sentences Γ is contained in a complete consistent set Γ∗.
A complete consistent set contains, for each sentence i , either
i or its negation ¬i , but not both. �is is true in particular
for atomic sentences, so from a complete consistent set in
a language suitably expanded by constant symbols, we can
construct a structure where the interpretation of predicate
symbols is de�ned according to which atomic sentences are
in Γ∗. �is structure can then be shown to make all sentences
in Γ∗ (and hence also all those in Γ) true. �e proof of this
la�er fact requires that ¬i ∈ Γ∗ i� i ∉ Γ∗, (i ∨k ) ∈ Γ∗ i�
i ∈ Γ∗ ork ∈ Γ∗, etc.
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In what follows, we will o�en tacitly use the properties of
re�exivity, monotonicity, and transitivity of ` (see section 6.4).

Proposition 7.2. Suppose Γ is complete and consistent. �en:

1. If Γ ` i , then i ∈ Γ.

2. i ∧k ∈ Γ i� both i ∈ Γ andk ∈ Γ.

3. i ∨k ∈ Γ i� either i ∈ Γ ork ∈ Γ.

4. i→k ∈ Γ i� either i ∉ Γ ork ∈ Γ.

Proof. Let us suppose for all of the following that Γ is complete
and consistent.

1. If Γ ` i , then i ∈ Γ.
Suppose that Γ ` i . Suppose to the contrary that i ∉ Γ.
Since Γ is complete, ¬i ∈ Γ. By Proposition 6.14, Γ is
inconsistent. �is contradicts the assumption that Γ is
consistent. Hence, it cannot be the case that i ∉ Γ, so
i ∈ Γ.

2. i ∧k ∈ Γ i� both i ∈ Γ andk ∈ Γ:
For the forward direction, suppose i ∧ k ∈ Γ. �en
by Proposition 6.16, item (1), Γ ` i and Γ ` k . By (1),
i ∈ Γ andk ∈ Γ, as required.
For the reverse direction, let i ∈ Γ and k ∈ Γ. By
Proposition 6.16, item (2), Γ ` i ∧k . By (1), i ∧k ∈ Γ.
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3. First we show that if i ∨k ∈ Γ, then either i ∈ Γ or
k ∈ Γ. Suppose i ∨k ∈ Γ but i ∉ Γ andk ∉ Γ. Since Γ
is complete, ¬i ∈ Γ and ¬k ∈ Γ. By Proposition 6.17,
item (1), Γ is inconsistent, a contradiction. Hence, either
i ∈ Γ ork ∈ Γ.
For the reverse direction, suppose that i ∈ Γ ork ∈ Γ.
By Proposition 6.17, item (2), Γ ` i∨k . By (1), i∨k ∈ Γ,
as required.

4. For the forward direction, suppose i → k ∈ Γ, and
suppose to the contrary that i ∈ Γ andk ∉ Γ. On these
assumptions, i→k ∈ Γ and i ∈ Γ. By Proposition 6.18,
item (1), Γ ` k . But then by (1), k ∈ Γ, contradicting
the assumption thatk ∉ Γ.
For the reverse direction, �rst consider the case where
i ∉ Γ. Since Γ is complete, ¬i ∈ Γ. By Proposition 6.18,
item (2), Γ ` i→k . Again by (1), we get that i→k ∈ Γ,
as required.
Now consider the case where k ∈ Γ. By Proposi-
tion 6.18, item (2) again, Γ ` i→k . By (1), i→k ∈ Γ.
�

7.4 Henkin Expansion

Part of the challenge in proving the completeness theorem is
that the model we construct from a complete consistent set Γ
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must make all the quanti�ed formulas in Γ true. In order to
guarantee this, we use a trick due to Leon Henkin. In essence,
the trick consists in expanding the language by in�nitely many
constant symbols and adding, for each formula with one free
variable i (G) a formula of the form ∃G i (G) → i (2), where
2 is one of the new constant symbols. When we construct
the structure satisfying Γ, this will guarantee that each true
existential sentence has a witness among the new constants.

Proposition 7.3. If Γ is consistent in L and L ′ is obtained
from L by adding a countably in�nite set of new constant
symbols 30, 31, . . . , then Γ is consistent in L ′.

De�nition 7.4 (Saturated set). A set Γ of formulas of a lan-
guage L is saturated i� for each formula i (G) ∈ Frm(L) with
one free variable G there is a constant symbol 2 ∈ L such that
∃G i (G) → i (2) ∈ Γ.

�e following de�nition will be used in the proof of the
next theorem.

De�nition 7.5. Let L ′ be as in Proposition 7.3. Fix an enu-
meration i0 (G0), i1 (G1), . . . of all formulas i8 (G8 ) of L ′ in
which one variable (G8 ) occurs free. We de�ne the sentences \=
by induction on =.

Let 20 be the �rst constant symbol among the 38 we added
to L which does not occur in i0 (G0). Assuming that \0,
. . . , \=−1 have already been de�ned, let 2= be the �rst among
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the new constant symbols 38 that occurs neither in \0, . . . , \=−1
nor in i= (G=).

Now let \= be the formula ∃G= i= (G=) → i= (2=).

Lemma 7.6. Every consistent set Γ can be extended to a satu-
rated consistent set Γ′.

Proof. Given a consistent set of sentences Γ in a language L,
expand the language by adding a countably in�nite set of
new constant symbols to form L ′. By Proposition 7.3, Γ is
still consistent in the richer language. Further, let \8 be as in
De�nition 7.5. Let

Γ0 = Γ

Γ=+1 = Γ= ∪ {\=}

i.e., Γ=+1 = Γ ∪ {\0, . . . , \=}, and let Γ′ =
⋃
= Γ= . Γ′ is clearly

saturated.
If Γ′ were inconsistent, then for some =, Γ= would be in-

consistent (Exercise: explain why). So to show that Γ′ is
consistent it su�ces to show, by induction on =, that each
set Γ= is consistent.

�e induction basis is simply the claim that Γ0 = Γ is
consistent, which is the hypothesis of the theorem. For the
induction step, suppose that Γ= is consistent but Γ=+1 = Γ= ∪
{\=} is inconsistent. Recall that \= is ∃G= i= (G=) → i= (2=),
where i= (G=) is a formula of L ′ with only the variable G= free.
By the way we’ve chosen the 2= (see De�nition 7.5), 2= does
not occur in i= (G=) nor in Γ= .
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If Γ= ∪ {\=} is inconsistent, then Γ= ` ¬\= , and hence both
of the following hold:

Γ= ` ∃G= i= (G=) Γ= ` ¬i= (2=)

Since 2= does not occur in Γ= or in i= (G=), �eorem 6.19 ap-
plies. From Γ= ` ¬i= (2=), we obtain Γ= ` ∀G= ¬i= (G=). �us
we have that both Γ= ` ∃G= i= (G=) and Γ= ` ∀G= ¬i= (G=), so
Γ= itself is inconsistent. (Note that∀G= ¬i= (G=) ` ¬∃G= i= (G=).)
Contradiction: Γ= was supposed to be consistent. Hence
Γ= ∪ {\=} is consistent. �

We’ll now show that complete, consistent sets which are
saturated have the property that it contains a universally
quanti�ed sentence i� it contains all its instances and it con-
tains an existentially quanti�ed sentence i� it contains at least
one instance. We’ll use this to show that the structure we’ll
generate from a complete, consistent, saturated set makes all
its quanti�ed sentences true.

Proposition 7.7. Suppose Γ is complete, consistent, and satu-
rated.

1. ∃G i (G) ∈ Γ i� i (C) ∈ Γ for at least one closed term C .

2. ∀G i (G) ∈ Γ i� i (C) ∈ Γ for all closed terms C .

Proof. 1. First suppose that ∃G i (G) ∈ Γ. Because Γ is
saturated, (∃G i (G) → i (2)) ∈ Γ for some constant
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symbol 2 . By Proposition 6.18, item (1), and Proposi-
tion 7.2(1), i (2) ∈ Γ.
For the other direction, saturation is not necessary: Sup-
pose i (C) ∈ Γ. �en Γ ` ∃G i (G) by Proposition 6.20,
item (1). By Proposition 7.2(1), ∃G i (G) ∈ Γ.

2. Suppose that i (C) ∈ Γ for all closed terms C . By way of
contradiction, assume ∀G i (G) ∉ Γ. Since Γ is complete,
¬∀G i (G) ∈ Γ. By saturation, (∃G ¬i (G) →¬i (2)) ∈ Γ
for some constant symbol 2 . By assumption, since 2
is a closed term, i (2) ∈ Γ. But this would make Γ
inconsistent. (Exercise: give the derivation that shows

¬∀G i (G), ∃G ¬i (G) → ¬i (2), i (2)

is inconsistent.)
For the reverse direction, we do not need saturation:
Suppose ∀G i (G) ∈ Γ. �en Γ ` i (C) by Proposi-
tion 6.20, item (2). We get i (C) ∈ Γ by Proposition 7.2.
�

7.5 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of
sentences is contained in some set of sentences which is not
just consistent, but also complete. �e proof works by adding
one sentence at a time, guaranteeing at each step that the set
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remains consistent. We do this so that for every i , either i or
¬i gets added at some stage. �e union of all stages in that
construction then contains either i or its negation ¬i and
is thus complete. It is also consistent, since we made sure at
each stage not to introduce an inconsistency.

Lemma 7.8 (Lindenbaum’s Lemma). Every consistent set Γ
in a language L can be extended to a complete and consistent
set Γ∗.

Proof. Let Γ be consistent. Let i0, i1, . . . be an enumeration
of all the sentences of L. De�ne Γ0 = Γ, and

Γ=+1 =

{
Γ= ∪ {i=} if Γ= ∪ {i=} is consistent;
Γ= ∪ {¬i=} otherwise.

Let Γ∗ =
⋃
=≥0 Γ= .

Each Γ= is consistent: Γ0 is consistent by de�nition. If
Γ=+1 = Γ= ∪ {i=}, this is because the la�er is consistent. If it
isn’t, Γ=+1 = Γ= ∪ {¬i=}. We have to verify that Γ= ∪ {¬i=}
is consistent. Suppose it’s not. �en both Γ= ∪ {i=} and
Γ= ∪ {¬i=} are inconsistent. �is means that Γ= would be
inconsistent by Proposition 6.14, contrary to the induction
hypothesis.

For every = and every 8 < =, Γ8 ⊆ Γ= . �is follows by a
simple induction on =. For = = 0, there are no 8 < 0, so the
claim holds automatically. For the inductive step, suppose it
is true for =. We have Γ=+1 = Γ= ∪ {i=} or = Γ= ∪ {¬i=} by
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construction. So Γ= ⊆ Γ=+1. If 8 < =, then Γ8 ⊆ Γ= by inductive
hypothesis, and so ⊆ Γ=+1 by transitivity of ⊆.

From this it follows that every �nite subset of Γ∗ is a subset
of Γ= for some=, since eachk ∈ Γ∗ not already in Γ0 is added at
some stage 8 . If = is the last one of these, then allk in the �nite
subset are in Γ= . So, every �nite subset of Γ∗ is consistent. By
Proposition 6.11, Γ∗ is consistent.

Every sentence of Frm(L) appears on the list used to
de�ne Γ∗. If i= ∉ Γ∗, then that is because Γ= ∪ {i=} was
inconsistent. But then ¬i= ∈ Γ∗, so Γ∗ is complete. �

7.6 Construction of a Model

Right now we are not concerned about =, i.e., we only want
to show that a consistent set Γ of sentences not containing =

is satis�able. We �rst extend Γ to a consistent, complete, and
saturated set Γ∗. In this case, the de�nition of a model M(Γ∗)
is simple: We take the set of closed terms of L ′ as the domain.
We assign every constant symbol to itself, and make sure that
more generally, for every closed term C , ValM (Γ∗) (C) = C . �e
predicate symbols are assigned extensions in such a way that
an atomic sentence is true in M(Γ∗) i� it is in Γ∗. �is will
obviously make all the atomic sentences in Γ∗ true in M(Γ∗).
�e rest are true provided the Γ∗ we start with is consistent,
complete, and saturated.
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De�nition 7.9 (Term model). Let Γ∗ be a complete and
consistent, saturated set of sentences in a language L. �e
term model M(Γ∗) of Γ∗ is the structure de�ned as follows:

1. �e domain |M(Γ∗) | is the set of all closed terms of L.

2. �e interpretation of a constant symbol 2 is 2 itself:
2M (Γ

∗) = 2 .

3. �e function symbol 5 is assigned the function which,
given as arguments the closed terms C1, . . . , C= , has as
value the closed term 5 (C1, . . . , C=):

5M (Γ
∗) (C1, . . . , C=) = 5 (C1, . . . , C=)

4. If ' is an =-place predicate symbol, then

〈C1, . . . , C=〉 ∈ 'M (Γ
∗) i� '(C1, . . . , C=) ∈ Γ∗ .

A structure M may make an existentially quanti�ed sen-
tence ∃G i (G) true without there being an instance i (C) that
it makes true. A structure M may make all instances i (C)
of a universally quanti�ed sentence ∀G i (G) true, without
making ∀G i (G) true. �is is because in general not every
element of |M | is the value of a closed term (M may not be
covered). �is is the reason the satisfaction relation is de�ned
via variable assignments. However, for our term model M(Γ∗)
this wouldn’t be necessary—because it is covered. �is is the
content of the next result.
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Proposition 7.10. Let M(Γ∗) be the term model of De�ni-
tion 7.9.

1. M(Γ∗) � ∃G i (G) i� M � i (C) for at least one term C .

2. M(Γ∗) � ∀G i (G) i� M � i (C) for all terms C .

Proof. 1. By Proposition 4.42, M(Γ∗) � ∃G i (G) i� for at
least one variable assignment B , M(Γ∗), B � i (G). As
|M(Γ∗) | consists of the closed terms of L, this is the
case i� there is at least one closed term C such that
B (G) = C and M(Γ∗), B � i (G). By Proposition 4.46,
M(Γ∗), B � i (G) i� M(Γ∗), B � i (C), where B (G) = C .
By Proposition 4.41, M(Γ∗), B � i (C) i� M(Γ∗) � i (C),
since i (C) is a sentence.

2. By Proposition 4.42, M(Γ∗) � ∀G i (G) i� for every vari-
able assignment B , M(Γ∗), B � i (G). Recall that |M(Γ∗) |
consists of the closed terms of L, so for every closed
term C , B (G) = C is such a variable assignment, and for
any variable assignment, B (G) is some closed term C . By
Proposition 4.46, M(Γ∗), B � i (G) i� M(Γ∗), B � i (C),
where B (G) = C . By Proposition 4.41, M(Γ∗), B � i (C) i�
M(Γ∗) � i (C), since i (C) is a sentence. �

Lemma 7.11 (Truth Lemma). Suppose i does not contain =.
�en M(Γ∗) � i i� i ∈ Γ∗.

202



7.6. Construction of a Model

Proof. We prove both directions simultaneously, and by in-
duction on i .

1. i ≡ ⊥: M(Γ∗) 2 ⊥ by de�nition of satisfaction. On
the other hand, ⊥ ∉ Γ∗ since Γ∗ is consistent.

2. i ≡ '(C1, . . . , C=): M(Γ∗) � '(C1, . . . , C=) i� 〈C1, . . . , C=〉 ∈
'M (Γ

∗) (by the de�nition of satisfaction) i�'(C1, . . . , C=) ∈
Γ∗ (by the construction of M(Γ∗)).

3. i ≡ ¬k : M(Γ∗) � i i� M(Γ∗) 2 k (by de�nition of
satisfaction). By induction hypothesis, M(Γ∗) 2 k i�
k ∉ Γ∗. Since Γ∗ is consistent and complete,k ∉ Γ∗ i�
¬k ∈ Γ∗.

4. i ≡ k ∧ j : M(Γ∗) � i i� we have both M(Γ∗) � k
and M(Γ∗) � j (by de�nition of satisfaction) i� both
k ∈ Γ∗ and j ∈ Γ∗ (by the induction hypothesis). By
Proposition 7.2(2), this is the case i� (k ∧ j) ∈ Γ∗.

5. i ≡ k ∨ j : M(Γ∗) � i i� M(Γ∗) � k or M(Γ∗) � j
(by de�nition of satisfaction) i� k ∈ Γ∗ or j ∈ Γ∗ (by
induction hypothesis). �is is the case i� (k ∨ j) ∈ Γ∗
(by Proposition 7.2(3)).

6. i ≡ k → j : M(Γ∗) � i i� M(Γ∗) 2 k or M(Γ∗) � j
(by de�nition of satisfaction) i� k ∉ Γ∗ or j ∈ Γ∗ (by
induction hypothesis). �is is the case i� (k → j) ∈ Γ∗
(by Proposition 7.2(4)).
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7. i ≡ ∀G k (G): M(Γ∗) � i i� M(Γ∗) � k (C) for all
terms C (Proposition 7.10). By induction hypothesis, this
is the case i�k (C) ∈ Γ∗ for all terms C , by Proposition 7.7,
this in turn is the case i� ∀G i (G) ∈ Γ∗.

8. i ≡ ∃G k (G): M(Γ∗) � i i� M(Γ∗) � k (C) for at least
one term C (Proposition 7.10). By induction hypothesis,
this is the case i�k (C) ∈ Γ∗ for at least one term C . By
Proposition 7.7, this in turn is the case i� ∃G k (G) ∈ Γ∗.
�

7.7 Identity

�e construction of the term model given in the preceding
section is enough to establish completeness for �rst-order
logic for sets Γ that do not contain =. �e term model satis�es
every i ∈ Γ∗ which does not contain = (and hence all i ∈ Γ).
It does not work, however, if = is present. �e reason is that
Γ∗ then may contain a sentence C = C ′, but in the term model
the value of any term is that term itself. Hence, if C and C ′ are
di�erent terms, their values in the term model—i.e., C and C ′,
respectively—are di�erent, and so C = C ′ is false. We can �x
this, however, using a construction known as “factoring.”

De�nition 7.12. Let Γ∗ be a consistent and complete set of
sentences in L. We de�ne the relation ≈ on the set of closed
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terms of L by

C ≈ C ′ i� C = C ′ ∈ Γ∗

Proposition 7.13. �e relation ≈ has the following properties:

1. ≈ is re�exive.

2. ≈ is symmetric.

3. ≈ is transitive.

4. If C ≈ C ′, 5 is a function symbol, and C1, . . . , C8−1, C8+1, . . . ,
C= are terms, then

5 (C1, . . . , C8−1, C, C8+1, . . . , C=) ≈ 5 (C1, . . . , C8−1, C
′, C8+1, . . . , C=).

5. If C ≈ C ′, ' is a predicate symbol, and C1, . . . , C8−1, C8+1, . . . ,
C= are terms, then

'(C1, . . . , C8−1, C, C8+1, . . . , C=) ∈ Γ∗ i�
'(C1, . . . , C8−1, C

′, C8+1, . . . , C=) ∈ Γ∗ .

Proof. Since Γ∗ is consistent and complete, C = C ′ ∈ Γ∗ i�
Γ∗ ` C = C ′. �us it is enough to show the following:

1. Γ∗ ` C = C for all terms C .

2. If Γ∗ ` C = C ′ then Γ∗ ` C ′ = C .
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3. If Γ∗ ` C = C ′ and Γ∗ ` C ′ = C ′′, then Γ∗ ` C = C ′′.

4. If Γ∗ ` C = C ′, then

Γ∗ ` 5 (C1, . . . , C8−1, C, C8+1, , . . . , C=) = 5 (C1, . . . , C8−1, C
′, C8+1, . . . , C=)

for every =-place function symbol 5 and terms C1, . . . ,
C8−1, C8+1, . . . , C= .

5. If Γ∗ ` C = C ′ and Γ∗ ` '(C1, . . . , C8−1, C, C8+1, . . . , C=), then
Γ∗ ` '(C1, . . . , C8−1, C

′, C8+1, . . . , C=) for every =-place pred-
icate symbol ' and terms C1, . . . , C8−1, C8+1, . . . , C= . �

De�nition 7.14. Suppose Γ∗ is a consistent and complete set
in a languageL, C is a term, and ≈ as in the previous de�nition.
�en:

[C]≈ = {C ′ | C ′ ∈ Trm(L), C ≈ C ′}

and Trm(L)/≈= {[C]≈ | C ∈ Trm(L)}.

De�nition 7.15. Let M = M(Γ∗) be the term model for Γ∗.
�en M/≈ is the following structure:

1. |M/≈ | = Trm(L)/≈.

2. 2M/≈ = [2]≈

3. 5M/≈ ( [C1]≈, . . . , [C=]≈) = [5 (C1, . . . , C=)]≈

4. 〈[C1]≈, . . . , [C=]≈〉 ∈ 'M/≈ i� M � '(C1, . . . , C=).
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Note that we have de�ned 5M/≈ and 'M/≈ for elements
of Trm(L)/≈ by referring to them as [C]≈, i.e., via representa-
tives C ∈ [C]≈. We have to make sure that these de�nitions do
not depend on the choice of these representatives, i.e., that for
some other choices C ′ which determine the same equivalence
classes ([C]≈ = [C ′]≈), the de�nitions yield the same result. For
instance, if ' is a one-place predicate symbol, the last clause
of the de�nition says that [C]≈ ∈ 'M/≈ i� M � '(C). If for
some other term C ′ with C ≈ C ′, M 2 '(C), then the de�nition
would require [C ′]≈ ∉ 'M/≈ . If C ≈ C ′, then [C]≈ = [C ′]≈, but
we can’t have both [C]≈ ∈ 'M/≈ and [C]≈ ∉ 'M/≈ . However,
Proposition 7.13 guarantees that this cannot happen.

Proposition 7.16. M/≈ is well de�ned, i.e., if C1, . . . , C= , C ′1, . . . ,
C ′= are terms, and C8 ≈ C ′8 then

1. [5 (C1, . . . , C=)]≈ = [5 (C ′1, . . . , C ′=)]≈, i.e.,

5 (C1, . . . , C=) ≈ 5 (C ′1, . . . , C ′=)

and

2. M � '(C1, . . . , C=) i� M � '(C ′1, . . . , C ′=), i.e.,

'(C1, . . . , C=) ∈ Γ∗ i� '(C ′1, . . . , C ′=) ∈ Γ∗.

Proof. Follows from Proposition 7.13 by induction on =. �

Lemma 7.17. M/≈ � i i� i ∈ Γ∗ for all sentences i .
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Proof. By induction on i , just as in the proof of Lemma 7.11.
�e only case that needs additional a�ention is when i ≡ C =
C ′.

M/≈ � C = C ′ i� [C]≈ = [C ′]≈ (by de�nition of M/≈)
i� C ≈ C ′ (by de�nition of [C]≈)
i� C = C ′ ∈ Γ∗ (by de�nition of ≈). �

Note that while M(Γ∗) is always countable and in�nite,
M/≈ may be �nite, since it may turn out that there are only
�nitely many classes [C]≈. �is is to be expected, since Γ may
contain sentences which require any structure in which they
are true to be �nite. For instance, ∀G ∀~ G = ~ is a consistent
sentence, but is satis�ed only in structures with a domain that
contains exactly one element.

7.8 �e Completeness �eorem

Let’s combine our results: we arrive at the completeness the-
orem.

�eorem 7.18 (Completeness �eorem). Let Γ be a set of
sentences. If Γ is consistent, it is satis�able.

Proof. Suppose Γ is consistent. By Lemma 7.6, there is a
saturated consistent set Γ′ ⊇ Γ. By Lemma 7.8, there is a
Γ∗ ⊇ Γ′ which is consistent and complete. Since Γ′ ⊆ Γ∗,
for each formula i (G), Γ∗ contains a sentence of the form
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∃G i (G)→i (2) and so Γ∗ is saturated. If Γ does not contain =,
then by Lemma 7.11, M(Γ∗) � i i� i ∈ Γ∗. From this it
follows in particular that for all i ∈ Γ, M(Γ∗) � i , so Γ is
satis�able. If Γ does contain =, then by Lemma 7.17, for all
sentences i , M/≈ � i i� i ∈ Γ∗. In particular, M/≈ � i for all
i ∈ Γ, so Γ is satis�able. �

Corollary 7.19 (Completeness �eorem, Second Version).
For all Γ and sentences i : if Γ � i then Γ ` i .

Proof. Note that the Γ’s in Corollary 7.19 and �eorem 7.18
are universally quanti�ed. To make sure we do not confuse
ourselves, let us restate �eorem 7.18 using a di�erent variable:
for any set of sentences Δ, if Δ is consistent, it is satis�able.
By contraposition, if Δ is not satis�able, then Δ is inconsistent.
We will use this to prove the corollary.

Suppose that Γ � i . �en Γ ∪ {¬i} is unsatis�able by
Proposition 4.51. Taking Γ ∪ {¬i} as our Δ, the previous
version of �eorem 7.18 gives us that Γ∪ {¬i} is inconsistent.
By Proposition 6.13, Γ ` i . �

7.9 �e Compactness �eorem

One important consequence of the completeness theorem is
the compactness theorem. �e compactness theorem states
that if each �nite subset of a set of sentences is satis�able, the
entire set is satis�able—even if the set itself is in�nite. �is is
far from obvious. �ere is nothing that seems to rule out, at
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�rst glance at least, the possibility of there being in�nite sets of
sentences which are contradictory, but the contradiction only
arises, so to speak, from the in�nite number. �e compactness
theorem says that such a scenario can be ruled out: there are
no unsatis�able in�nite sets of sentences each �nite subset of
which is satis�able. Like the completeness theorem, it has a
version related to entailment: if an in�nite set of sentences
entails something, already a �nite subset does.

De�nition 7.20. A set Γ of formulas is �nitely satis�able if
and only if every �nite Γ0 ⊆ Γ is satis�able.

�eorem 7.21 (Compactness �eorem). �e following hold
for any sentences Γ and i :

1. Γ � i i� there is a �nite Γ0 ⊆ Γ such that Γ0 � i .

2. Γ is satis�able if and only if it is �nitely satis�able.

Proof. We prove (2). If Γ is satis�able, then there is a struc-
ture M such that M � i for all i ∈ Γ. Of course, this M also
satis�es every �nite subset of Γ, so Γ is �nitely satis�able.

Now suppose that Γ is �nitely satis�able. �en every �nite
subset Γ0 ⊆ Γ is satis�able. By soundness (Corollary 6.23), ev-
ery �nite subset is consistent. �en Γ itself must be consistent
by Proposition 6.11. By completeness (�eorem 7.18), since
Γ is consistent, it is satis�able. �
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Example 7.22. In every model M of a theory Γ, each term C

of course picks out an element of |M |. Can we guarantee
that it is also true that every element of |M | is picked out
by some term or other? In other words, are there theories Γ
all models of which are covered? �e compactness theorem
shows that this is not the case if Γ has in�nite models. Here’s
how to see this: Let M be an in�nite model of Γ, and let 2 be
a constant symbol not in the language of Γ. Let Δ be the set
of all sentences 2 ≠ C for C a term in the language L of Γ, i.e.,

Δ = {2 ≠ C | C ∈ Trm(L)}.

A �nite subset of Γ ∪ Δ can be wri�en as Γ′ ∪ Δ′, with Γ′ ⊆ Γ
and Δ′ ⊆ Δ. Since Δ′ is �nite, it can contain only �nitely
many terms. Let 0 ∈ |M | be an element of |M | not picked
out by any of them, and let M′ be the structure that is just
like M, but also 2M′ = 0. Since 0 ≠ ValM (C) for all C occuring
in Δ′, M′ � Δ′. Since M � Γ, Γ′ ⊆ Γ, and 2 does not occur
in Γ, also M′ � Γ′. Together, M′ � Γ′ ∪ Δ′ for every �nite
subset Γ′ ∪ Δ′ of Γ ∪ Δ. So every �nite subset of Γ ∪ Δ is
satis�able. By compactness, Γ ∪Δ itself is satis�able. So there
are models M � Γ ∪ Δ. Every such M is a model of Γ, but is
not covered, since ValM (2) ≠ ValM (C) for all terms C of L.

Example 7.23. Consider a language L containing the pred-
icate symbol <, constant symbols 0, 1, and function sym-
bols +, ×, −, ÷. Let Γ be the set of all sentences in this
language true in Q with domain Q and the obvious inter-
pretations. Γ is the set of all sentences of L true about the
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rational numbers. Of course, in Q (and even in R), there are
no numbers which are greater than 0 but less than 1/: for
all : ∈ Z+. Such a number, if it existed, would be an in-
�nitesimal: non-zero, but in�nitely small. �e compactness
theorem shows that there are models of Γ in which in�nitesi-
mals exist: Let Δ be {0 < 2} ∪ {2 < (1 ÷ :) | : ∈ Z+} (where
: = (1 + (1 + · · · + (1 + 1) . . . )) with : 1’s). For any �nite sub-
set Δ0 of Δ there is a  such that all the sentences 2 < (1÷ :)
in Δ0 have : <  . If we expand Q to Q ′ with 2Q′ = 1/ we
have that Q ′ � Γ∪Δ0, and so Γ∪Δ is �nitely satis�able (Exer-
cise: prove this in detail). By compactness, Γ ∪ Δ is satis�able.
Any model S of Γ ∪ Δ contains an in�nitesimal, namely 2S .

Example 7.24. We know that �rst-order logic with identity
predicate can express that the size of the domain must have
some minimal size: �e sentence i≥= (which says “there are
at least = distinct objects”) is true only in structures where
|M | has at least = objects. So if we take

Δ = {i≥= | = ≥ 1}

then any model of Δ must be in�nite. �us, we can guarantee
that a theory only has in�nite models by adding Δ to it: the
models of Γ ∪ Δ are all and only the in�nite models of Γ.

So �rst-order logic can express in�nitude. �e compact-
ness theorem shows that it cannot express �nitude, however.
For suppose some set of sentences Λ were satis�ed in all and
only �nite structures. �en Δ ∪ Λ is �nitely satis�able. Why?
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Suppose Δ′∪Λ′ ⊆ Δ∪Λ is �nite with Δ′ ⊆ Δ and Λ′ ⊆ Λ. Let
= be the largest number such that i≥= ∈ Δ′. Λ, being satis�ed
in all �nite structures, has a model M with �nitely many but
≥ = elements. But then M � Δ′ ∪ Λ′. By compactness, Δ ∪ Λ
has an in�nite model, contradicting the assumption that Λ is
satis�ed only in �nite structures.

7.10 A Direct Proof of the Compactness
�eorem

We can prove the Compactness �eorem directly, without
appealing to the Completeness �eorem, using the same ideas
as in the proof of the completeness theorem. In the proof
of the Completeness �eorem we started with a consistent
set Γ of sentences, expanded it to a consistent, saturated, and
complete set Γ∗ of sentences, and then showed that in the
term model M(Γ∗) constructed from Γ∗, all sentences of Γ are
true, so Γ is satis�able.

We can use the same method to show that a �nitely sat-
is�able set of sentences is satis�able. We just have to prove
the corresponding versions of the results leading to the truth
lemma where we replace “consistent” with “�nitely satis�-
able.”

Proposition 7.25. Suppose Γ is complete and �nitely satis�-
able. �en:

1. (i ∧k ) ∈ Γ i� both i ∈ Γ andk ∈ Γ.
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2. (i ∨k ) ∈ Γ i� either i ∈ Γ ork ∈ Γ.

3. (i→k ) ∈ Γ i� either i ∉ Γ ork ∈ Γ.

Lemma 7.26. Every �nitely satis�able set Γ can be extended
to a saturated �nitely satis�able set Γ′.

Proposition 7.27. Suppose Γ is complete, �nitely satis�able,
and saturated.

1. ∃G i (G) ∈ Γ i� i (C) ∈ Γ for at least one closed term C .

2. ∀G i (G) ∈ Γ i� i (C) ∈ Γ for all closed terms C .

Lemma 7.28. Every �nitely satis�able set Γ can be extended
to a complete and �nitely satis�able set Γ∗.

�eorem 7.29 (Compactness). Γ is satis�able if and only if
it is �nitely satis�able.

Proof. If Γ is satis�able, then there is a structure M such that
M � i for all i ∈ Γ. Of course, this M also satis�es every
�nite subset of Γ, so Γ is �nitely satis�able.

Now suppose that Γ is �nitely satis�able. By Lemma 7.26,
there is a �nitely satis�able, saturated set Γ′ ⊇ Γ. By Lemma 7.28,
Γ′ can be extended to a complete and �nitely satis�able set Γ∗,
and Γ∗ is still saturated. Construct the term model M(Γ∗) as
in De�nition 7.9. Note that Proposition 7.10 did not rely on
the fact that Γ∗ is consistent (or complete or saturated, for
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that ma�er), but just on the fact that M(Γ∗) is covered. �e
proof of the Truth Lemma (Lemma 7.11) goes through if we
replace references to Proposition 7.2 and Proposition 7.7 by
references to Proposition 7.25 and Proposition 7.27 �

7.11 �e Löwenheim-Skolem �eorem

�e Löwenheim-Skolem �eorem says that if a theory has
an in�nite model, then it also has a model that is at most
countably in�nite. An immediate consequence of this fact is
that �rst-order logic cannot express that the size of a structure
is uncountable: any sentence or set of sentences satis�ed in
all uncountable structures is also satis�ed in some countable
structure.

�eorem 7.30. If Γ is consistent then it has a countable model,
i.e., it is satis�able in a structure whose domain is either �nite
or countably in�nite.

Proof. If Γ is consistent, the structure M delivered by the
proof of the completeness theorem has a domain |M | that is
no larger than the set of the terms of the language L. So M

is at most countably in�nite. �

�eorem 7.31. If Γ is a consistent set of sentences in the lan-
guage of �rst-order logic without identity, then it has a countably
in�nite model, i.e., it is satis�able in a structure whose domain
is in�nite and countable.
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Proof. If Γ is consistent and contains no sentences in which
identity appears, then the structure M delivered by the proof
of the completness theorem has a domain |M | identical to the
set of terms of the language L ′. So M is countably in�nite,
since Trm(L ′) is. �

Example 7.32 (Skolem’s Paradox). Zermelo-Fraenkel set
theory ZFC is a very powerful framework in which practically
all mathematical statements can be expressed, including facts
about the sizes of sets. So for instance, ZFC can prove that the
set R of real numbers is uncountable, it can prove Cantor’s
�eorem that the power set of any set is larger than the set
itself, etc. If ZFC is consistent, its models are all in�nite, and
moreover, they all contain elements about which the theory
says that they are uncountable, such as the element that makes
true the theorem of ZFC that the power set of the natural
numbers exists. By the Löwenheim-Skolem �eorem, ZFC
also has countable models—models that contain “uncountable”
sets but which themselves are countable.

Problems

Problem 7.1. Complete the proof of Proposition 7.2.

Problem 7.2. Complete the proof of Proposition 7.13.
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Problem 7.3. Use Corollary 7.19 to prove �eorem 7.18, thus
showing that the two formulations of the completeness theo-
rem are equivalent.

Problem 7.4. In order for a derivation system to be complete,
its rules must be strong enough to prove every unsatis�able
set inconsistent. Which of the rules of derivation were neces-
sary to prove completeness? Are any of these rules not used
anywhere in the proof? In order to answer these questions,
make a list or diagram that shows which of the rules of deriva-
tion were used in which results that lead up to the proof of
�eorem 7.18. Be sure to note any tacit uses of rules in these
proofs.

Problem 7.5. Prove (1) of �eorem 7.21.

Problem 7.6. In the standard model of arithmetic N, there
is no element : ∈ |N | which satis�es every formula = < G

(where = is 0′...′ with = ′’s). Use the compactness theorem to
show that the set of sentences in the language of arithmetic
which are true in the standard model of arithmetic N are also
true in a structure N′ that contains an element which does
satisfy every formula = < G .

Problem 7.7. Prove Proposition 7.25. Avoid the use of `.

Problem 7.8. Prove Lemma 7.26. (Hint: �e crucial step is
to show that if Γ= is �nitely satis�able, so is Γ= ∪{\=}, without
any appeal to derivations or consistency.)

217



7. The Completeness Theorem

Problem 7.9. Prove Proposition 7.27.

Problem 7.10. Prove Lemma 7.28. (Hint: the crucial step is
to show that if Γ= is �nitely satis�able, then either Γ= ∪ {i=}
or Γ= ∪ {¬i=} is �nitely satis�able.)

Problem 7.11. Write out the complete proof of the Truth
Lemma (Lemma 7.11) in the version required for the proof of
�eorem 7.29.
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Chapter 8

Basics of Model �eory

8.1 Reducts and Expansions

O�en it is useful or necessary to compare languages which
have symbols in common, as well as structures for these lan-
guages. �e most comon case is when all the symbols in
a language L are also part of a language L ′, i.e., L ⊆ L ′.
An L-structure M can then always be expanded to an L ′-
structure by adding interpretations of the additional symbols
while leaving the interpretations of the common symbols the
same. On the other hand, from an L ′-structure M′ we can ob-
tain an L-structure simply by “forge�ing” the interpretations
of the symbols that do not occur in L.
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De�nition 8.1. Suppose L ⊆ L ′, M is an L-structure and
M′ is an L ′-structure. M is the reduct of M′ to L, and M′ is
an expansion of M to L ′ i�

1. |M | = |M′ |

2. For every constant symbol 2 ∈ L, 2M = 2M
′ .

3. For every function symbol 5 ∈ L, 5M = 5M
′ .

4. For every predicate symbol % ∈ L, %M = %M
′ .

Proposition 8.2. If an L-structure M is a reduct of an L ′-
structure M′, then for all L-sentences i ,

M � i i� M′ � i.

Proof. Exercise. �

De�nition 8.3. When we have an L-structure M, and L ′ =
L ∪ {%} is the expansion of L obtained by adding a single =-
place predicate symbol % , and ' ⊆ |M |= is an =-place relation,
then we write (M, ') for the expansion M′ of M with %M′ =
'.

8.2 Substructures

�e domain of a structure M may be a subset of another M′.
But we should obviously only consider M a “part” of M′ if not
only |M | ⊆ |M′ |, but M and M′ “agree” in how they interpret
the symbols of the language at least on the shared part |M |.

220



8.3. Overspill

De�nition 8.4. Given structures M and M′ for the same
language L, we say that M is a substructure of M′, and M′

an extension of M, wri�en M ⊆ M′, i�

1. |M | ⊆ |M′ |,

2. For each constant 2 ∈ L, 2M = 2M
′ ;

3. For each=-place predicate symbol 5 ∈ L 5M (01, . . . , 0=) =
5M

′ (01, . . . , 0=) for all 01, . . . , 0= ∈ |M |.

4. For each=-place predicate symbol ' ∈ L, 〈01, . . . , 0=〉 ∈
'M i� 〈01, . . . , 0=〉 ∈ 'M

′ for all 01, . . . , 0= ∈ |M |.

Remark 1. If the language contains no constant or function
symbols, then any # ⊆ |M | determines a substructure N of
M with domain |N | = # by pu�ing 'N = 'M ∩ #= .

8.3 Overspill

�eorem 8.5. If a set Γ of sentences has arbitrarily large �nite
models, then it has an in�nite model.

Proof. Expand the language of Γ by adding countably many
new constants 20, 21, . . . and consider the set Γ ∪ {28 ≠ 2 9 : 8 ≠
9}. To say that Γ has arbitrarily large �nite models means
that for every< > 0 there is = ≥ < such that Γ has a model
of cardinality =. �is implies that Γ ∪ {28 ≠ 2 9 : 8 ≠ 9} is
�nitely satis�able. By compactness, Γ ∪ {28 ≠ 2 9 : 8 ≠ 9} has
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a model M whose domain must be in�nite, since it satis�es
all inequalities 28 ≠ 2 9 . �

Proposition 8.6. �ere is no sentence i of any �rst-order lan-
guage that is true in a structure M if and only if the domain
|M | of the structure is in�nite.

Proof. If there were such a i , its negation ¬i would be true in
all and only the �nite structures, and it would therefore have
arbitrarily large �nite models but it would lack an in�nite
model, contradicting �eorem 8.5. �

8.4 Isomorphic Structures

First-order structures can be alike in one of two ways. One
way in which the can be alike is that they make the same
sentences true. We call such structures elementarily equiva-
lent. But structures can be very di�erent and still make the
same sentences true—for instance, one can be countable and
the other not. �is is because there are lots of features of
a structure that cannot be expressed in �rst-order languages,
either because the language is not rich enough, or because
of fundamental limitations of �rst-order logic such as the
Löwenheim-Skolem theorem. So another, stricter, aspect in
which structures can be alike is if they are fundamentally the
same, in the sense that they only di�er in the objects that
make them up, but not in their structural features. A way of
making this precise is by the notion of an isomorphism.
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De�nition 8.7. Given two structuresM andM′ for the same
language L, we say that M is elementarily equivalent to M′,
wri�en M ≡ M′, if and only if for every sentence i of L,
M � i i� M′ � i .

De�nition 8.8. Given two structuresM andM′ for the same
language L, we say that M is isomorphic to M′, wri�en M '
M′, if and only if there is a function ℎ : |M | → |M′ | such
that:

1. ℎ is injective: if ℎ(G) = ℎ(~) then G = ~;

2. ℎ is surjective: for every ~ ∈ |M′ | there is G ∈ |M | such
that ℎ(G) = ~;

3. for every constant symbol 2: ℎ(2M) = 2M′ ;

4. for every =-place predicate symbol % :

〈01, . . . , 0=〉 ∈ %M i� 〈ℎ(01), . . . , ℎ(0=)〉 ∈ %M
′ ;

5. for every =-place function symbol 5 :

ℎ(5M (01, . . . , 0=)) = 5M
′ (ℎ(01), . . . , ℎ(0=)).

�eorem 8.9. If M 'M′ then M ≡M′.

Proof. Letℎ be an isomorphism of M onto M′. For any assign-
ment B , ℎ ◦ B is the composition of ℎ and B , i.e., the assignment
in M′ such that (ℎ ◦ B) (G) = ℎ(B (G)). By induction on C and
i one can prove the stronger claims:
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a. ℎ(ValMB (C)) = ValM′
ℎ◦B (C).

b. M, B � i i� M′, ℎ ◦ B � i .

�e �rst is proved by induction on the complexity of C .

1. If C ≡ 2 , then ValMB (2) = 2M and ValM′
ℎ◦B (2) = 2M

′ . �us,
ℎ(ValMB (C)) = ℎ(2M) = 2M

′ (by (3) of De�nition 8.8)
= ValM′

ℎ◦B (C).

2. If C ≡ G , then ValMB (G) = B (G) and ValM′
ℎ◦B (G) = ℎ(B (G)).

�us, ℎ(ValMB (G)) = ℎ(B (G)) = ValM′
ℎ◦B (G).

3. If C ≡ 5 (C1, . . . , C=), then

ValMB (C) = 5M (ValMB (C1), . . . ,ValMB (C=)) and
ValM′

ℎ◦B (C) = 5
M (ValM′

ℎ◦B (C1), . . . ,ValM′
ℎ◦B (C=)).

�e induction hypothesis is that for each 8 ,ℎ(ValMB (C8 )) =
ValM′

ℎ◦B (C8 ). So,

ℎ(ValMB (C)) = ℎ(5M (ValMB (C1), . . . ,ValMB (C=))
= ℎ(5M (ValM′

ℎ◦B (C1), . . . ,ValM′
ℎ◦B (C=)) (8.1)

= 5M
′ (ValM′

ℎ◦B (C1), . . . ,ValM′
ℎ◦B (C=)) (8.2)

= ValM′
ℎ◦B (C)

Here, eq. (8.1) follows by induction hypothesis and
eq. (8.2) by (5) of De�nition 8.8.
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Part (b) is le� as an exercise.
If i is a sentence, the assignments B and ℎ◦B are irrelevant,

and we have M � i i� M′ � i . �

De�nition 8.10. An automorphism of a structure M is an
isomorphism of M onto itself.

8.5 �e �eory of a Structure

Every structure M makes some sentences true, and some false.
�e set of all the sentences it makes true is called its theory.
�at set is in fact a theory, since anything it entails must be
true in all its models, including M.

De�nition 8.11. Given a structure M, the theory of M is the
set �(M) of sentences that are true in M, i.e., �(M) = {i |
M � i}.

We also use the term “theory” informally to refer to sets
of sentences having an intended interpretation, whether de-
ductively closed or not.

Proposition 8.12. For any M, �(M) is complete.

Proof. For any sentence i either M � i or M � ¬i , so either
i ∈�(M) or ¬i ∈�(M). �

Proposition 8.13. If N |= i for every i ∈�(M), then M ≡
N.
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Proof. Since N � i for all i ∈ �(M), �(M) ⊆ �(N).
If N � i , then N 2 ¬i , so ¬i ∉ �(M). Since �(M) is
complete, i ∈ �(M). So, �(N) ⊆ �(M), and we have
M ≡ N. �

Remark 2. Consider ℜ = 〈R, <〉, the structure whose domain
is the set R of the real numbers, in the language comprising
only a 2-place predicate symbol interpreted as the < relation
over the reals. Clearlyℜ is uncountable; however, since �(ℜ)
is obviously consistent, by the Löwenheim-Skolem theorem it
has a countable model, sayS, and by Proposition 8.13, ℜ ≡S.
Moreover, since ℜ and S are not isomorphic, this shows that
the converse of �eorem 8.9 fails in general.

8.6 Models of Arithmetic

�e standard model of aritmetic is the structure N with |N | =
N in which 0, ′, +, ×, and < are interpreted as you would
expect. �at is, 0 is 0, ′ is the successor function, + is inter-
peted as addition and × as multiplication of the numbers in N.
Speci�cally,

0N = 0
′N (=) = = + 1

+N (=,<) = = +<
×N (=,<) = =<
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Of course, there are structures forL� that have domains other
than N. For instance, we can take M with domain |M | = {0}∗
(the �nite sequences of the single symbol 0, i.e., ∅, 0, 00, 000,
. . . ), and interpretations

0M = ∅
′M (B) = B ⌢ 0

+M (=,<) = 0=+<

×M (=,<) = 0=<

�ese two structures are “essentially the same” in the sense
that the only di�erence is the elements of the domains but
not how the elements of the domains are related among each
other by the interpretation functions. We say that the two
structures are isomorphic.

It is an easy consequence of the compactness theorem that
any theory true in N also has models that are not isomorphic
to N. Such structures are called non-standard. �e interesting
thing about them is that while the elements of a standard
model (i.e., N, but also all structures isomorphic to it) are
exhausted by the values of the standard numerals =, i.e.,

|N | = {ValN (=) | = ∈ N}

that isn’t the case in non-standard models: if M is non-
standard, then there is at least one G ∈ |M | such that G ≠

ValM (=) for all =.
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De�nition 8.14. �e theory of true arithmetic is the set of
sentences satis�ed in the standard model of arithmetic, i.e.,

TA = {i | N � i}.

De�nition 8.15. �e theory Q axiomatized by the following
sentences is known as “Robinson’s Q” and is a very simple
theory of arithmetic.

∀G ∀~ (G ′ = ~ ′→ G = ~) (&1)
∀G 0 ≠ G ′ (&2)
∀G (G ≠ 0→∃~ G = ~ ′) (&3)
∀G (G + 0) = G (&4)
∀G ∀~ (G + ~ ′) = (G + ~) ′ (&5)
∀G (G × 0) = 0 (&6)
∀G ∀~ (G × ~ ′) = ((G × ~) + G) (&7)
∀G ∀~ (G < ~↔∃I (I ′ + G) = ~) (&8)

�e set of sentences {&1, . . . , &8} are the axioms of Q, so Q
consists of all sentences entailed by them:

Q = {i | {&1, . . . , &8} � i}.

De�nition 8.16. Suppose i (G) is a formula in L� with free
variables G and ~1, . . . , ~= . �en any sentence of the form

∀~1 . . .∀~= ((i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G))
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is an instance of the induction schema.
Peano arithmetic PA is the theory axiomatized by the ax-

ioms of Q together with all instances of the induction schema.

8.7 Standard Models of Arithmetic

�e language of arithmetic L� is obviously intended to be
about numbers, speci�cally, about natural numbers. So, “the”
standard model N is special: it is the model we want to talk
about. But in logic, we are o�en just interested in structural
properties, and any two structures that are isomorphic share
those. So we can be a bit more liberal, and consider any
structure that is isomorphic to N “standard.”

De�nition 8.17. A structure for L� is standard if it is iso-
morphic to N.

Proposition 8.18. If a structure M standard, its domain is the
set of values of the standard numerals, i.e.,

|M | = {ValM (=) | = ∈ N}

Proof. Clearly, every ValM (=) ∈ |M |. We just have to show
that every G ∈ |M | is equal to ValM (=) for some =. Since M

is standard, it is isomorphic to N. Suppose 6 : N→ |M | is an
isomorphism. �en 6(=) = 6(ValN (=)) = ValM (=). But for
every G ∈ |M |, there is an = ∈ N such that 6(=) = G , since 6
is surjective. �
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If a structure M for L� is standard, the elements of its
domain can all be named by the standard numerals 0, 1, 2, . . . ,
i.e., the terms 0, 0′, 0′′, etc. Of course, this does not mean that
the elements of |M | are the numbers, just that we can pick
them out the same way we can pick out the numbers in |N |.

Proposition 8.19. If M � Q, and |M | = {ValM (=) | = ∈ N},
then M is standard.

Proof. We have to show that M is isomorphic to N. Consider
the function 6 : N→ |M | de�ned by 6(=) = ValM (=). By the
hypothesis, 6 is surjective. It is also injective: Q ` = ≠ <

whenever = ≠<. �us, since M � Q, M � = ≠<, whenever
= ≠<. �us, if = ≠<, then ValM (=) ≠ ValM (<), i.e., 6(=) ≠
6(<).

We also have to verify that 6 is an isomorphism.

1. We have 6(0N) = 6(0) since, 0N = 0. By de�nition
of 6, 6(0) = ValM (0). But 0 is just 0, and the value of a
term which happens to be a constant symbol is given
by what the structure assigns to that constant symbol,
i.e., ValM (0) = 0M . So we have 6(0N) = 0M as required.

2. 6(′N (=)) = 6(= + 1), since ′ in N is the successor func-
tion on N. �en, 6(= + 1) = ValM (= + 1) by de�nition
of 6. But = + 1 is the same term as =′, so ValM (= + 1) =
ValM (=′). By the de�nition of the value function,
this is = ′M (ValM (=)). Since ValM (=) = 6(=) we get
6(′N (=)) = ′M (6(=)).
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3. 6(+N (=,<)) = 6(= + <), since + in N is the addi-
tion function on N. �en, 6(= + <) = ValM (= +<)
by de�nition of 6. But Q ` = +< = (= + <), so
ValM (= +<) = ValM (= + <). By the de�nition of
the value function, this is = +M (ValM (=),ValM (<)).
Since ValM (=) = 6(=) and ValM (<) = 6(<), we get
6(+N (=,<)) = +M (6(=), 6(<)).

4. 6(×N (=,<)) = ×M (6(=), 6(<)): Exercise.

5. 〈=,<〉 ∈ <N i� = < <. If = < <, then Q ` = < <,
and also M � = < <. �us 〈ValM (=),ValM (<)〉 ∈ <M ,
i.e., 〈6(=), 6(<)〉 ∈ <M . If = ≮ <, then Q ` ¬= <

<, and consequently M 2 = < <. �us, as before,
〈6(=), 6(<)〉 ∉ <M . Together, we get: 〈=,<〉 ∈ <N i�
〈6(=), 6(<)〉 ∈ <M . �

�e function 6 is the most obvious way of de�ning a map-
ping from N to the domain of any other structure M for L�,
since every such M contains elements named by 0, 1, 2, etc.
So it isn’t surprising that if M makes at least some basic state-
ments about the =’s true in the same way that N does, and 6
is also bijective, then 6 will turn into an isomorphism. In fact,
if |M | contains no elements other than what the =’s name, it’s
the only one.

Proposition 8.20. If M is standard, then 6 from the proof of
Proposition 8.19 is the only isomorphism from N to M.
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Proof. Suppose ℎ : N → |M | is an isomorphism between N

and M. We show that 6 = ℎ by induction on =. If = = 0, then
6(0) = 0M by de�nition of 6. But since ℎ is an isomorphism,
ℎ(0) = ℎ(0N) = 0M , so 6(0) = ℎ(0).

Now consider the case for = + 1. We have

6(= + 1) = ValM (= + 1) by de�nition of 6
= ValM (=′) since = + 1 ≡ =′

= ′M (ValM (=)) by de�nition of ValM (C ′)
= ′M (6(=)) by de�nition of 6
= ′M (ℎ(=)) by induction hypothesis
= ℎ(′N (=)) since ℎ is an isomorphism
= ℎ(= + 1) �

For any countably in�nite set " , there’s a bijection be-
tween N and" , so every such set" is potentially the domain
of a standard model M. In fact, once you pick an object I ∈ "
and a suitable function B as 0M and ′M , the interpretations of
+, ×, and < is already �xed. Only functions B : " → " \ {I}
that are both injective and surjective are suitable in a standard
model as ′M . �e range of B cannot contain I, since otherwise
∀G 0 ≠ G ′ would be false. �at sentence is true in N, and so
M also has to make it true. �e function B has to be injective,
since the successor function ′N in N is, and that ′N is injective
is expressed by a sentence true in N. It has to be surjective
because otherwise there would be some G ∈ " \ {I} not in the
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domain of B , i.e., the sentence ∀G (G = 0 ∨ ∃~ ~ ′ = G) would
be false in M—but it is true in N.

8.8 Non-Standard Models

We call a structure for L� standard if it is isomorphic to N. If
a structure isn’t isomorphic to N, it is called non-standard.

De�nition 8.21. A structure M for L� is non-standard if it
is not isomorphic to N. �e elements G ∈ |M | which are equal
to ValM (=) for some = ∈ N are called standard numbers (of
M), and those not, non-standard numbers.

By Proposition 8.18, any standard structure for L� con-
tains only standard elements. Consequently, a non-standard
structure must contain at least one non-standard element. In
fact, the existence of a non-standard element guarantees that
the structure is non-standard.

Proposition 8.22. If a structure M for L� contains a non-
standard number, M is non-standard.

Proof. Suppose not, i.e., suppose M standard but contains a
non-standard number G . Let 6 : N→ |M | be an isomorphism.
It is easy to see (by induction on=) that6(ValN (=)) = ValM (=).
In other words, 6 maps standard numbers of N to standard
numbers ofM. IfM contains a non-standard number,6 cannot
be surjective, contrary to hypothesis. �
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It is easy enough to specify non-standard structures for
L�. For instance, take the structure with domain Z and inter-
pret all non-logical symbols as usual. Since negative numbers
are not values of = for any =, this structure is non-standard.
Of course, it will not be a model of arithmetic in the sense that
it makes the same sentences true as N. For instance, ∀G G ′ ≠ 0
is false. However, we can prove that non-standard models of
arithmetic exist easily enough, using the compactness theo-
rem.

Proposition 8.23. Let TA = {i | N � i} be the theory of N.
TA has a countable non-standard model.

Proof. Expand L� by a new constant symbol 2 and consider
the set of sentences

Γ = TA ∪ {2 ≠ 0, 2 ≠ 1, 2 ≠ 2, . . . }

Any model M2 of Γ would contain an element G = 2M which
is non-standard, since G ≠ ValM (=) for all = ∈ N. Also,
obviously, M2 � TA, since TA ⊆ Γ. If we turn M2 into a
structure M for L� simply by forge�ing about 2 , its domain
still contains the non-standard G , and also M � TA. �e la�er
is guaranteed since 2 does not occur in TA. So, it su�ces to
show that Γ has a model.

We use the compactness theorem to show that Γ has a
model. If every �nite subset of Γ is satis�able, so is Γ. Consider
any �nite subset Γ0 ⊆ Γ. Γ0 includes some sentences of TA
and some of the form 2 ≠ =, but only �nitely many. Suppose
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: is the largest number so that 2 ≠ : ∈ Γ0. De�ne N: by
expanding N to include the interpretation 2N: = :+1. N: � Γ0:
ifi ∈ TA, N: � i sinceN: is just likeN in all respects except 2 ,
and 2 does not occur in i . And N: � 2 ≠ =, since = ≤ : , and
ValN: (2) = : + 1. �us, every �nite subset of Γ is satis�able.�

Problems

Problem 8.1. Prove Proposition 8.2.

Problem 8.2. Carry out the proof of (b) of �eorem 8.9 in
detail. Make sure to note where each of the �ve properties
characterizing isomorphisms of De�nition 8.8 is used.

Problem 8.3. Show that for any structure M, if - is a de-
�nable subset of M, and ℎ is an automorphism of M, then
- = {ℎ(G) | G ∈ - } (i.e., - is �xed under ℎ).

Problem 8.4. Show that the converse of Proposition 8.18
is false, i.e., give an example of a structure M with |M | =
{ValM (=) | = ∈ N} that is not isomorphic to N.

Problem 8.5. Recall that Q contains the axioms

∀G ∀~ (G ′ = ~ ′→ G = ~) (&1)
∀G 0 ≠ G ′ (&2)
∀G (G = 0 ∨ ∃~ G = ~ ′) (&3)

Give structures M1, M2, M3 such that
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1. M1 � &1, M1 � &2, M1 2 &3;

2. M2 � &1, M2 2 &2, M2 � &3; and

3. M3 2 &1, M3 � &2, M3 � &3;

Obviously, you just have to specify 0M8 and ′M8 for each.
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Part III

Second-order Logic

Chapter 9

Syntax and Semantics

9.1 Introduction

In �rst-order logic, we combine the non-logical symbols of a
given language, i.e., its constant symbols, function symbols,
and predicate symbols, with the logical symbols to express
things about �rst-order structures. �is is done using the
notion of satisfaction, which relates a structure M, together
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with a variable assignment B , and a formula i : M, B � i holds
i� what i expresses when its constant symbols, function
symbols, and predicate symbols are interpreted as M says,
and its free variables are interpreted as B says, is true. �e
interpretation of the identity predicate = is built into the
de�nition of M, B � i , as is the interpretation of ∀ and ∃. �e
former is always interpreted as the identity relation on the
domain |M | of the structure, and the quanti�ers are always
interpreted as ranging over the entire domain. But, crucially,
quanti�cation is only allowed over elements of the domain,
and so only object variables are allowed to follow a quanti�er.

In second-order logic, both the language and the de�nition
of satisfaction are extended to include free and bound function
and predicate variables, and quanti�cation over them. �ese
variables are related to function symbols and predicate sym-
bols the same way that object variables are related to constant
symbols. �ey play the same role in the formation of terms
and formulas of second-order logic, and quanti�cation over
them is handled in a similar way. In the standard semantics,
the second-order quanti�ers range over all possible objects
of the right type (=-place functions from |M | to |M | for func-
tion variables, =-place relations for predicate variables). For
instance, while ∀E0 (%1

0 (E0) ∨ ¬%1
0 (E0)) is a formula in both

�rst- and second-order logic, in the la�er we can also consider
∀+ 1

0 ∀E0 (+ 1
0 (E0) ∨ ¬+ 1

0 (E0)) and ∃+ 1
0 ∀E0 (+ 1

0 (E0) ∨ ¬+ 1
0 (E0)).

Since these contain no free varaibles, they are sentences of
second-order logic. Here, + 1

0 is a second-order 1-place pred-
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icate variable. �e allowable interpretations of + 1
0 are the

same that we can assign to a 1-place predicate symbol like %1
0 ,

i.e., subsets of |M |. �anti�cation over them then amounts
to saying that ∀E0 (+ 1

0 (E0) ∨ ¬+ 1
0 (E0)) holds for all ways of

assigning a subset of |M | as the value of + 1
0 , or for at least

one. Since every set either contains or fails to contain a given
object, both are true in any structure.

9.2 Terms and Formulas

Like in �rst-order logic, expressions of second-order logic are
built up from a basic vocabulary containing variables, constant
symbols, predicate symbols and sometimes function symbols.
From them, together with logical connectives, quanti�ers, and
punctuation symbols such as parentheses and commas, terms
and formulas are formed. �e di�erence is that in addition
to variables for objects, second-order logic also contains vari-
ables for relations and functions, and allows quanti�cation
over them. So the logical symbols of second-order logic are
those of �rst-order logic, plus:

1. A countably in�nite set of second-order relation vari-
ables of every arity =: + =0 , + =1 , + =2 , . . .

2. A countably in�nite set of second-order function vari-
ables: D=0 , D=1 , D=2 , . . .

239



9. Syntax and Semantics

Just as we use G , ~, I as meta-variables for �rst-order
variables E8 , we’ll use - , . , / , etc., as metavariables for + =8
and D, E , etc., as meta-variables for D=8 .

�e non-logical symbols of a second-order language are
speci�ed the same way a �rst-order language is: by listing its
constant symbols, function symbols, and predicate symbols.

In �rst-order logic, the identity predicate = is usually in-
cluded. In �rst-order logic, the non-logical symbols of a lan-
guageL are crucial to allow us to express anything interesting.
�ere are of course sentences that use no non-logical sym-
bols, but with only = it is hard to say anything interesting.
In second-order logic, since we have an unlimited supply of
relation and function variables, we can say anything we can
say in a �rst-order language even without a special supply of
non-logical symbols.

De�nition 9.1 (Second-order Terms). �e set of second-
order terms of L, Trm2 (L), is de�ned by adding to De�ni-
tion 4.4 the clause

1. If D is an =-place function variable and C1, . . . , C= are
terms, then D (C1, . . . , C=) is a term.

So, a second-order term looks just like a �rst-order term,
except that where a �rst-order term contains a function sym-
bol 5 =8 , a second-order term may contain a function variableD=8
in its place.
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De�nition 9.2 (Second-order formula). �e set of second-
order formulas Frm2 (L) of the language L is de�ned by
adding to De�nition 4.4 the clauses

1. If - is an =-place predicate variable and C1, . . . , C= are
second-order terms ofL, then- (C1, . . . , C=) is an atomic
formula.

2. If i is a formula and D is a function variable, then ∀D i
is a formula.

3. If i is a formula and- is a predicate variable, then ∀- i
is a formula.

4. If i is a formula and D is a function variable, then ∃D i
is a formula.

5. Ifi is a formula and- is a predicate variable, then ∃- i
is a formula.

9.3 Satisfaction

To de�ne the satisfaction relation M, B � i for second-order
formulas, we have to extend the de�nitions to cover second-
order variables. �e notion of a structure is the same for
second-order logic as it is for �rst-order logic. �ere is only a
di�ence for variable assignments B: these now must not just
provide values for the �rst-order variables, but also for the
second-order variables.
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De�nition 9.3 (Variable Assignment). A variable assign-
ment B for a structure M is a function which maps each

1. object variable E8 to an element of |M |, i.e., B (E8 ) ∈ |M |

2. =-place relation variable + =8 to an =-place relation
on |M |, i.e., B (+ =8 ) ⊆ |M |

= ;

3. =-place function variableD=8 to an =-place function from
|M | to |M |, i.e., B (D=8 ) : |M |

= → |M |;

A structure assigns a value to each constant symbol and
function symbol, and a second-order variable assigns objects
and functions to each object and function variable. Together,
they let us assign a value to every term.

De�nition 9.4 (Value of a Term). If C is a term of the lan-
guageL, M is a structure forL, and B is a variable assignment
for M, the value ValMB (C) is de�ned as for �rst-order terms,
plus the following clause:

C ≡ D (C1, . . . , C=):

ValMB (C) = B (D) (ValMB (C1), . . . ,ValMB (C=)) .

De�nition 9.5 (G-Variant). If B is a variable assignment for
a structure M, then any variable assignment B ′ for M which
di�ers from B at most in what it assigns to G is called an
G-variant of B . If B ′ is an G-variant of B we write B ∼G B ′.
(Similarly for second-order variables - or D.)
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De�nition 9.6 (Satisfaction). For second-order formulas i ,
the de�nition of satisfaction is like De�nition 4.35 with the
addition of:

1. i ≡ -= (C1, . . . , C=): M, B � i i� 〈ValMB (C1), . . . ,ValMB (C=)〉 ∈
B (-=).

2. i ≡ ∀- k : M, B � i i� for every - -variant B ′ of B ,
M, B ′ � k .

3. i ≡ ∃- k : M, B � i i� there is an - -variant B ′ of B so
that M, B ′ � k .

4. i ≡ ∀Dk : M, B � i i� for every D-variant B ′ of B ,
M, B ′ � k .

5. i ≡ ∃Dk : M, B � i i� there is an D-variant B ′ of B so
that M, B ′ � k .

Example 9.7. Consider the formula ∀I (- (I) ↔ ¬. (I)). It
contains no second-order quanti�ers, but does contain the
second-order variables - and . (here understood to be one-
place). �e corresponding �rst-order sentence ∀I (% (I) ↔
¬'(I)) says that whatever falls under the interpretation of %
does not fall under the interpretation of ' and vice versa. In
a structure, the interpretation of a predicate symbol % is given
by the interpretation %M . But for second-order variables like
- and . , the interpretation is provided, not by the structure
itself, but by a variable assignment. Since the second-order
formula is not a sentence (in includes free variables - and . ),
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it is only satis�ed relative to a structure M together with
a variable assignment B .

M, B � ∀I (- (I)↔¬. (I)) whenever the elements of B (- )
are not elements of B (. ), and vice versa, i.e., i� B (. ) = |M | \
B (- ). So for instance, take |M | = {1, 2, 3}. Since no predicate
symbols, function symbols, or constant symbols are involved,
the domain of M is all that is relevant. Now for B1 (- ) = {1, 2}
and B1 (. ) = {3}, we have M, B1 � ∀I (- (I) ↔ ¬. (I)).

By contrast, if we have B2 (- ) = {1, 2} and B2 (. ) = {2, 3},
M, B2 2 ∀I (- (I)↔¬. (I)). �at’s because there is a I-variant
B ′2 of B2 with B ′2 (I) = 2 where M, B ′2 � - (I) (since 2 ∈ B ′2 (- ))
but M, B ′2 2 ¬. (I) (since also B ′2 (I) ∈ B ′2 (. )).

Example 9.8. M, B � ∃. (∃~ . (~) ∧ ∀I (- (I) ↔ ¬. (I))) if
there is an B ′ ∼. B such that M, B ′ � (∃~ . (~) ∧ ∀I (- (I) ↔
¬. (I))). And that is the case i� B ′(. ) ≠ ∅ (so that M, B ′ �
∃~ . (~)) and, as in the previous example, B ′(. ) = |M | \ B ′(- ).
In other words, M, B � ∃. (∃~ . (~) ∧ ∀I (- (I) ↔ ¬. (I))) i�
|M | \ B (- ) is non-empty, i.e., B (- ) ≠ |M |. So, the formula is
satis�ed, e.g., if |M | = {1, 2, 3} and B (- ) = {1, 2}, but not if
B (- ) = {1, 2, 3} = |M |.

Since the formula is not satis�ed whenever B (- ) = |M |,
the sentence

∀- ∃. (∃~ . (~) ∧ ∀I (- (I) ↔ ¬. (I)))

is never satis�ed: For any structure M, the assignment B (- ) =
|M | will make the sentence false. On the other hand, the
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sentence

∃- ∃. (∃~ . (~) ∧ ∀I (- (I) ↔ ¬. (I)))

is satis�ed relative to any assignment B , since we can always
�nd an - -variant B ′ of B with B ′(- ) ≠ |M |.

9.4 Semantic Notions

�e central logical notions of validity, entailment, and sat-
is�ability are de�ned the same way for second-order logic
as they are for �rst-order logic, except that the underlying
satisfaction relation is now that for second-order formulas.
A second-order sentence, of course, is a formula in which
all variables, including predicate and function variables, are
bound.

De�nition 9.9 (Validity). A sentence i is valid, � i , i� M �
i for every structure M.

De�nition 9.10 (Entailment). A set of sentences Γ entails
a sentence i , Γ � i , i� for every structure M with M � Γ,
M � i .

De�nition 9.11 (Satis�ability). A set of sentences Γ is sat-
is�able if M � Γ for some structure M. If Γ is not satis�able
it is called unsatis�able.
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9.5 Expressive Power

�anti�cation over second-order variables is responsible for
an immense increase in the expressive power of the language
over that of �rst-order logic. Second-order existential quan-
ti�cation lets us say that functions or relations with certain
properties exists. In �rst-order logic, the only way to do that
is to specify a non-logical symbol (i.e., a function symbol or
predicate symbol) for this purpose. Second-order universal
quanti�cation lets us say that all subsets of, relations on, or
functions from the domain to the domain have a property. In
�rst-order logic, we can only say that the subsets, relations,
or functions assigned to one of the non-logical symbols of
the language have a property. And when we say that subsets,
relations, functions exist that have a property, or that all of
them have it, we can use second-order quanti�cation in spec-
ifying this property as well. �is lets us de�ne relations not
de�nable in �rst-order logic, and express properties of the
domain not expressible in �rst-order logic.

De�nition 9.12. If M is a structure for a language L, a
relation ' ⊆ |M |2 is de�nable in L if there is some for-
mula i' (G,~) with only the variables G and ~ free, such that
'(0, 1) holds (i.e., 〈0, 1〉 ∈ ') i� M, B � i' (G,~) for B (G) = 0
and B (~) = 1.

Example 9.13. In �rst-order logic we can de�ne the identity
relation Id |M | (i.e., {〈0, 0〉 | 0 ∈ |M |}) by the formula G = ~. In
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second-order logic, we can de�ne this relation without =. For
if 0 and 1 are the same element of |M |, then they are elements
of the same subsets of |M | (since sets are determined by their
elements). Conversely, if 0 and 1 are di�erent, then they are
not elements of the same subsets: e.g., 0 ∈ {0} but 1 ∉ {0}
if 0 ≠ 1. So “being elements of the same subsets of |M |” is
a relation that holds of 0 and 1 i� 0 = 1. It is a relation that
can be expressed in second-order logic, since we can quantify
over all subsets of |M |. Hence, the following formula de�nes
Id |M | :

∀- (- (G) ↔ - (~))

Example 9.14. If ' is a two-place predicate symbol, 'M is
a two-place relation on |M |. Perhaps somewhat confusingly,
we’ll use ' as the predicate symbol for ' and for the rela-
tion 'M itself. �e transitive closure '∗ of ' is the relation that
holds between 0 and 1 i� for some 21, . . . , 2: , '(0, 21), '(21, 22),
. . . , '(2: , 1) holds. �is includes the case if : = 0, i.e., if '(0, 1)
holds, so does '∗ (0, 1). �is means that ' ⊆ '∗. In fact, '∗ is
the smallest relation that includes ' and that is transitive. We
can say in second-order logic that - is a transitive relation
that includes ':

k' (- ) ≡ ∀G ∀~ ('(G,~) → - (G,~)) ∧
∀G ∀~ ∀I ((- (G,~) ∧ - (~, I)) → - (G, I)).

�e �rst conjunct says that ' ⊆ - and the second that - is
transitive.
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To say that - is the smallest such relation is to say that
it is itself included in every relation that includes ' and is
transitive. So we can de�ne the transitive closure of ' by the
formula

'∗ (- ) ≡ k' (- ) ∧ ∀. (k' (. ) → ∀G ∀~ (- (G,~) → . (G,~))) .

We have M, B � '∗ (- ) i� B (- ) = '∗. �e transitive closure
of ' cannot be expressed in �rst-order logic.

9.6 Describing In�nite and Countable
Domains

A set " is (Dedekind) in�nite i� there is an injective func-
tion 5 : " → " which is not surjective, i.e., with dom(5 ) ≠
" . In �rst-order logic, we can consider a one-place func-
tion symbol 5 and say that the function 5M assigned to it in
a structure M is injective and ran(5 ) ≠ |M |:

∀G ∀~ (5 (G) = 5 (~) → G = ~) ∧ ∃~ ∀G ~ ≠ 5 (G).

If M satis�es this sentence, 5M : |M | → |M | is injective, and
so |M | must be in�nite. If |M | is in�nite, and hence such a
function exists, we can let 5M be that function and M will
satisfy the sentence. However, this requires that our language
contains the non-logical symbol 5 we use for this purpose. In
second-order logic, we can simply say that such a function
exists. �is no-longer requires 5 , and we obtain the sentence
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in pure second-order logic

Inf ≡ ∃D (∀G ∀~ (D (G) = D (~) → G = ~) ∧ ∃~ ∀G ~ ≠ D (G)) .

M � Inf i� |M | is in�nite. We can then de�ne Fin ≡ ¬Inf;
M � Fin i� |M | is �nite. No single sentence of pure �rst-
order logic can express that the domain is in�nite although an
in�nite set of them can. �ere is no set of sentences of pure
�rst-order logic that is satis�ed in a structure i� its domain is
�nite.

Proposition 9.15. M � Inf i� |M | is in�nite.

Proof. M � Inf i� M, B � ∀G ∀~ (D (G) = D (~) → G = ~) ∧
∃~ ∀G ~ ≠ D (G) for some B . If it does, B (D) is an injective
function, and some ~ ∈ |M | is not in the domain of B (D).
Conversely, if there is an injective 5 : |M | → |M | with
dom(5 ) ≠ |M |, then B (D) = 5 is such a variable assignment.�

A set " is countable if there is an enumeration

<0,<1,<2, . . .

of its elements (without repetitions but possibly �nite). Such
an enumeration exists i� there is an element I ∈ " and a
function 5 : " → " such that I, 5 (I), 5 (5 (I)), . . . , are all
the elements of " . For if the enumeration exists, I =<0 and
5 (<: ) =<:+1 (or 5 (<: ) =<: if<: is the last element of the
enumeration) are the requisite element and function. On the
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other hand, if such a I and 5 exist, then I, 5 (I), 5 (5 (I)), . . . ,
is an enumeration of " , and " is countable. We can express
the existence of I and 5 in second-order logic to produce a
sentence true in a structure i� the structure is countable:

Count ≡ ∃I ∃D ∀- ((- (I)∧∀G (- (G)→- (D (G))))→∀G - (G))

Proposition 9.16. M � Count i� |M | is countable.

Proof. Suppose |M | is countable, and let <0, <1, . . . , be an
enumeration. By removing repetions we can guarantee that
no<: appears twice. De�ne 5 (<: ) =<:+1 and let B (I) =<0
and B (D) = 5 . We show that

M, B � ∀- ((- (I) ∧ ∀G (- (G) → - (D (G)))) → ∀G - (G))

Suppose B ′ ∼- B is arbitrary, and let " = B ′(- ). Suppose
further that M, B ′ � (- (I) ∧ ∀G (- (G) → - (D (G)))). �en
B ′(I) ∈ " and whenever G ∈ " , also B ′(D) (G) ∈ " . In other
words, since B ′ ∼- B , <0 ∈ " and if G ∈ " then 5 (G) ∈ " ,
so<0 ∈ " ,<1 = 5 (<0) ∈ " ,<2 = 5 (5 (<0)) ∈ " , etc. �us,
" = |M |, and so M, B ′ � ∀G - (G). Since B ′ was an arbitrary
- -variant of B , we are done: M � Count.

Now assume that M � Count, i.e.,

M, B � ∀- ((- (I) ∧ ∀G (- (G) → - (D (G)))) → ∀G - (G))

for some B . Let < = B (I) and 5 = B (D) and consider " =

{<, 5 (<), 5 (5 (<)), . . . }. Let B ′ be the - -variant of B with
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B (- ) = " . �en

M, B ′ � (- (I) ∧ ∀G (- (G) → - (D (G)))) → ∀G - (G)

by assumption. Also, M, B ′ � - (I) since B ′(- ) = " 3
< = B ′(I), and also M, B ′ � ∀G (- (G) → - (D (G))) since
whenever G ∈ " also 5 (G) ∈ " . So, since both antecedent
and conditional are satis�ed, the consequent must also be:
M, B ′ � ∀G - (G). But that means that " = |M |, and so |M | is
countable since " is, by de�nition. �

Problems

Problem 9.1. Show that ∀- (- (G) → - (~)) (note: → not
↔!) de�nes Id |M | .

Problem 9.2. �e sentence Inf∧Count is true in all and only
countably in�nite domains. Adjust the de�nition of Count so
that it becomes a di�erent sentence that directly expresses
that the domain is countably in�nite, and prove that it does.
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Chapter 10

Metatheory of
Second-order Logic

10.1 Introduction

First-order logic has a number of nice properties. We know it
is not decidable, but at least it is axiomatizable. �at is, there
are proof systems for �rst-order logic which are sound and
complete, i.e., they give rise to a derivability relation `with the
property that for any set of sentences Γ and sentence& , Γ � i
i� Γ ` i . �is means in particular that the validities of �rst-
order logic are computably enumerable. �ere is a computable
function 5 : N→ Sent(L) such that the values of 5 are all and
only the valid sentences of L. �is is so because derivations
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can be enumerated, and those that derive a single sentence
are then mapped to that sentence. Second-order logic is more
expressive than �rst-order logic, and so it is in general more
complicated to capture its validities. In fact, we’ll show that
second-order logic is not only undecidable, but its validities
are not even computably enumerable. �is means there can
be no sound and complete proof system for second-order logic
(although sound, but incomplete proof systems are available
and in fact are important objects of research).

First-order logic also has two more properties: it is com-
pact (if every �nite subset of a set Γ of sentences is satis�able,
Γ itself is satis�able) and the Löwenheim-Skolem �eorem
holds for it (if Γ has an in�nite model it has a countably in�-
nite model). Both of these results fail for second-order logic.
Again, the reason is that second-order logic can express facts
about the size of domains that �rst-order logic cannot.
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10.2 Second-order Arithmetic

Recall that the theory PA of Peano arithmetic includes the
eight axioms of Q,

∀G G ′ ≠ 0
∀G ∀~ (G ′ = ~ ′→ G = ~)
∀G (G = 0 ∨ ∃~ G = ~ ′)
∀G (G + 0) = G
∀G ∀~ (G + ~ ′) = (G + ~) ′

∀G (G × 0) = 0
∀G ∀~ (G × ~ ′) = ((G × ~) + G)
∀G ∀~ (G < ~↔∃I (I ′ + G) = ~)

plus all sentences of the form

(i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G).

�e la�er is a “schema,” i.e., a pa�ern that generates in�nitely
many sentences of the language of arithmetic, one for each
formula i (G). We call this schema the (�rst-order) axiom
schema of induction. In second-order Peano arithmetic PA2,
induction can be stated as a single sentence. PA2 consists of
the �rst eight axioms above plus the (second-order) induction
axiom:

∀- (- (0) ∧ ∀G (- (G) → - (G ′))) → ∀G - (G).
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It says that if a subset - of the domain contains 0M and with
any G ∈ |M | also contains ′M (G) (i.e., it is “closed under
successor”) it contains everything in the domain (i.e., - =

|M |).
�e induction axiom guarantees that any structure satisfy-

ing it contains only those elements of |M | the axioms require
to be there, i.e., the values of = for = ∈ N. A model of PA2

contains no non-standard numbers.

�eorem 10.1. If M � PA2 then |M | = {ValM (=) | = ∈ N}.

Proof. Let # = {ValM (=) | = ∈ N}, and suppose M � PA2. Of
course, for any = ∈ N, ValM (=) ∈ |M |, so # ⊆ |M |.

Now for inclusion in the other direction. Consider a vari-
able assignment B with B (- ) = # . By assumption,

M � ∀- (- (0) ∧ ∀G (- (G) → - (G ′))) → ∀G - (G), thus
M, B � (- (0) ∧ ∀G (- (G) → - (G ′))) → ∀G - (G).

Consider the antecedent of this conditional. ValM (0) ∈ # ,
and so M, B � - (0). �e second conjunct, ∀G (- (G) →- (G ′))
is also satis�ed. For suppose G ∈ # . By de�nition of # ,
G = ValM (=) for some=. �at gives ′M (G) = ValM (= + 1) ∈ # .
So, ′M (G) ∈ # .

We have that M, B � - (0) ∧ ∀G (- (G) → - (G ′)). Con-
sequently, M, B � ∀G - (G). But that means that for every
G ∈ |M | we have G ∈ B (- ) = # . So, |M | ⊆ # . �

Corollary 10.2. Any two models of PA2 are isomorphic.
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Proof. By �eorem 10.1, the domain of any model of PA2

is exhausted by ValM (=). Any such model is also a model
of Q. By Proposition 8.19, any such model is standard, i.e.,
isomorphic to N. �

Above we de�ned PA2 as the theory that contains the �rst
eight arithmetical axioms plus the second-order induction
axiom. In fact, thanks to the expressive power of second-
order logic, only the �rst two of the arithmetical axioms plus
induction are needed for second-order Peano arithmetic.

Proposition 10.3. Let PA2† be the second-order theory con-
taining the �rst two arithmetical axioms (the successor axioms)
and the second-order induction axiom. �en ≤, +, and × are
de�nable in PA2†.

Proof. To show that ≤ is de�nable, we have to �nd a for-
mula i≤ (G,~) such that N � i≤ (=,<) i� = ≤ <. Consider the
formula

k (G,. ) ≡ . (G) ∧ ∀~ (. (~) → . (~ ′))

Clearly,k (=,. ) is satis�ed by a set. ⊆ N i� {< | = ≤ <} ⊆ . ,
so we can take i≤ (G,~) ≡ ∀. (k (G,. ) → . (~)). �

Corollary 10.4. M � PA2 i� M � PA2†.

Proof. Immediate from Proposition 10.3. �
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10.3 Second-order Logic is not
Axiomatizable

�eorem 10.5. Second-order logic is undecidable.

Proof. A �rst-order sentence is valid in �rst-order logic i� it
is valid in second-order logic, and �rst-order logic is undecid-
able. �

�eorem 10.6. �ere is no sound and complete proof system
for second-order logic.

Proof. Leti be a sentence in the language of arithmetic. N � i
i� PA2 � i . Let % be the conjunction of the nine axioms of PA2.
PA2 � i i� � % → i , i.e., M � % → i . Now consider the
sentence ∀I ∀D ∀D ′∀D ′′∀! (% ′→ i ′) resulting by replacing 0
by I, ′ by the one-place function variable D, + and × by the
two-place function-variablesD ′ andD ′′, respectively, and < by
the two-place relation variable ! and universally quantifying.
It is a valid sentence of pure second-order logic i� the original
sentence was valid i� PA2 � i i� N � i . �us if there were
a sound and complete proof system for second-order logic,
we could use it to de�ne a computable enumeration 5 : N→
Sent(L�) of the sentences true in N. �is function would be
representable in Q by some �rst-order formulak5 (G,~). �en
the formula ∃G k5 (G,~) would de�ne the set of true �rst-order
sentences of N, contradicting Tarski’s �eorem. �
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10.4 Second-order Logic is not Compact

Call a set of sentences Γ �nitely satis�able if every one of its
�nite subsets is satis�able. First-order logic has the property
that if a set of sentences Γ is �nitely satis�able, it is satis�-
able. �is property is called compactness. It has an equivalent
version involving entailment: if Γ � i , then already Γ0 � i
for some �nite subset Γ0 ⊆ Γ. In this version it is an imme-
diate corollary of the completeness theorem: for if Γ � i , by
completeness Γ ` i . But a derivation can only make use of
�nitely many sentences of Γ.

Compactness is not true for second-order logic. �ere are
sets of second-order sentences that are �nitely satis�able but
not satis�able, and that entail some i without a �nite subset
entailing i .

�eorem 10.7. Second-order logic is not compact.

Proof. Recall that

Inf ≡ ∃D (∀G ∀~ (D (G) = D (~) → G = ~) ∧ ∃~ ∀G ~ ≠ D (G))

is satis�ed in a structure i� its domain is in�nite. Let i ≥= be a
sentence that asserts that the domain has at least = elements,
e.g.,

i ≥= ≡ ∃G1 . . . ∃G= (G1 ≠ G2 ∧ G1 ≠ G3 ∧ · · · ∧ G=−1 ≠ G=).

Consider the set of sentences

Γ = {¬Inf, i ≥1, i ≥2, i ≥3, . . . }.
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It is �nitely satis�able, since for any �nite subset Γ0 ⊆ Γ there
is some : so that i ≥: ∈ Γ but no i ≥= ∈ Γ for = > : . If |M |
has : elements, M � Γ0. But, Γ is not satis�able: if M � ¬Inf,
|M | must be �nite, say, of size : . �en M 2 i ≥:+1. �

10.5 �e Löwenheim-Skolem �eorem Fails
for Second-order Logic

�e (Downward) Löwenheim-Skolem �eorem states that
every set of sentences with an in�nite model has a count-
able model. It, too, is a consequence of the completeneness
theorem: the proof of completeness generates a model for
any consistent set of sentences, and that model is countable.
�ere is also an Upward Löwenheim-Skolem �eorem, which
guarantees that if a set of sentences has a countably in�nite
model it also has an uncountable model. Both theorems fail
in second-order logic.

�eorem 10.8. �e Löwenheim-Skolem �eorem fails for second-
order logic: �ere are sentences with in�nite models but no
countable models.

Proof. Recall that

Count ≡ ∃I ∃D ∀- ((- (I)∧∀G (- (G)→- (D (G))))→∀G - (G))

is true in a structure M i� |M | is countable, so ¬Count is
true in M i� |M | is uncountable. �ere are such structures—
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take any uncountable set as the domain, e.g., ℘(N) or R. So
¬Count has in�nite models but no countable models. �

�eorem 10.9. �ere are sentences with countably in�nite but
no uncountable models.

Proof. Count ∧ Inf is true in N but not in any structure M

with |M | uncountable. �

Problems

Problem 10.1. Complete the proof of Proposition 10.3.

Problem 10.2. Give an example of a set Γ and a sentence i
so that Γ � i but for every �nite subset Γ0 ⊆ Γ, Γ0 2 i .
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Part IV

Intuitionistic Logic

Chapter 11

Introduction

11.1 Constructive Reasoning

In constrast to extensions of classical logic by modal opera-
tors or second-order quanti�ers, intuitionistic logic is “non-
classical” in that it restricts classical logic. Classical logic is
non-constructive in various ways. Intuitionistic logic is in-
tended to capture a more “constructive” kind of reasoning
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characteristic of a kind of constructive mathematics. �e
following examples may serve to illustrate some of the under-
lying motivations.

Suppose someone claimed that they had determined a nat-
ural number = with the property that if = is even, the Riemann
hypothesis is true, and if = is odd, the Riemann hypothesis is
false. Great news! Whether the Riemann hypothesis is true
or not is one of the big open questions of mathematics, and
they seem to have reduced the problem to one of calculation,
that is, to the determination of whether a speci�c number is
even or not.

What is the magic value of =? �ey describe it as follows:
= is the natural number that is equal to 2 if the Riemann
hypothesis is true, and 3 otherwise.

Angrily, you demand your money back. From a classical
point of view, the description above does in fact determine a
unique value of =; but what you really want is a value of =
that is given explicitly.

To take another, perhaps less contrived example, consider
the following question. We know that it is possible to raise an
irrational number to a rational power, and get a rational result.
For example,

√
22

= 2. What is less clear is whether or not it is
possible to raise an irrational number to an irrational power,
and get a rational result. �e following theorem answers this
in the a�rmative:

�eorem 11.1. �ere are irrational numbers 0 and 1 such that
01 is rational.
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Proof. Consider
√

2
√

2. If this is rational, we are done: we can
let 0 = 1 =

√
2. Otherwise, it is irrational. �en we have

(
√

2
√

2)
√

2 =
√

2
√

2·
√

2
=
√

22
= 2,

which is rational. So, in this case, let 0 be
√

2
√

2, and let 1
be
√

2. �

Does this constitute a valid proof? Most mathematicians
feel that it does. But again, there is something a li�le bit
unsatisfying here: we have proved the existence of a pair of
real numbers with a certain property, without being able to
say which pair of numbers it is. It is possible to prove the
same result, but in such a way that the pair 0, 1 is given in
the proof: take 0 =

√
3 and 1 = log3 4. �en

01 =
√

3log3 4
= 31/2·log3 4 = (3log3 4)1/2 = 41/2 = 2,

since 3log3 G = G .
Intuitionistic logic is designed to capture a kind of reason-

ing where moves like the one in the �rst proof are disallowed.
Proving the existence of an G satisfying i (G) means that you
have to give a speci�c G , and a proof that it satis�es i , like in
the second proof. Proving that i ork holds requires that you
can prove one or the other.

Formally speaking, intuitionistic logic is what you get
if you restrict a proof system for classical logic in a certain
way. From the mathematical point of view, these are just
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formal deductive systems, but, as already noted, they are
intended to capture a kind of mathematical reasoning. One
can take this to be the kind of reasoning that is justi�ed on a
certain philosophical view of mathematics (such as Brouwer’s
intuitionism); one can take it to be a kind of mathematical
reasoning which is more “concrete” and satisfying (along the
lines of Bishop’s constructivism); and one can argue about
whether or not the formal description captures the informal
motivation. But whatever philosophical positions we may
hold, we can study intuitionistic logic as a formally presented
logic; and for whatever reasons, many mathematical logicians
�nd it interesting to do so.

11.2 Syntax of Intuitionistic Logic

�e syntax of intuitionistic logic is the same as that for propo-
sitional logic. In classical propositional logic it is possible
to de�ne connectives by others, e.g., one can de�ne i →k

by ¬i ∨k , or i ∨k by ¬(¬i ∧ ¬k ). �us, presentations of
classical logic o�en introduce some connectives as abbrevia-
tions for these de�nitions. �is is not so in intuitionistic logic,
with two exceptions: ¬i can be—and o�en is—de�ned as an
abbreviation for i→⊥. �en, of course, ⊥ must not itself be
de�ned! Also, i↔k can be de�ned, as in classical logic, as
(i→k ) ∧ (k → i).

Formulas of propositional intuitionistic logic are built up
from propositional variables and the propositional constant ⊥
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using logical connectives. We have:

1. A countably in�nite set At0 of propositional variables
?0, ?1, . . .

2. �e propositional constant for falsity ⊥.

3. �e logical connectives: ∧ (conjunction), ∨ (disjunc-
tion),→ (conditional)

4. Punctuation marks: (, ), and the comma.

De�nition 11.2 (Formula). �e set Frm(L0) of formulas of
propositional intuitionistic logic is de�ned inductively as fol-
lows:

1. ⊥ is an atomic formula.

2. Every propositional variable ?8 is an atomic formula.

3. If i andk are formulas, then (i ∧k ) is a formula.

4. If i andk are formulas, then (i ∨k ) is a formula.

5. If i andk are formulas, then (i→k ) is a formula.

6. Nothing else is a formula.

In addition to the primitive connectives introduced above,
we also use the following de�ned symbols: ¬ (negation) and
↔ (biconditional). Formulas constructed using the de�ned
operators are to be understood as follows:
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1. ¬i abbreviates i→⊥.

2. i↔k abbreviates (i→k ) ∧ (k → i).

Although ¬ is o�cially treated as an abbreviation, we will
sometimes give explicit rules and clauses in de�nitions for ¬
as if it were primitive. �is is mostly so we can state practice
problems.

11.3 �e Brouwer-Heyting-Kolmogorov
Interpretation

�ere is an informal constructive interpretation of the intu-
itionist connectives, usually known as the Brouwer-Heyting-
Kolmogorov interpretation. It uses the notion of a “construc-
tion,” which you may think of as a constructive proof. (We
don’t use “proof” in the BHK interpretation so as not to get
confused with the notion of a derivation in a formal proof sys-
tem.) Based on this intuitive notion, the BHK interpretation
explains the meanings of the intuitionistic connectives.

1. We assume that we know what constitutes a construc-
tion of an atomic statement.

2. A construction of i1 ∧ i2 is a pair 〈"1, "2〉 where "1
is a construction of i1 and "2 is a construction of �2.
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3. A construction of i1 ∨ i2 is a pair 〈B, "〉 where B is 1
and " is a construction of i1, or B is 2 and " is a con-
struction of i2.

4. A construction of i→k is a function that converts a
construction of i into a construction ofk .

5. �ere is no construction for ⊥ (absurdity).

6. ¬i is de�ned as synonym for i → ⊥. �at is, a con-
struction of ¬i is a function converting a construction
of i into a construction of ⊥.

Example 11.3. Take ¬⊥ for example. A construction of it
is a function which, given any construction of ⊥ as input,
provides a construction of⊥ as output. Obviously, the identity
function Id is such a construction: given a construction "
of ⊥, Id (") = " yields a construction of ⊥.

Generally speaking, ¬i means “A construction of i is
impossible”.

Example 11.4. Let us prove i→¬¬i for any proposition i ,
which is i→ ((i→⊥) →⊥). �e construction should be a
function 5 that, given a construction " of i , returns a con-
struction 5 (") of (i →⊥) → ⊥. Here is how 5 constructs
the construction of (i→⊥) →⊥: We have to de�ne a func-
tion 6 which, when given a construction ℎ of i→⊥ as input,
outputs a construction of ⊥. We can de�ne 6 as follows: ap-
ply the input ℎ to the construction " of i (that we received
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earlier). Since the output ℎ(") of ℎ is a construction of ⊥,
5 (") (ℎ) = ℎ(") is a construction of ⊥ if " is a construction
of i .

Example 11.5. Let us give a construction for ¬(i ∧¬i), i.e.,
(i ∧ (i → ⊥)) → ⊥. �is is a function 5 which, given as
input a construction " of i ∧ (i → ⊥), yields a construc-
tion of ⊥. A construction of a conjunction k1 ∧k2 is a pair
〈#1, #2〉 where #1 is a construction ofk1 and #2 is a construc-
tion ofk2. We can de�ne functions ?1 and ?2 which recover
from a construction ofk1 ∧k2 the constructions ofk1 andk2,
respectively:

?1 (〈#1, #2〉) = #1

?2 (〈#1, #2〉) = #2

Here is what 5 does: First it applies ?1 to its input " . �at
yields a construction of i . �en it applies ?2 to " , yielding
a construction of i →⊥. Such a construction, in turn, is a
function ?2 (") which, if given as input a construction of i ,
yields a construction of ⊥. In other words, if we apply ?2 (")
to ?1 ("), we get a construction of ⊥. �us, we can de�ne
5 (") = ?2 (") (?1 (")).

Example 11.6. Let us give a construction of ((i∧k )→j)→
(i→(k→ j)), i.e., a function 5 which turns a construction 6
of (i ∧k ) → j into a construction of (i → (k → j)). �e
construction 6 is itself a function (from constructions of i ∧k
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to constructions of �). And the output 5 (6) is a function ℎ6
from constructions of i to functions from constructions ofk
to constructions of j .

Ok, this is confusing. We have to construct a certain func-
tion ℎ6, which will be the output of 5 for input 6. �e input
of ℎ6 is a construction " of i . �e output of ℎ6 (") should
be a function :" from constructions # ofk to constructions
of j . Let :6," (# ) = 6(〈", # 〉). Remember that 〈", # 〉 is a
construction of i ∧k . So :6," is a construction ofk → j : it
maps constructions # of k to constructions of j . Now let
ℎ6 (") = :6," . �at’s a function that maps constructions "
of i to constructions :6," of k → j . Now let 5 (6) = ℎ6.
�at’s a function that maps constructions 6 of (i ∧k ) → j

to constructions of i→ (k → j). Whew!

�e statement i ∨ ¬i is called the Law of Excluded Mid-
dle. We can prove it for some speci�c i (e.g., ⊥ ∨ ¬⊥), but
not in general. �is is because the intuitionistic disjunction
requires a construction of one of the disjuncts, but there are
statements which currently can neither be proved nor refuted
(say, Goldbach’s conjecture). However, you can’t refute the
law of excluded middle either: that is, ¬¬(i ∨ ¬i) holds.

Example 11.7. To prove ¬¬(i ∨ ¬i), we need a function 5
that transforms a construction of ¬(i ∨¬i), i.e., of (i ∨ (i→
⊥)) → ⊥, into a construction of ⊥. In other words, we need
a function 5 such that 5 (6) is a construction of ⊥ if 6 is a
construction of ¬(i ∨ ¬i).
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Suppose 6 is a construction of ¬(i ∨ ¬i), i.e., a function
that transforms a construction of i ∨ ¬i into a construction
of⊥. A construction of i∨¬i is a pair 〈B, "〉 where either B =
1 and" is a construction ofi , or B = 2 and" is a construction
of ¬i . Let ℎ1 be the function mapping a construction "1 of
i to a construction of i ∨ ¬i : it maps "1 to 〈1, "2〉. And
let ℎ2 be the function mapping a construction "2 of ¬i to a
construction of i ∨ ¬i : it maps "2 to 〈2, "2〉.

Let: be6◦ℎ1: it is a function which, if given a construction
of i , returns a construction of ⊥, i.e., it is a construction
of i →⊥ or ¬i . Now let ; be 6 ◦ ℎ2. It is a function which,
given a construction of¬i , provides a construction of⊥. Since
: is a construction of ¬i , ; (:) is a construction of ⊥.

Together, what we’ve done is describe how we can turn
a construction 6 of ¬(i ∨ ¬i) into a construction of ⊥, i.e.,
the function 5 mapping a construction 6 of ¬(i ∨ ¬i) to the
construction ; (:) of ⊥ is a construction of ¬¬(i ∨ ¬i).

As you can see, using the BHK interpretation to show
the intuitionistic validity of formulas quickly becomes cum-
bersome and confusing. Luckily, there are be�er derivation
systems for intuitionistic logic, and more precise semantic
interpretations.

11.4 Natural Deduction

Natural deduction without the RAA rules is a standard deriva-
tion system for intuitionistic logic. We repeat the rules here
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and indicate the motivation using the BHK interpretation.
In each case, we can think of a rule which allows us to con-
clude that if the premises have constructions, so does the
conclusion.

Since natural deduction derivations have undischarged
assumptions, we should consider such a derivation, say, of i
from undischarged assumptions Γ, as a function that turns
constructions of all k ∈ Γ into a construction of i . If there
is a derivation of i from no undischarged assumptions, then
there is a construction of i in the sense of the BHK inter-
pretation. For the purpose of the discussion, however, we’ll
suppress the Γ when not needed.

An assumption i by itself is a derivation of i from the
undischarged assumption i . �is agrees with the BHK-
interpretation: the identity function on constructions turns
any construction of i into a construction of i .

Conjunction

i k
∧I

i ∧k

i ∧k
∧Ei

i ∧k
∧E

k
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Suppose we have constructions #1, #2 of i1 and i2, respec-
tively. �en we also have a construction i1 ∧ i2, namely the
pair 〈#1, #2〉.

A construction of i1 ∧ i1 on the BHK interpretation is a
pair 〈#1, #2〉. So assume we have such a pair. �en we also
have a construction of each conjunct: #1 is a construction
of i1 and #2 is a construction of i2.

Conditional

[i]D

k →ID
i→k

i→k i
→E

k

If we have a derivation ofk from undischarged assumption i ,
then there is a function 5 that turns constructions of i into
constructions ofk . �at same function is a construction ofi→
k . So, if the premise of→I has a construction conditional on
a construction of i , the conclusion i→k has a construction.

On the other hand, suppose there are constructions # of
i and 5 of i → k . A construction of i → k is a function
that turns constructions of i into constructions of k . So,
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5 (# ) is a construction ofk , i.e., the conclusion of→E has a
construction.

Disjunction

i
∨I

i ∨k
k

∨I
i ∨k i ∨k

[i]=

j

[k ]=

j ∨E=j

If we have a construction #8 of i8 we can turn it into a con-
struction 〈8, #8〉 of i1 ∨ i2. On the other hand, suppose we
have a construction of i1 ∨ i2, i.e., a pair 〈8, #8〉 where #8
is a construction of i8 , and also functions 51, 52, which turn
constructions of i1, i2, respectively, into constructions of j .
�en 58 (#8 ) is a construction of j , the conclusion of ∨E.

Absurdity

⊥ ⊥Ei
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If we have a derivation of ⊥ from undischarged assump-
tions k1, . . . , k= , then there is a function 5 ("1, . . . , "=) that
turns constructions of k1, . . . , k= into a construction of ⊥.
Since ⊥ has no construction, there cannot be any construc-
tions of all ofk1, . . . ,k= either. Hence, 5 also has the property
that if "1, . . . ,"= are constructions ofk1, . . . ,k= , respectively,
then 5 ("1, . . . , "=) is a construction of i .

Rules for ¬
Since ¬i is de�ned as i → ⊥, we strictly speaking do not
need rules for ¬. But if we did, this is what they’d look like:

[i]=

⊥ ¬I=¬i

¬i i
¬E⊥

Examples of Derivations

1. ` i→ (¬i→⊥), i.e., ` i→ ((i→⊥) →⊥)

[i]2 [i→⊥]1
→E⊥ →I1(i→⊥) →⊥ →I2

i→ (i→⊥) →⊥

276



11.4. Natural Deduction

2. ` ((i ∧k ) → j) → (i→ (k → j))

[(i ∧k ) → j]3
[i]2 [k ]1

∧I
i ∧k

→Ej →I1
k → j →I2

i→ (k → j) →I3((i ∧k ) → j) → (i→ (k → j))

3. ` ¬(i ∧ ¬i), i.e., ` (i ∧ (i→⊥)) → ⊥

[i ∧ (i→⊥)]1
∧Ei→⊥

[i ∧ (i→⊥)]1
∧Ei

→E⊥ →I1(i ∧ (i→⊥)) → ⊥

4. ` ¬¬(i ∨ ¬i), i.e., ` ((i ∨ (i→⊥)) → ⊥) →⊥

[(i ∨ (i→⊥)) → ⊥]2

[(i ∨ (i→⊥)) → ⊥]2
[i]1

∨I
i ∨ (i→⊥)

→E⊥ →I1i→⊥
∨I

i ∨ (i→⊥)
→E⊥ →I2((i ∨ (i→⊥)) → ⊥) →⊥
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Proposition 11.8. If Γ ` i in intuitionistic logic, Γ ` i in
classical logic. In particular, if i is an intuitionistic theorem, it
is also a classical theorem.

Proof. Every natural deduction rule is also a rule in classical
natural deduction, so every derivation in intuitionistic logic
is also a derivation in classical logic. �

Problems

Problem 11.1. Give derivations in intutionistic logic of the
following.

1. (¬i ∨k ) → (i→k )

2. ¬¬¬i→¬i

3. ¬¬(i ∧k ) ↔ (¬¬i ∧ ¬¬k )
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Chapter 12

Semantics

12.1 Introduction

No logic is satisfactorily described without a semantics, and
intuitionistic logic is no exception. Whereas for classical logic,
the semantics based on valuations is canonical, there are sev-
eral competing semantics for intuitionistic logic. None of
them are completely satisfactory in the sense that they give
an intuitionistically acceptable account of the meanings of
the connectives.

�e semantics based on relational models, similar to the se-
mantics for modal logics, is perhaps the most popular one. In
this semantics, propositional variables are assigned to worlds,
and these worlds are related by an accessibility relation. �at
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relation is always a partial order, i.e., it is re�exive, antisym-
metric, and transitive.

Intuitively, you might think of these worlds as states of
knowledge or “evidentiary situations.” A stateF ′ is accessible
from F i�, for all we know, F ′ is a possible (future) state of
knowledge, i.e., one that is compatible with what’s known
atF . Once a proposition is known, it can’t become un-known,
i.e., whenever i is known atF and 'FF ′, i is known atF ′
as well. So “knowledge” is monotonic with respect to the
accessibility relation.

If we de�ne “i is known” as in epistemic logic as “true
in all epistemic alternatives,” then i ∧k is known atF if in
all epistemic alternatives, both i andk are known. But since
knowledge is monotonic and ' is re�exive, that means that
i ∧ k is known at F i� i and k are known at F . For the
same reason, i ∨k is known at F i� at least one of them is
known. So for∧ and∨, the truth conditions of the connectives
coincide with those in classical logic.

�e truth conditions for the conditional, however, di�er
from classical logic. i →k is known at F i� at no F ′ with
'FF ′, i is known without k also being known. �is is not
the same as the condition that i is unknown ork is known
at F . For if we know neither i nor k at F , there might be
a future epistemic state F ′ with 'FF ′ such that at F ′, i is
known without also coming to knowk .

We know ¬i only if there is no possible future epistemic
state in which we know i . Here the idea is that if i were
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knowable, then in some possible future epistemic state i be-
comes known. Since we can’t know⊥, in that future epistemic
state, we would know i but not know ⊥.

On this interpretation the principle of excluded middle
fails. For there are some i which we don’t yet know, but
which we might come to know. For such an i , both i and
¬i are unknown, so i ∨ ¬i is not known. But we do know,
e.g., that ¬(i ∧ ¬i). For no future state in which we know
both i and ¬i is possible, and we know this independently
of whether or not we know i or ¬i .

Relational models are not the only available semantics
for intuitionistic logic. �e topological semantics is another:
here propositions are interpreted as open sets in a topological
space, and the connectives are interpreted as operations on
these sets (e.g., ∧ corresponds to intersection).

12.2 Relational models

In order to give a precise semantics for intuitionistic propo-
sitional logic, we have to give a de�nition of what counts
as a model relative to which we can evaluate formulas. On
the basis of such a de�nition it is then also possible to de�ne
semantics notions such as validity and entailment. One such
semantics is given by relational models.

De�nition 12.1. A relational model for intuitionistic propo-
sitional logic is a triple M = 〈,,',+ 〉, where
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1. , is a non-empty set,

2. ' is a partial order (i.e., a re�exive, antisymmetric, and
transitive binary relation) on, , and

3. + is a function assigning to each propositional vari-
able ? a subset of, , such that

4. + is monotone with respect to ', i.e., ifF ∈ + (?) and
'FF ′, thenF ′ ∈ + (?).

De�nition 12.2. We de�ne the notion of i being true at F
in M, M,F  i , inductively as follows:

1. i ≡ ?: M,F  i i�F ∈ + (?).

2. i ≡ ⊥: not M,F  i .

3. i ≡ ¬k : M,F  i i� for no F ′ such that 'FF ′,
M,F ′  k .

4. i ≡ k ∧ j : M,F  i i� M,F  k and M,F  j .

5. i ≡ k ∨ j : M,F  i i� M,F  k or M,F  j (or
both).

6. i ≡ k → j : M,F  i i� for everyF ′ such that 'FF ′,
not M,F ′  k or M,F ′  j (or both).

We write M,F 1 i if not M,F  i . If Γ is a set of formulas,
M,F  Γ means M,F  k for allk ∈ Γ.
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Proposition 12.3. Truth at worlds is monotonic with respect
to ', i.e., if M,F  i and 'FF ′, then M,F ′  i .

Proof. Exercise. �

12.3 Semantic Notions

De�nition 12.4. We sayi is true in the modelM = 〈,,',+ 〉,
M  i , i� M,F  i for allF ∈, . i is valid, � i , i� it is true
in all models. We say a set of formulas Γ entails i , Γ � i , i� for
every model M and everyF such that M,F  Γ, M,F  i .

Proposition 12.5. 1. If M,F  Γ and Γ � i , then M,F 
i .

2. If M  Γ and Γ � i , then M  i .

Proof. 1. Suppose M  Γ. Since Γ � i , we know that if
M,F  Γ, then M,F  i . Since M, D  Γ for all every
D ∈, , M,F  Γ. Hence M,F  i .

2. Follows immediately from (1). �

Problems

Problem 12.1. Show that according to De�nition 12.2,M,F 
¬i i� M,F  i→⊥.

Problem 12.2. Prove Proposition 12.3.
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Chapter 13

Soundness and
Completeness

13.1 Soundness of Natural Deduction

�eorem 13.1 (Soundness). If Γ ` i , then Γ � i .

Proof. We prove that if Γ ` i , then Γ � i . �e proof is by
induction on the derivation of i from Γ.

1. If the derivation consists of just the assumption i , we
have i ` i , and want to show that i � i . Consider any
model M such that M  i . �en trivially M  i .

2. �e derivation ends in∧I: �e derivations of the premises
k from undischarged assumptions Γ and of j from
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undischarged assumptions Δ show that Γ ` k and
Δ ` j . By induction hypothesis we have that Γ � k
and Δ � j . We have to show that Γ ∪ Δ � i ∧k , since
the undischarged assumptions of the entire derivation
are Γ together with Δ. So suppose M  Γ ∪ Δ. �en
also M  Γ. Since Γ � k , M  k . Similarly, M  j . So
M  k ∧ j .

3. �e derivation ends in∧E: �e derivation of the premise
k ∧ j from undischarged assumptions Γ shows that
Γ ` k ∧ j . By induction hypothesis, Γ � k ∧ j . We have
to show that Γ � k . So suppose M  Γ. Since Γ � k ∧ j ,
M  k ∧ j . �en also M  k . Similarly if ∧E ends in j ,
then Γ � j .

4. �e derivation ends in ∨I: Suppose the premise is k ,
and the undischarged assumptions of the derivation
ending ink are Γ. �en we have Γ ` k and by inductive
hypothesis, Γ � k . We have to show that Γ � k ∨ j .
Suppose M  Γ. Since Γ � k , M  k . But then also
M  k ∨ j . Similarly, if the premise is j , we have that
Γ � j .

5. �e derivation ends in∨E: �e derivations ending in the
premises are ofk ∨ j from undischarged assumptions Γ,
of \ from undischarged assumptions Δ1 ∪ {k }, and of \
from undischarged assumptions Δ2 ∪ {j}. So we have
Γ ` k ∨ j , Δ1∪ {k } ` \ , and Δ2∪ {j} ` \ . By induction
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hypothesis, Γ � k ∨ j , Δ1 ∪ {k } � \ , and Δ2 ∪ {j} � \ .
We have to prove that Γ ∪ Δ1 ∪ Δ2 � \ .
Suppose M  Γ ∪ Δ1 ∪ Δ2. �en M  Γ and since
Γ � k ∨ j , M  k ∨ j . By de�nition of M , either
M  k or M  j . So we distinguish cases: (a) M  k .
�en M  Δ1 ∪ {k }. Since Δ1 ∪k � \ , we have M  \ .
(b) M  j . �en M  Δ2 ∪ {j}. Since Δ2 ∪ j � \ , we
have M  \ . So in either case, M  \ , as we wanted to
show.

6. �e derivation ends with→I concludingk → j . �en
the premise is j , and the derivation ending in the
premise has undischarged assumptions Γ ∪ {k }. So we
have that Γ ∪ {k } ` j , and by induction hypothesis
that Γ ∪ {k } � j . We have to show that Γ � k → j .
Suppose M,F  Γ. We want to show that for all F ′
such that 'FF ′, if M,F ′  k , then M,F ′  j . So
assume that 'FF ′ and M,F ′  k . By Proposition 12.3,
M,F ′  Γ. Since Γ ∪ {k } � j , M,F ′  j , which is
what we wanted to show.

7. �e derivation ends in →E and conclusion j . �e
premises arek→ j andk , with derivations from undis-
charged assumptions Γ, Δ. So we have Γ ` k → j and
Δ ` k . By inductive hypothesis, Γ � k → j and Δ � k .
We have to show that Γ ∪ Δ � j .
Suppose M,F  Γ ∪ Δ. Since M,F  Γ and Γ � k → j ,
M,F  k→ j . By de�nition, this means that for allF ′
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such that 'FF ′, if M,F ′  k then M,F ′  j . Since '
is re�exive,F is among theF ′ such that 'FF ′, i.e., we
have that if M,F  k then M,F  j . Since M,F  Δ
and Δ � k , M,F  k . So, M,F  j , as we wanted to
show.

8. �e derivation ends in ⊥E, concluding i . �e premise
is ⊥ and the undischarged assumptions of the deriva-
tion of the premise are Γ. �en Γ ` ⊥. By inductive
hypothesis, Γ � ⊥. We have to show Γ � i .
We proceed indirectly. If Γ 2 i there is a model M and
worldF such that M,F  Γ and M,F 1 i . Since Γ � ⊥,
M,F  ⊥. But that’s impossible, since by de�nition,
M,F 1 ⊥. So Γ � i .

9. �e derivation ends in ¬I: Exercise.

10. �e derivation ends in ¬E: Exercise. �

13.2 Lindenbaum’s Lemma

De�nition 13.2. A set of formulas Γ is prime i�

1. Γ is consistent.

2. If Γ ` i then i ∈ Γ, and

3. If i ∨k ∈ Γ then i ∈ Γ ork ∈ Γ.
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Lemma 13.3 (Lindenbaum’s Lemma). If Γ 0 i , there is a
Γ∗ ⊇ Γ such that Γ∗ is prime and Γ∗ 0 i .

Proof. Letk1∨ j1,k2∨ j2, . . . , be an enumeration of all formu-
las of the formk ∨ j . We’ll de�ne an increasing sequence of
sets of formulas Γ= , where each Γ=+1 is de�ned as Γ= together
with one new formula. Γ∗ will be the union of all Γ= . �e new
formulas are selected so as to ensure that Γ∗ is prime and still
Γ∗ 0 i . �is means that at each step we should �nd the �rst
disjunctionk8 ∨ j8 such that:

1. Γ= ` k8 ∨ j8

2. k8 ∉ Γ= and j8 ∉ Γ=

We add to Γ= eitherk8 if Γ= ∪ {k8 } 0 i , or j8 otherwise. We’ll
have to show that this works. For now, let’s de�ne 8 (=) as the
least 8 such that (1) and (2) hold.

De�ne Γ0 = Γ and

Γ=+1 =

{
Γ= ∪ {k8 (=) } if Γ= ∪ {k8 (=) } 0 i
Γ= ∪ {j8 (=) } otherwise

If 8 (=) is unde�ned, i.e., whenever Γ= ` k ∨ j , either k ∈ Γ=
or j ∈ Γ= , we let Γ=+1 = Γ= . Now let Γ∗ =

⋃∞
==0 Γ=

First we show that for all =, Γ= 0 i . We proceed by in-
duction on =. For = = 0 the claim holds by the hypothesis
of the theorem, i.e., Γ 0 i . If = > 0, we have to show that if
Γ= 0 i then Γ=+1 0 i . If 8 (=) is unde�ned, Γ=+1 = Γ= and there
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is nothing to prove. So suppose 8 (=) is de�ned. For simplicity,
let 8 = 8 (=).

We’ll prove the contrapositive of the claim. Suppose Γ=+1 `
i . By construction, Γ=+1 = Γ= ∪ {k8 } if Γ= ∪ {k8 } 0 i , or else
Γ=+1 = Γ=∪{j8 }. It clearly can’t be the �rst, since then Γ=+1 0 i .
Hence, Γ= ∪ {k8 } ` i and Γ=+1 = Γ= ∪ {j8 }. By de�nition of
8 (=), we have that Γ= ` k8 ∨ j8 . We have Γ= ∪ {k8 } ` i . We
also have Γ=+1 = Γ= ∪ {j8 } ` i . Hence, Γ= ` i , which is what
we wanted to show.

If Γ∗ ` i , there would be some �nite subset Γ′ ⊆ Γ∗ such
that Γ′ ` i . Each \ ∈ Γ′ must be in Γ8 for some 8 . Let = be
the largest of these. Since Γ8 ⊆ Γ= if 8 ≤ =, Γ′ ⊆ Γ= . But then
Γ= ` i , contrary to our proof above that Γ= 0 i .

Lastly, we show that Γ∗ is prime, i.e., satis�es conditions
(1), (2), and (3) of De�nition 13.2.

First, Γ∗ 0 i , so Γ∗ is consistent, so (1) holds.
We now show that if Γ∗ ` k ∨ j , then either k ∈ Γ∗ or

j ∈ Γ∗. �is proves (3), since ifk ∈ Γ∗ then also Γ∗ ` k , and
similarly for j . So assume Γ∗ ` k ∨ j butk ∉ Γ∗ and j ∉ Γ∗.
Since Γ∗ ` k ∨ j , Γ= ` k ∨ j for some =. k ∨ j appears on
the enumeration of all disjunctions, say as k 9 ∨ j 9 . k 9 ∨ j 9
satis�es the properties in the de�nition of 8 (=), namely we
have Γ= ` k 9 ∨ j 9 , while k 9 ∉ Γ= and j 9 ∉ Γ= . At each stage,
at least one fewer disjunctionk8 ∨ j8 satis�es the conditions
(since at each stage we add eitherk8 or j8 ), so at some stage<
we will have 9 = 8 (Γ<). But then eitherk ∈ Γ<+1 or j ∈ Γ<+1,
contrary to the assumption thatk ∉ Γ∗ and j ∉ Γ∗.
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Now suppose Γ∗ ` i . �en Γ∗ ` i ∨ i . But we’ve just
proved that if Γ∗ ` i ∨ i then i ∈ Γ∗. Hence, Γ∗ satis�es (2)
of De�nition 13.2. �

13.3 �e Canonical Model

�e worlds in our model will be �nite sequences f of natural
numbers, i.e., f ∈ N∗. Note that N∗ is inductively de�ned by:

1. Λ ∈ N∗.

2. If f ∈ N∗ and = ∈ N, then f.= ∈ N∗ (where f.= is
f ⌢ 〈=〉 and f ⌢ f ′ is the concatenation if f and f ′).

3. Nothing else is in N∗.

So we can use N∗ to give inductive de�nitions.
Let 〈k1, j1〉, 〈k2, jB〉, . . . , be an enumeration of all pairs of

formulas. Given a set of formulas Δ, de�ne Δ(f) by induction
as follows:

1. Δ(Λ) = Δ

2. Δ(f.=) ={
(Δ(f) ∪ {k=})∗ if Δ(f) ∪ {k=} 0 j=
Δ(f) otherwise

291



13. Soundness and Completeness

Here by (Δ(f) ∪ {k=})∗ we mean the prime set of formulas
which exists by Lemma 13.3 applied to the set Δ(f) ∪ {k=}
and the formula j= . Note that by this de�nition, if Δ(f) ∪
{k=} 0 j= , then Δ(f.=) ` k= and Δ(f.=) 0 j= . Note also that
Δ(f) ⊆ Δ(f.=) for any =. If Δ is prime, then Δ(f) is prime
for all f .

De�nition 13.4. Suppose Δ is prime. �en the canonical
model M(Δ) for Δ is de�ned by:

1. , = N∗, the set of �nite sequences of natural numbers.

2. ' is the partial order according to which 'ff ′ i� f is
an initial segment of f ′ (i.e., f ′ = f ⌢ f ′′ for some
sequence f ′′).

3. + (?) = {f | ? ∈ Δ(f)}.

It is easy to verify that ' is indeed a partial order. Also, the
monotonicity condition on+ is satis�ed. SinceΔ(f) ⊆ Δ(f.=)
we get Δ(f) ⊆ Δ(f ′) whenever 'ff ′ by induction on f .

13.4 �e Truth Lemma

Lemma 13.5. If Δ is prime, then M(Δ), f  i i� Δ(f) ` i .

Proof. By induction on i .

1. i ≡ ⊥: SinceΔ(f) is prime, it is consistent, soΔ(f) 0 i .
By de�nition, M(Δ), f 1 i .
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2. i ≡ ?: By de�nition of , M(Δ), f  i i� f ∈ + (?),
i.e., Δ(f) ` i .

3. i ≡ ¬k : exercise.

4. i ≡ k∧j : M(Δ), f  i i�M(Δ), f  k andM(Δ), f 
j . By induction hypothesis, M(Δ), f  k i� Δ(f) ` k ,
and similarly for j . But Δ(f) ` k and Δ(f) ` j i�
Δ(f) ` i .

5. i ≡ k ∨ j : M(Δ), f  i i� M(Δ), f  k or M(Δ), f 
j . By induction hypothesis, this holds i� Δ(f) ` k
of Δ(f) ` j . We have to show that this in turn holds
i� Δ(f) ` i . �e le�-to-right direction is clear. �e
right-to-le� direction follows since Δ(f) is prime.

6. i ≡ k → j : First the contrapositive of the le�-to-
right direction: Assume Δ(f) 0 k → j . �en also
Δ(f) ∪ {k } 0 j . Since 〈k, j〉 is 〈k=, j=〉 for some =,
we have Δ(f.=) = (Δ(f) ∪ {k })∗, and Δ(f.=) ` k but
Δ(f.=) 0 j . By inductive hypothesis, M(Δ), f .=  k
and M(Δ), f .= 1 j . Since 'f (f.=), this means that
M(Δ), f 1 i .
Now assume Δ(f) ` k→ j , and let 'ff ′. Since Δ(f) ⊆
Δ(f ′), we have: if Δ(f ′) ` k , then Δ(f ′) ` j . In other
words, for every f ′ such that 'ff ′, either Δ(f ′) 0 k or
Δ(f ′) ` j . By induction hypothesis, this means that
whenever 'ff ′, either M(Δ), f ′ 1 k or M(Δ), f ′  j ,
i.e., M(Δ), f  i . �
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13.5 �e Completeness �eorem

�eorem 13.6. If Γ � i then Γ ` i .

Proof. We prove the contrapositive: Suppose Γ 0 i . �en by
Lemma 13.3, there is a prime set Γ∗ ⊇ Γ such that Γ∗ 0 i .
Consider the canonical model M(Γ∗) for Γ∗ as de�ned in
De�nition 13.4. For anyk ∈ Γ, Γ∗ ` k . Note that Γ∗ (Λ) = Γ∗.
By the Truth Lemma (Lemma 13.5), we have M(Γ∗),Λ  k
for allk ∈ Γ and M(Γ∗),Λ 1 i . �is shows that Γ 2 i . �

Problems

Problem 13.1. Complete the proof of �eorem 13.1. For the
cases for ¬I and ¬E, use the de�nition of M,F  ¬i in De�-
nition 12.2, i.e., don’t treat ¬i as de�ned by i→⊥.
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14. Turing Machine Computations

Chapter 14

Turing Machine
Computations

14.1 Introduction

What does it mean for a function, say, from N to N to be com-
putable? Among the �rst answers, and the most well known
one, is that a function is computable if it can be computed
by a Turing machine. �is notion was set out by Alan Tur-
ing in 1936. Turing machines are an example of a model of
computation—they are a mathematically precise way of de�n-
ing the idea of a “computational procedure.” What exactly
that means is debated, but it is widely agreed that Turing ma-
chines are one way of specifying computational procedures.
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Even though the term “Turing machine” evokes the image
of a physical machine with moving parts, strictly speaking a
Turing machine is a purely mathematical construct, and as
such it idealizes the idea of a computational procedure. For
instance, we place no restriction on either the time or mem-
ory requirements of a Turing machine: Turing machines can
compute something even if the computation would require
more storage space or more steps than there are atoms in the
universe.

It is perhaps best to think of a Turing machine as a pro-
gram for a special kind of imaginary mechanism. �is mecha-
nism consists of a tape and a read-write head. In our version
of Turing machines, the tape is in�nite in one direction (to
the right), and it is divided into squares, each of which may
contain a symbol from a �nite alphabet. Such alphabets can
contain any number of di�erent symbols, say, but we will
mainly make do with three: ⊲, 0, and 1. When the mechanism
is started, the tape is empty (i.e., each square contains the
symbol 0) except for the le�most square, which contains ⊲,
and a �nite number of squares which contain the input. At
any time, the mechanism is in one of a �nite number of states.
At the outset, the head scans the le�most square and in a
speci�ed initial state. At each step of the mechanism’s run,
the content of the square currently scanned together with the
state the mechanism is in and the Turing machine program
determine what happens next. �e Turing machine program
is given by a partial function which takes as input a state @
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Figure 14.1: A Turing machine executing its program.

and a symbol f and outputs a triple 〈@′, f ′, �〉. Whenever the
mechanism is in state @ and reads symbol f , it replaces the
symbol on the current square with f ′, the head moves le�,
right, or stays put according to whether � is !, ', or # , and
the mechanism goes into state @′.

For instance, consider the situation in Figure 14.1. �e
visible part of the tape of the Turing machine contains the
end-of-tape symbol ⊲ on the le�most square, followed by
three 1’s, a 0, and four more 1’s. �e head is reading the third
square from the le�, which contains a 1, and is in state @1—we
say “the machine is reading a 1 in state @1.” If the program
of the Turing machine returns, for input 〈@1, 1〉, the triple
〈@2, 0, # 〉, the machine would now replace the 1 on the third
square with a 0, leave the read/write head where it is, and
switch to state @2. If then the program returns 〈@3, 0, '〉 for
input 〈@2, 0〉, the machine would now overwrite the 0 with
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another 0 (e�ectively, leaving the content of the tape under
the read/write head unchanged), move one square to the right,
and enter state @3. And so on.

We say that the machine halts when it encounters some
state, @= , and symbol, f such that there is no instruction
for 〈@=, f〉, i.e., the transition function for input 〈@=, f〉 is
unde�ned. In other words, the machine has no instruction
to carry out, and at that point, it ceases operation. Halting is
sometimes represented by a speci�c halt state ℎ. �is will be
demonstrated in more detail later on.

�e beauty of Turing’s paper, “On computable numbers,”
is that he presents not only a formal de�nition, but also an
argument that the de�nition captures the intuitive notion of
computability. From the de�nition, it should be clear that any
function computable by a Turing machine is computable in the
intuitive sense. Turing o�ers three types of argument that the
converse is true, i.e., that any function that we would naturally
regard as computable is computable by such a machine. �ey
are (in Turing’s words):

1. A direct appeal to intuition.

2. A proof of the equivalence of two de�nitions (in case
the new de�nition has a greater intuitive appeal).

3. Giving examples of large classes of numbers which are
computable.
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Our goal is to try to de�ne the notion of computability “in
principle,” i.e., without taking into account practical limita-
tions of time and space. Of course, with the broadest de�nition
of computability in place, one can then go on to consider com-
putation with bounded resources; this forms the heart of the
subject known as “computational complexity.”

Historical Remarks Alan Turing invented Turing ma-
chines in 1936. While his interest at the time was the decid-
ability of �rst-order logic, the paper has been described as a
de�nitive paper on the foundations of computer design. In
the paper, Turing focuses on computable real numbers, i.e.,
real numbers whose decimal expansions are computable; but
he notes that it is not hard to adapt his notions to computable
functions on the natural numbers, and so on. Notice that this
was a full �ve years before the �rst working general purpose
computer was built in 1941 (by the German Konrad Zuse in
his parent’s living room), seven years before Turing and his
colleagues at Bletchley Park built the code-breaking Colossus
(1943), nine years before the American ENIAC (1945), twelve
years before the �rst British general purpose computer—the
Manchester Small-Scale Experimental Machine—was built in
Manchester (1948), and thirteen years before the Americans
�rst tested the BINAC (1949). �e Manchester SSEM has
the distinction of being the �rst stored-program computer—
previous machines had to be rewired by hand for each new
task.
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14.2 Representing Turing Machines

Turing machines can be represented visually by state dia-
grams. �e diagrams are composed of state cells connected by
arrows. Unsurprisingly, each state cell represents a state of
the machine. Each arrow represents an instruction that can
be carried out from that state, with the speci�cs of the instruc-
tion wri�en above or below the appropriate arrow. Consider
the following machine, which has only two internal states, @0
and @1, and one instruction:

@0start @1
0, 1, '

Recall that the Turing machine has a read/write head and a
tape with the input wri�en on it. �e instruction can be read
as if reading a 0 in state @0, write a 1, move right, and move to
state @1. �is is equivalent to the transition function mapping
〈@0, 0〉 to 〈@1, 1, '〉.

Example 14.1. Even Machine: �e following Turing machine
halts if, and only if, there are an even number of 1’s on the
tape (under the assumption that all 1’s come before the �rst 0
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on the tape).

@0start @1

1, 1, '
0, 0, '

1, 1, '

�e state diagram corresponds to the following transition
function:

X (@0, 1) = 〈@1, 1, '〉,
X (@1, 1) = 〈@0, 1, '〉,
X (@1, 0) = 〈@1, 0, '〉

�e above machine halts only when the input is an even
number of strokes. Otherwise, the machine (theoretically)
continues to operate inde�nitely. For any machine and input,
it is possible to trace through the con�gurations of the ma-
chine in order to determine the output. We will give a formal
de�nition of con�gurations later. For now, we can intuitively
think of con�gurations as a series of diagrams showing the
state of the machine at any point in time during operation.
Con�gurations show the content of the tape, the state of the
machine and the location of the read/write head.

Let us trace through the con�gurations of the even ma-
chine if it is started with an input of four 1’s. In this case,
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we expect that the machine will halt. We will then run the
machine on an input of three 1’s, where the machine will run
forever.

�e machine starts in state @0, scanning the le�most 1. We
can represent the initial state of the machine as follows:

⊲101110 . . .

�e above con�guration is straightforward. As can be seen,
the machine starts in state one, scanning the le�most 1. �is
is represented by a subscript of the state name on the �rst 1.
�e applicable instruction at this point is X (@0, 1) = 〈@1, 1, '〉,
and so the machine moves right on the tape and changes to
state @1.

⊲111110 . . .
Since the machine is now in state @1 scanning a 1, we have
to “follow” the instruction X (@1, 1) = 〈@0, 1, '〉. �is results in
the con�guration

⊲111010 . . .
As the machine continues, the rules are applied again in the
same order, resulting in the following two con�gurations:

⊲111110 . . .

⊲111100 . . .

�e machine is now in state @0 scanning a 0. Based on the
transition diagram, we can easily see that there is no instruc-
tion to be carried out, and thus the machine has halted. �is
means that the input has been accepted.
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Suppose next we start the machine with an input of three
1’s. �e �rst few con�gurations are similar, as the same in-
structions are carried out, with only a small di�erence of the
tape input:

⊲10110 . . .

⊲11110 . . .

⊲11100 . . .

⊲11101 . . .

�e machine has now traversed past all the 1’s, and is reading
a 0 in state@1. As shown in the diagram, there is an instruction
of the form X (@1, 0) = 〈@1, 0, '〉. Since the tape is �lled with 0
inde�nitely to the right, the machine will continue to execute
this instruction forever, staying in state @1 and moving ever
further to the right. �e machine will never halt, and does
not accept the input.

It is important to note that not all machines will halt.
If halting means that the machine runs out of instructions
to execute, then we can create a machine that never halts
simply by ensuring that there is an outgoing arrow for each
symbol at each state. �e even machine can be modi�ed to
run inde�nitely by adding an instruction for scanning a 0
at @0.
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Example 14.2.

@0start @1

1, 1, '
0, 0, ' 0, 0, '

1, 1, '

Machine tables are another way of representing Turing
machines. Machine tables have the tape alphabet displayed
on the G-axis, and the set of machine states across the ~-axis.
Inside the table, at the intersection of each state and symbol, is
wri�en the rest of the instruction—the new state, new symbol,
and direction of movement. Machine tables make it easy to
determine in what state, and for what symbol, the machine
halts. Whenever there is a gap in the table is a possible point
for the machine to halt. Unlike state diagrams and instruction
sets, where the points at which the machine halts are not
always immediately obvious, any halting points are quickly
identi�ed by �nding the gaps in the machine table.

Example 14.3. �e machine table for the even machine is:

0 1
@0 1, @1, '
@1 0, @1, 0 1, @0, '

As we can see, the machine halts when scanning a blank in
state @0.
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So far we have only considered machines that read and
accept input. However, Turing machines have the capacity to
both read and write. An example of such a machine (although
there are many, many examples) is a doubler. A doubler, when
started with a block of = 1’s on the tape, outputs a block of 2=
1’s.

Example 14.4. Before building a doubler machine, it is im-
portant to come up with a strategy for solving the problem.
Since the machine (as we have formulated it) cannot remem-
ber how many 1’s it has read, we need to come up with a way
to keep track of all the 1’s on the tape. One such way is to
separate the output from the input with a 0. �e machine can
then erase the �rst 1 from the input, traverse over the rest of
the input, leave a 0, and write two new 1’s. �e machine will
then go back and �nd the second 1 in the input, and double
that one as well. For each one 1 of input, it will write two 1’s
of output. By erasing the input as the machine goes, we can
guarantee that no 1 is missed or doubled twice. When the
entire input is erased, there will be 2= 1’s le� on the tape. �e
state diagram of the resulting Turing machine is depicted in
Figure 14.2.

14.3 Turing Machines

�e formal de�nition of what constitutes a Turing machine
looks abstract, but is actually simple: it merely packs into one
mathematical structure all the information needed to specify
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@0start @1 @2

@3@4@5

1, 0, '

1, 1, '

0, 0, '

1, 1, '

0, 1, '

0, 1, !

1, 1, !

1, 1, !

0, 0, !

1, 1, !

0, 0, '

Figure 14.2: A doubler machine

the workings of a Turing machine. �is includes (1) which
states the machine can be in, (2) which symbols are allowed
to be on the tape, (3) which state the machine should start in,
and (4) what the instruction set of the machine is.

De�nition 14.5 (Turing machine). A Turing machine " is
a tuple 〈&, Σ, @0, X〉 consisting of

1. a �nite set of states & ,
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2. a �nite alphabet Σ which includes ⊲ and 0,

3. an initial state @0 ∈ & ,

4. a �nite instruction set X : & × Σ ↦→ & × Σ × {!, ', # }.

�e partial function X is also called the transition function
of " .

We assume that the tape is in�nite in one direction only.
For this reason it is useful to designate a special symbol ⊲ as
a marker for the le� end of the tape. �is makes it easier for
Turing machine programs to tell when they’re “in danger” of
running o� the tape.

Example 14.6. Even Machine: �e even machine is formally
the quadruple 〈&, Σ, @0, X〉 where

& = {@0, @1}
Σ = {⊲, 0, 1},

X (@0, 1) = 〈@1, 1, '〉,
X (@1, 1) = 〈@0, 1, '〉,
X (@1, 0) = 〈@1, 0, '〉.

14.4 Con�gurations and Computations

Recall tracing through the con�gurations of the even ma-
chine earlier. �e imaginary mechanism consisting of tape,
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read/write head, and Turing machine program is really just
an intuitive way of visualizing what a Turing machine com-
putation is. Formally, we can de�ne the computation of a
Turing machine on a given input as a sequence of con�gura-
tions—and a con�guration in turn is a sequence of symbols
(corresponding to the contents of the tape at a given point
in the computation), a number indicating the position of the
read/write head, and a state. Using these, we can de�ne what
the Turing machine " computes on a given input.

De�nition 14.7 (Con�guration). A con�guration of Tur-
ing machine " = 〈&, Σ, @0, X〉 is a triple 〈�,<,@〉 where

1. � ∈ Σ∗ is a �nite sequence of symbols from Σ,

2. < ∈ N is a number < len(�), and

3. @ ∈ &

Intuitively, the sequence� is the content of the tape (symbols
of all squares from the le�most square to the last non-blank
or previously visited square),< is the number of the square
the read/write head is scanning (beginning with 0 being the
number of the le�most square), and @ is the current state of
the machine.

�e potential input for a Turing machine is a sequence
of symbols, usually a sequence that encodes a number in
some form. �e initial con�guration of the Turing machine
is that con�guration in which we start the Turing machine
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to work on that input: the tape contains the tape end marker
immediately followed by the input wri�en on the squares to
the right, the read/write head is scanning the le�most square
of the input (i.e., the square to the right of the le� end marker),
and the mechanism is in the designated start state @0.

De�nition 14.8 (Initial con�guration). �e initial con�g-
uration of " for input � ∈ Σ∗ is

〈⊲ ⌢ � , 1, @0〉.

�e ⌢ symbol is for concatenation—we want to ensure
that there are no blanks between the le� end marker and the
beginning of the input.

De�nition 14.9. We say that a con�guration 〈�,<,@〉 yields
the con�guration 〈� ′,<′, @′〉 in one step (according to "), i�

1. the<-th symbol of � is f ,

2. the instruction set of " speci�es X (@, f) = 〈@′, f ′, �〉,

3. the<-th symbol of � ′ is f ′, and

4. a) � = ! and<′ =< − 1 if< > 0, otherwise<′ = 0,
or

b) � = ' and<′ =< + 1, or
c) � = # and<′ =<,
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5. if<′ = len(�), then len(� ′) = len(�) + 1 and the<′-th
symbol of � ′ is 0.

6. for all 8 such that 8 < len(� ′) and 8 ≠<, � ′(8) = � (8),

De�nition 14.10. A run of " on input � is a sequence �8 of
con�gurations of " , where �0 is the initial con�guration of
" for input � , and each �8 yields �8+1 in one step.

We say that" halts on input � a�er: steps if�: = 〈�,<,@〉,
the<th symbol of� is f , and X (@, f) is unde�ned. In that case,
the output of" for input � is$ , where$ is a string of symbols
not beginning or ending in 0 such that� = ⊲ ⌢ 08 ⌢ $ ⌢ 09
for some 8, 9 ∈ N.

According to this de�nition, the output $ of " always
begins and ends in a symbol other than 0, or, if at time : the
entire tape is �lled with 0 (except for the le�most ⊲), $ is the
empty string.

14.5 Unary Representation of Numbers

Turing machines work on sequences of symbols wri�en on
their tape. Depending on the alphabet a Turing machine uses,
these sequences of symbols can represent various inputs and
outputs. Of particular interest, of course, are Turing machines
which compute arithmetical functions, i.e., functions of natu-
ral numbers. A simple way to represent positive integers is by
coding them as sequences of a single symbol 1. If = ∈ N, let 1=
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be the empty sequence if = = 0, and otherwise the sequence
consisting of exactly = 1’s.

De�nition 14.11 (Computation). A Turing machine" com-
putes the function 5 : N= → N i� " halts on input

1:1 01:2 0 . . . 01:=

with output 15 (:1,...,:=) .

Example 14.12. Addition: Build a machine that, when given
an input of two non-empty strings of 1’s of length = and<,
computes the function 5 (=,<) = = +<.

We want to come up with a machine that starts with
two blocks of strokes on the tape and halts with one block
of strokes. We �rst need a method to carry out. �e input
strokes are separated by a blank, so one method would be to
write a stroke on the square containing the blank, and erase
the �rst (or last) stroke. �is would result in a block of = +<
1’s. Alternatively, we could proceed in a similar way to the
doubler machine, by erasing a stroke from the �rst block,
and adding one to the second block of strokes until the �rst
block has been removed completely. We will proceed with
the former example.

@0start @1 @2
0, 1, '

1, 1, ' 1, 1, '

0, 0, !

1, 0, #
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14.6 Halting States

Although we have de�ned our machines to halt only when
there is no instruction to carry out, common representations
of Turing machines have a dedicated halting state, ℎ, such that
ℎ ∈ & .

�e idea behind a halting state is simple: when the ma-
chine has �nished operation (it is ready to accept input, or
has �nished writing the output), it goes into a state ℎ where
it halts. Some machines have two halting states, one that
accepts input and one that rejects input.

Example 14.13. Halting States. To elucidate this concept, let
us begin with an alteration of the even machine. Instead of
having the machine halt in state @0 if the input is even, we
can add an instruction to send the machine into a halt state.

@0start @1

ℎ

1, 1, '

0, 0, #

0, 0, '

1, 1, '
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Let us further expand the example. When the machine
determines that the input is odd, it never halts. We can alter
the machine to include a reject state by replacing the looping
instruction with an instruction to go to a reject state A .

@0start @1

ℎ A

1, 1, '

0, 0, # 0, 0, #

1, 1, '

Adding a dedicated halting state can be advantageous in
cases like this, where it makes explicit when the machine
accepts/rejects certain inputs. However, it is important to
note that no computing power is gained by adding a dedicated
halting state. Similarly, a less formal notion of halting has its
own advantages. �e de�nition of halting used so far in this
chapter makes the proof of the Halting Problem intuitive and
easy to demonstrate. For this reason, we continue with our
original de�nition.
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14.7 Combining Turing Machines

�e examples of Turing machines we have seen so far have
been fairly simple in nature. But in fact, any problem that
can be solved with any modern programming language can
also be solved with Turing machines. To build more complex
Turing machines, it is important to convince ourselves that we
can combine them, so we can build machines to solve more
complex problems by breaking the procedure into simpler
parts. If we can �nd a natural way to break a complex problem
down into constituent parts, we can tackle the problem in
several stages, creating several simple Turing machines and
combining them into one machine that can solve the problem.
�is point is especially important when tackling the Halting
Problem in the next section.

Example 14.14. Combining Machines: Design a machine
that computes the function 5 (<,=) = 2(< + =).

In order to build this machine, we can combine two ma-
chines we are already familiar with: the addition machine,
and the doubler. We begin by drawing a state diagram for the
addition machine.

@0start @1 @2
0, 1, '

1, 1, ' 1, 1, '

0, 0, !

1, 0, #
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Instead of halting at state @2, we want to continue operation
in order to double the output. Recall that the doubler machine
erases the �rst stroke in the input and writes two strokes
in a separate output. Let’s add an instruction to make sure
the tape head is reading the �rst stroke of the output of the
addition machine.

@0start @1 @2

@3

@4

0, 1, '

1, 1, ' 1, 1, '

0, 0, !

1, 0, !

1, 1, !

⊲, ⊲, '

It is now easy to double the input—all we have to do is connect
the doubler machine onto state @4. �is requires renaming the
states of the doubler machine so that they start at @4 instead
of @0—this way we don’t end up with two starting states. �e
�nal diagram should look as in Figure 14.3.
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@0start @1 @2

@3

@4 @5 @6

@7@8@9

0, 1, '

1, 1, ' 1, 1, '

0, 0, !

1, 0, !

1, 1, !

⊲, ⊲, '

1, 0, '

1, 1, '

0, 0, '

1, 1, '

0, 1, '

0, 1, !

1, 1, !

1, 1, !

0, 0, !

1, 1, !

0, 0, '

Figure 14.3: Combining adder and doubler machines
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14.8 Variants of Turing Machines

�ere are in fact many possible ways to de�ne Turing ma-
chines, of which ours is only one. In some ways, our de�nition
is more liberal than others. We allow arbitrary �nite alpha-
bets, a more restricted de�nition might allow only two tape
symbols, 1 and 0. We allow the machine to write a symbol to
the tape and move at the same time, other de�nitions allow
either writing or moving. We allow the possibility of writing
without moving the tape head, other de�nitions leave out the
# “instruction.” In other ways, our de�nition is more restric-
tive. We assumed that the tape is in�nite in one direction
only, other de�nitions allow the tape to be in�nite both to the
le� and the right. In fact, one can even allow any number of
separate tapes, or even an in�nite grid of squares. We repre-
sent the instruction set of the Turing machine by a transition
function; other de�nitions use a transition relation where the
machine has more than one possible instruction in any given
situation.

�is last relaxation of the de�nition is particularly interest-
ing. In our de�nition, when the machine is in state @ reading
symbol f , X (@, f) determines what the new symbol, state,
and tape head position is. But if we allow the instruction
set to be a relation between current state-symbol pairs 〈@, f〉
and new state-symbol-direction triples 〈@′, f ′, �〉, the action
of the Turing machine may not be uniquely determined—
the instruction relation may contain both 〈@, f, @′, f ′, �〉 and
〈@, f, @′′, f ′′, � ′〉. In this case we have a non-deterministic Tur-
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ing machine. �ese play an important role in computational
complexity theory.

�ere are also di�erent conventions for when a Turing
machine halts: we say it halts when the transition function
is unde�ned, other de�nitions require the machine to be in a
special designated halting state. Since the tapes of our Turing
machines are in�nite in one direction only, there are cases
where a Turing machine can’t properly carry out an instruc-
tion: if it reads the le�most square and is supposed to move
le�. According to our de�nition, it just stays put instead, but
we could have de�ned it so that it halts when that happens.

�ere are also di�erent ways of representing numbers
(and hence the input-output function computed by a Turing
machine): we use unary representation, but you can also use
binary representation. �is requires two symbols in addition
to 0 and ⊲.

Now here is an interesting fact: none of these variations
ma�ers as to which functions are Turing computable. If a
function is Turing computable according to one de�nition, it is
Turing computable according to all of them.

14.9 �e Church-Turing �esis

Turing machines are supposed to be a precise replacement
for the concept of an e�ective procedure. Turing thought
that anyone who grasped both the concept of an e�ective
procedure and the concept of a Turing machine would have
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the intuition that anything that could be done via an e�ective
procedure could be done by Turing machine. �is claim is
given support by the fact that all the other proposed precise
replacements for the concept of an e�ective procedure turn
out to be extensionally equivalent to the concept of a Turing
machine —that is, they can compute exactly the same set of
functions. �is claim is called the Church-Turing thesis.

De�nition 14.15 (Church-Turing thesis). �e Church-Turing
�esis states that anything computable via an e�ective proce-
dure is Turing computable.

�e Church-Turing thesis is appealed to in two ways. �e
�rst kind of use of the Church-Turing thesis is an excuse
for laziness. Suppose we have a description of an e�ective
procedure to compute something, say, in “pseudo-code.” �en
we can invoke the Church-Turing thesis to justify the claim
that the same function is computed by some Turing machine,
even if we have not in fact constructed it.

�e other use of the Church-Turing thesis is more philo-
sophically interesting. It can be shown that there are functions
which cannot be computed by Turing machines. From this, us-
ing the Church-Turing thesis, one can conclude that it cannot
be e�ectively computed, using any procedure whatsoever. For
if there were such a procedure, by the Church-Turing thesis,
it would follow that there would be a Turing machine. So if
we can prove that there is no Turing machine that computes
it, there also can’t be an e�ective procedure. In particular, the
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Church-Turing thesis is invoked to claim that the so-called
halting problem not only cannot be solved by Turing ma-
chines, it cannot be e�ectively solved at all.

Problems

Problem 14.1. Choose an arbitary input and trace through
the con�gurations of the doubler machine in Example 14.4.

Problem 14.2. �e double machine in Example 14.4 writes
its output to the right of the input. Come up with a new
method for solving the doubler problem which generates its
output immediately to the right of the end-of-tape marker.
Build a machine that executes your method. Check that your
machine works by tracing through the con�gurations.

Problem 14.3. Design a Turing-machine with alphabet {⊲, 0, �, �}
that accepts, i.e., halts on, any string of �’s and �’s where the
number of �’s is the same as the number of �’s and all the
�’s precede all the �’s, and rejects, i.e., does not halt on, any
string where the number of �’s is not equal to the number
of �’s or the �’s do not precede all the �’s. (E.g., the machine
should accept ����, and ������, but reject both ��� and
��������.)

Problem 14.4. Design a Turing-machine with alphabet {⊲, 0, �, �}
that takes as input any string U of �’s and �’s and duplicates
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them to produce an output of the form UU . (E.g. input ����
should result in output ��������).

Problem 14.5. Alphabetical?: Design a Turing-machine with
alphabet {⊲, 0, �, �} that when given as input a �nite sequence
of �’s and �’s checks to see if all the �’s appear to the le� of
all the �’s or not. �e machine should leave the input string
on the tape, and either halt if the string is “alphabetical”, or
loop forever if the string is not.

Problem 14.6. Alphabetizer: Design a Turing-machine with
alphabet {⊲, 0, �, �} that takes as input a �nite sequence of
�’s and �’s rearranges them so that all the �’s are to the le�
of all the �’s. (e.g., the sequence ����� should become the
sequence �����, and the sequence ������ should become
the sequence ������).

Problem 14.7. Trace through the con�gurations of the ma-
chine for input 〈3, 5〉.

Problem 14.8. Subtraction: Design a Turing machine that
when given an input of two non-empty strings of strokes
of length = and <, where = > <, computes the function
5 (=,<) = = −<.

Problem 14.9. Equality: Design a Turing machine to com-
pute the following function:

equality(G,~) =
{

1 if G = ~

0 if G ≠ ~
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where G and ~ are integers greater than 0.

Problem 14.10. Design a Turing machine to compute the
function min(G,~) where G and ~ are positive integers repre-
sented on the tape by strings of 1’s separated by a 0. You may
use additional symbols in the alphabet of the machine.

�e function min selects the smallest value from its argu-
ments, so min(3, 5) = 3, min(20, 16) = 16, and min(4, 4) = 4,
and so on.
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Chapter 15

Undecidability

15.1 Introduction

It might seem obvious that not every function, even every
arithmetical function, can be computable. �ere are just too
many, whose behavior is too complicated. Functions de�ned
from the decay of radioactive particles, for instance, or other
chaotic or random behavior. Suppose we start counting 1-
second intervals from a given time, and de�ne the function
5 (=) as the number of particles in the universe that decay
in the =-th 1-second interval a�er that initial moment. �is
seems like a candidate for a function we cannot ever hope to
compute.

But it is one thing to not be able to imagine how one
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would compute such functions, and quite another to actually
prove that they are uncomputable. In fact, even functions that
seem hopelessly complicated may, in an abstract sense, be
computable. For instance, suppose the universe is �nite in
time—some day, in the very distant future the universe will
contract into a single point, as some cosmological theories
predict. �en there is only a �nite (but incredibly large) num-
ber of seconds from that initial moment for which 5 (=) is
de�ned. And any function which is de�ned for only �nitely
many inputs is computable: we could list the outputs in one
big table, or code it in one very big Turing machine state
transition diagram.

We are o�en interested in special cases of functions whose
values give the answers to yes/no questions. For instance,
the question “is = a prime number?” is associated with the
function

isprime(=) =
{

1 if = is prime
0 otherwise.

We say that a yes/no question can be e�ectively decided, if the
associated 1/0-valued function is e�ectively computable.

To prove mathematically that there are functions which
cannot be e�ectively computed, or problems that cannot ef-
fectively decided, it is essential to �x a speci�c model of com-
putation, and show about it that there are functions it cannot
compute or problems it cannot decide. We can show, for in-
stance, that not every function can be computed by Turing
machines, and not every problem can be decided by Turing
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machines. We can then appeal to the Church-Turing thesis
to conclude that not only are Turing machines not powerful
enough to compute every function, but no e�ective procedure
can.

�e key to proving such negative results is the fact that
we can assign numbers to Turing machines themselves. �e
easiest way to do this is to enumerate them, perhaps by �xing
a speci�c way to write down Turing machines and their pro-
grams, and then listing them in a systematic fashion. Once
we see that this can be done, then the existence of Turing-
uncomputable functions follows by simple cardinality con-
siderations: the set of functions from N to N (in fact, even
just from N to {0, 1}) are uncountable, but since we can enu-
merate all the Turing machines, the set of Turing-computable
functions is only countably in�nite.

We can also de�ne speci�c functions and problems which
we can prove to be uncomputable and undecidable, respec-
tively. One such problem is the so-called Halting Problem.
Turing machines can be �nitely described by listing their
instructions. Such a description of a Turing machine, i.e.,
a Turing machine program, can of course be used as input
to another Turing machine. So we can consider Turing ma-
chines that decide questions about other Turing machines.
One particularly interesting question is this: “Does the given
Turing machine eventually halt when started on input =?”
It would be nice if there were a Turing machine that could
decide this question: think of it as a quality-control Turing
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machine which ensures that Turing machines don’t get caught
in in�nite loops and such. �e interesting fact, which Turing
proved, is that there cannot be such a Turing machine. �ere
cannot be a single Turing machine which, when started on
input consisting of a description of a Turing machine " and
some number =, will always halt with either output 1 or 0
according to whether " machine would have halted when
started on input = or not.

Once we have examples of speci�c undecidable problems
we can use them to show that other problems are undecid-
able, too. For instance, one celebrated undecidable problem
is the question, “Is the �rst-order formula i valid?”. �ere
is no Turing machine which, given as input a �rst-order for-
mula i , is guaranteed to halt with output 1 or 0 according to
whether i is valid or not. Historically, the question of �nding
a procedure to e�ectively solve this problem was called sim-
ply “the” decision problem; and so we say that the decision
problem is unsolvable. Turing and Church proved this result
independently at around the same time, so it is also called the
Church-Turing �eorem.

15.2 Enumerating Turing Machines

We can show that the set of all Turing machines is countable.
�is follows from the fact that each Turing machine can be
�nitely described. �e set of states and the tape vocabulary
are �nite sets. �e transition function is a partial function
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from&×Σ to&×Σ×{!, ', # }, and so likewise can be speci�ed
by listing its values for the �nitely many argument pairs for
which it is de�ned. Of course, strictly speaking, the states and
vocabulary can be anything; but the behavior of the Turing
machine is independent of which objects serve as states and
vocabulary. So we may assume, for instance, that the states
and vocabulary symbols are natural numbers, or that the
states and vocabulary are all strings of le�ers and digits.

Suppose we �x a countably in�nite vocabulary for spec-
ifying Turing machines: f0 = ⊲, f1 = 0, f2 = 1, f3, . . . , ', !,
# , @0, @1, . . . . �en any Turing machine can be speci�ed by
some �nite string of symbols from this alphabet (though not
every �nite string of symbols speci�es a Turing machine). For
instance, suppose we have a Turing machine " = 〈&, Σ, @, X〉
where

& = {@′0, . . . , @′=} ⊆ {@0, @1, . . . } and
Σ = {⊲, f ′1, f ′2, . . . , f ′<} ⊆ {f0, f1, . . . }.

We could specify it by the string

@′0@
′
1 . . . @

′
= ⊲ f

′
1 . . . f

′
< ⊲ @ ⊲ ( (f ′0, @′0) ⊲ . . . ⊲ ( (f ′<, @′=)

where ( (f ′8 , @′9 ) is the stringf ′8@′9X (f ′8 , @′9 ) ifX (f ′8 , @′9 ) is de�ned,
and f ′8@′9 otherwise.

�eorem 15.1. �ere are functions from N to N which are not
Turing computable.
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Proof. We know that the set of �nite strings of symbols
from a countably in�nite alphabet is countable. �is gives
us that the set of descriptions of Turing machines, as a
subset of the �nite strings from the countable vocabulary
{@0, @1, . . . , ⊲, f1, f2, . . . }, is itself enumerable. Since every
Turing computable function is computed by some (in fact,
many) Turing machines, this means that the set of all Turing
computable functions from N to N is also enumerable.

On the other hand, the set of all functions from N to N is
not countable. �is follows immediately from the fact that
not even the set of all functions of one argument from N to
the set {0, 1} is countable. If all functions were computable
by some Turing machine we could enumerate the set of all
functions. So there are some functions that are not Turing
computable. �

15.3 �e Halting Problem

Assume we have �xed some �nite descriptions of Turing ma-
chines. Using these, we can enumerate Turing machines via
their descriptions, say, ordered by the lexicographic ordering.
Each Turing machine thus receives an index: its place in the
enumeration "1, "2, "3, . . . of Turing machine descriptions.

We know that there must be non-Turing-computable func-
tions: the set of Turing machine descriptions—and hence the
set of Turing machines—is enumerable, but the set of all func-
tions from N to N is not. But we can �nd speci�c examples of
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non-computable function as well. One such function is the
halting function.

De�nition 15.2 (Halting function). �e halting function ℎ
is de�ned as

ℎ(4, =) =
{

0 if machine "4 does not halt for input =
1 if machine "4 halts for input =

De�nition 15.3 (Halting problem). �e Halting Problem is
the problem of determining (for any 4 , =) whether the Turing
machine "4 halts for an input of = strokes.

We show that ℎ is not Turing-computable by showing that
a related function, B , is not Turing-computable. �is proof
relies on the fact that anything that can be computed by a
Turing machine can be computed using just two symbols: 0
and 1, and the fact that two Turing machines can be hooked
together to create a single machine.

De�nition 15.4. �e function B is de�ned as

B (4) =
{

0 if machine "4 does not halt for input 4
1 if machine "4 halts for input 4

Lemma 15.5. �e function B is not Turing computable.

Proof. We suppose, for contradiction, that the function B is
Turing computable. �en there would be a Turing machine (
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that computes B . We may assume, without loss of generality,
that when ( halts, it does so while scanning the �rst square.
�is machine can be “hooked up” to another machine � , which
halts if it is started on a blank tape (i.e., if it reads 0 in the initial
state while scanning the square to the right of the end-of-tape
symbol), and otherwise wanders o� to the right, never halting.
( ⌢ � , the machine created by hooking ( to � , is a Turing
machine, so it is "4 for some 4 (i.e., it appears somewhere in
the enumeration). Start "4 on an input of 4 1s. �ere are two
possibilities: either "4 halts or it does not halt.

1. Suppose "4 halts for an input of 4 1s. �en B (4) = 1.
So ( , when started on 4 , halts with a single 1 as output
on the tape. �en � starts with a 1 on the tape. In that
case � does not halt. But "4 is the machine ( ⌢ � , so
it should do exactly what ( followed by � would do. So
"4 cannot halt for an input of 4 1’s.

2. Now suppose"4 does not halt for an input of 4 1s. �en
B (4) = 0, and ( , when started on input 4 , halts with a
blank tape. � , when started on a blank tape, immediately
halts. Again, "4 does what ( followed by � would do,
so "4 must halt for an input of 4 1’s.

�is shows there cannot be a Turing machine ( : B is not Turing
computable. �
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�eorem 15.6 (Unsolvability of the Halting Problem).
�e halting problem is unsolvable, i.e., the function ℎ is not
Turing computable.

Proof. Suppose ℎ were Turing computable, say, by a Turing
machine � . We could use � to build a Turing machine that
computes B: First, make a copy of the input (separated by a
blank). �en move back to the beginning, and run � . We can
clearly make a machine that does the former, and if � existed,
we would be able to “hook it up” to such a modi�ed doubling
machine to get a new machine which would determine if "4

halts on input 4 , i.e., computes B . But we’ve already shown
that no such machine can exist. Hence, ℎ is also not Turing
computable. �

15.4 �e Decision Problem

We say that �rst-order logic is decidable i� there is an e�ective
method for determining whether or not a given sentence is
valid. As it turns out, there is no such method: the problem
of deciding validity of �rst-order sentences is unsolvable.

In order to establish this important negative result, we
prove that the decision problem cannot be solved by a Turing
machine. �at is, we show that there is no Turing machine
which, whenever it is started on a tape that contains a �rst-
order sentence, eventually halts and outputs either 1 or 0
depending on whether the sentence is valid or not. By the
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Church-Turing thesis, every function which is computable is
Turing computable. So if this “validity function” were e�ec-
tively computable at all, it would be Turing computable. If
it isn’t Turing computable, then, it also cannot be e�ectively
computable.

Our strategy for proving that the decision problem is un-
solvable is to reduce the halting problem to it. �is means the
following: We have proved that the function ℎ(4,F) that halts
with output 1 if the Turing machine described by 4 halts on
input F and outputs 0 otherwise, is not Turing computable.
We will show that if there were a Turing machine that de-
cides validity of �rst-order sentences, then there is also Turing
machine that computes ℎ. Since ℎ cannot be computed by
a Turing machine, there cannot be a Turing machine that
decides validity either.

�e �rst step in this strategy is to show that for every
inputF and a Turing machine " , we can e�ectively describe
a sentence g (",F) representing the instruction set of " and
the inputF and a sentence U (",F) expressing “" eventually
halts” such that:

� g (",F) → U (",F) i� " halts for inputF .

�e bulk of our proof will consist in describing these sentences
g (",F) and U (",F) and verifying that g (",F) → U (",F)
is valid i� " halts on inputF .
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15.5 Representing Turing Machines

In order to represent Turing machines and their behavior by
a sentence of �rst-order logic, we have to de�ne a suitable lan-
guage. �e language consists of two parts: predicate symbols
for describing con�gurations of the machine, and expressions
for numbering execution steps (“moments”) and positions on
the tape.

We introduce two kinds of predicate symbols, both of
them 2-place: For each state @, a predicate symbol&@ , and for
each tape symbol f , a predicate symbol (f . �e former allow
us to describe the state of " and the position of its tape head,
the la�er allow us to describe the contents of the tape.

In order to express the positions of the tape head and the
number of steps executed, we need a way to express numbers.
�is is done using a constant symbol 0, and a 1-place function ′,
the successor function. By convention it is wri�en a�er its
argument (and we leave out the parentheses). So 0 names
the le�most position on the tape as well as the time before
the �rst execution step (the initial con�guration), 0′ names
the square to the right of the le�most square, and the time
a�er the �rst execution step, and so on. We also introduce
a predicate symbol < to express both the ordering of tape
positions (when it means “to the le� of”) and execution steps
(then it means “before”).

Once we have the language in place, we list the “axioms” of
g (",F), i.e., the sentences which, taken together, describe the
behavior of " when run on inputF . �ere will be sentences
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which lay down conditions on 0, ′, and <, sentences that
describes the input con�guration, and sentences that describe
what the con�guration of " is a�er it executes a particular
instruction.

De�nition 15.7. Given a Turing machine " = 〈&, Σ, @0, X〉,
the language L" consists of:

1. A two-place predicate symbol&@ (G,~) for every state@ ∈
& . Intuitively,&@ (<,=) expresses “a�er = steps, " is in
state @ scanning the<th square.”

2. A two-place predicate symbol (f (G,~) for every sym-
bol f ∈ Σ. Intuitively, (f (<,=) expresses “a�er = steps,
the<th square contains symbol f .”

3. A constant symbol 0

4. A one-place function symbol ′

5. A two-place predicate symbol <

For each number= there is a canonical term=, the numeral
for =, which represents it in L" . 0 is 0, 1 is 0′, 2 is 0′′, and so
on. More formally:

0 = 0
= + 1 = =′

�e sentences describing the operation of the Turing ma-
chine " on inputF = f81 . . . f8: are the following:
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1. Axioms describing numbers:

a) A sentence that says that the successor function
is injective:

∀G ∀~ (G ′ = ~ ′→ G = ~)

b) A sentence that says that every number is less
than its successor:

∀G G < G ′

c) A sentence that ensures that < is transitive:

∀G ∀~ ∀I ((G < ~ ∧ ~ < I) → G < I)

d) A sentence that connects < and =:

∀G ∀~ (G < ~→ G ≠ ~)

2. Axioms describing the input con�guration:

a) A�er 0 steps—before the machine starts—" is in
the inital state @0, scanning square 1:

&@0 (1, 0)

b) �e �rst : + 1 squares contain the symbols ⊲, f81 ,
. . . , f8: :

(⊲ (0, 0) ∧ (f81 (1, 0) ∧ · · · ∧ (f8: (:, 0)
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c) Otherwise, the tape is empty:

∀G (: < G → (0 (G, 0))

3. Axioms describing the transition from one con�gura-
tion to the next:

For the following, let i (G,~) be the conjunction of all
sentences of the form

∀I (((I < G ∨ G < I) ∧ (f (I,~)) → (f (I,~ ′))

where f ∈ Σ. We use i (<,=) to express “other than at
square<, the tape a�er = + 1 steps is the same as a�er
= steps.”

a) For every instruction X (@8 , f) = 〈@ 9 , f ′, '〉, the
sentence:

∀G ∀~ ((&@8 (G,~) ∧ (f (G,~)) →
(&@ 9 (G ′, ~ ′) ∧ (f′ (G,~ ′) ∧ i (G,~)))

�is says that if, a�er ~ steps, the machine is in
state @8 scanning square G which contains sym-
bol f , then a�er~+1 steps it is scanning square G+
1, is in state @ 9 , square G now contains f ′, and ev-
ery square other than G contains the same symbol
as it did a�er ~ steps.
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b) For every instruction X (@8 , f) = 〈@ 9 , f ′, !〉, the
sentence:

∀G ∀~ ((&@8 (G ′, ~) ∧ (f (G ′, ~)) →
(&@ 9 (G,~ ′) ∧ (f′ (G ′, ~ ′) ∧ i (G,~))) ∧

∀~ ((&@8 (0, ~) ∧ (f (0, ~)) →
(&@ 9 (0, ~ ′) ∧ (f′ (0, ~ ′) ∧ i (0, ~)))

Take a moment to think about how this works:
now we don’t start with “if scanning square G . . . ”
but: “if scanning square G + 1 . . . ” A move to the
le� means that in the next step the machine is
scanning square G . But the square that is wri�en
on is G + 1. We do it this way since we don’t have
subtraction or a predecessor function.
Note that numbers of the form G + 1 are 1, 2, . . . ,
i.e., this doesn’t cover the case where the machine
is scanning square 0 and is supposed to move le�
(which of course it can’t—it just stays put). �at
special case is covered by the second conjunction:
it says that if, a�er~ steps, the machine is scanning
square 0 in state@8 and square 0 contains symbolf ,
then a�er ~ + 1 steps it’s still scanning square 0, is
now in state @ 9 , the symbol on square 0 is f ′, and
the squares other than square 0 contain the same
symbols they contained o�er ~ steps.
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c) For every instruction X (@8 , f) = 〈@ 9 , f ′, # 〉, the
sentence:

∀G ∀~ ((&@8 (G,~) ∧ (f (G,~)) →
(&@ 9 (G,~ ′) ∧ (f′ (G,~ ′) ∧ i (G,~)))

Let g (",F) be the conjunction of all the above sentences for
Turing machine " and inputF .

In order to express that " eventually halts, we have to
�nd a sentence that says “a�er some number of steps, the
transition function will be unde�ned.” Let - be the set of all
pairs 〈@, f〉 such that X (@, f) is unde�ned. Let U (",F) then
be the sentence

∃G ∃~ (
∨
〈@,f 〉∈-

(&@ (G,~) ∧ (f (G,~)))

If we use a Turing machine with a designated halting
state ℎ, it is even easier: then the sentence U (",F)

∃G ∃~ &ℎ (G,~)

expresses that the machine eventually halts.

Proposition 15.8. If< < : , then g (",F) �< < :

Proof. Exercise. �
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15.6 Verifying the Representation

In order to verify that our representation works, we have to
prove two things. First, we have to show that if " halts on
inputF , then g (",F) → U (",F) is valid. �en, we have to
show the converse, i.e., that if g (",F) → U (",F) is valid,
then " does in fact eventually halt when run on inputF .

�e strategy for proving these is very di�erent. For the
�rst result, we have to show that a sentence of �rst-order logic
(namely, g (",F) → U (",F)) is valid. �e easiest way to do
this is to give a derivation. Our proof is supposed to work for
all " andF , though, so there isn’t really a single sentence for
which we have to give a derivation, but in�nitely many. So
the best we can do is to prove by induction that, whatever "
and F look like, and however many steps it takes " to halt
on inputF , there will be a derivation of g (",F) → U (",F).

Naturally, our induction will proceed on the number of
steps " takes before it reaches a halting con�guration. In
our inductive proof, we’ll establish that for each step = of the
run of " on inputF , g (",F) � j (",F,=), where j (",F,=)
correctly describes the con�guration of " run on F a�er =
steps. Now if" halts on inputF a�er, say, = steps, j (",F,=)
will describe a halting con�guration. We’ll also show that
j (",F,=) � U (",F), whenever j (",F,=) describes a halt-
ing con�guration. So, if " halts on inputF , then for some =,
" will be in a halting con�guration a�er = steps. Hence,
g (",F) � j (",F,=) where j (",F,=) describes a halting
con�guration, and since in that case j (",F,=) � U (",F),
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we get that) (",F) � U (",F), i.e., that � g (",F)→U (",F).
�e strategy for the converse is very di�erent. Here

we assume that � g (",F) → U (",F) and have to prove
that " halts on input F . From the hypothesis we get that
g (",F) � U (",F), i.e., U (",F) is true in every structure
in which g (",F) is true. So we’ll describe a structure M in
which g (",F) is true: its domain will be N, and the interpre-
tation of all the &@ and (f will be given by the con�gurations
of " during a run on input F . So, e.g., M � &@ (<,=) i�
) , when run on input F for = steps, is in state @ and scan-
ning square<. Now since g (",F) � U (",F) by hypothesis,
and since M � g (",F) by construction, M � U (",F). But
M � U (",F) i� there is some = ∈ |M | = N so that " , run on
inputF , is in a halting con�guration a�er = steps.

De�nition 15.9. Let j (",F,=) be the sentence

&@ (<,=) ∧ (f0 (0, =) ∧ · · · ∧ (f: (:, =) ∧ ∀G (: < G→ (0 (G, =))

where @ is the state of " at time =, " is scanning square< at
time =, square 8 contains symbol f8 at time = for 0 ≤ 8 ≤ : and
: is the right-most non-blank square of the tape at time 0, or
the right-most square the tape head has visited a�er = steps,
whichever is greater.

Lemma 15.10. If " run on inputF is in a halting con�gura-
tion a�er = steps, then j (",F,=) � U (",F).

Proof. Suppose that " halts for inputF a�er = steps. �ere
is some state @, square<, and symbol f such that:

342



15.6. Verifying the Representation

1. A�er = steps, " is in state @ scanning square < on
which f appears.

2. �e transition function X (@, f) is unde�ned.

j (",F,=) is the description of this con�guration and will
include the clauses &@ (<,=) and (f (<,=). �ese clauses to-
gether imply U (",F):

∃G ∃~ (
∨
〈@,f 〉∈-

(&@ (G,~) ∧ (f (G,~)))

since &@′ (<,=) ∧ (f′ (<,=) �
∨
〈@,f 〉∈- (&@ (<,=) ∧ (f (<,=)),

as 〈@′, f ′〉 ∈ - . �

So if " halts for inputF , then there is some = such that
j (",F,=) � U (",F). We will now show that for any time =,
g (",F) � j (",F,=).

Lemma 15.11. For each =, if " has not halted a�er = steps,
g (",F) � j (",F,=).

Proof. Induction basis: If= = 0, then the conjuncts of j (",F, 0)
are also conjuncts of g (",F), so entailed by it.

Inductive hypothesis: If " has not halted before the =th
step, then g (",F) � j (",F,=). We have to show that (un-
less j (",F,=) describes a halting con�guration), g (",F) �
j (",F,= + 1).

Suppose = > 0 and a�er = steps, " started on F is in
state @ scanning square<. Since" does not halt a�er = steps,
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there must be an instruction of one of the following three
forms in the program of " :

1. X (@, f) = 〈@′, f ′, '〉

2. X (@, f) = 〈@′, f ′, !〉

3. X (@, f) = 〈@′, f ′, # 〉

We will consider each of these three cases in turn.

1. Suppose there is an instruction of the form (1). By
De�nition 15.7(3a), this means that

∀G ∀~ ((&@ (G,~) ∧ (f (G,~)) →
(&@′ (G ′, ~ ′) ∧ (f′ (G,~ ′) ∧ i (G,~)))

is a conjunct of g (",F). �is entails the following
sentence (universal instantiation,< for G and = for ~):

(&@ (<,=) ∧ (f (<,=)) →
(&@′ (<′, =′) ∧ (f′ (<,=′) ∧ i (<,=)).

By induction hypothesis, g (",F) � j (",F,=), i.e.,

&@ (<,=) ∧ (f0 (0, =) ∧ · · · ∧ (f: (:, =) ∧ ∀G (: < G → (0 (G, =))
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Since a�er = steps, tape square< contains f , the corre-
sponding conjunct is (f (<,=), so this entails:

&@ (<,=) ∧ (f (<,=))

We now get

&@′ (<′, =′) ∧ (f′ (<,=′) ∧
(f0 (0, =′) ∧ · · · ∧ (f: (:, =′) ∧
∀G (: < G → (0 (G, =′))

as follows: �e �rst line comes directly from the con-
sequent of the preceding conditional, by modus po-
nens. Each conjunct in the middle line—which excludes
(f< (<,=′)—follows from the corresponding conjunct
in j (",F,=) together with i (<,=).
If < < : , g (",F) ` < < : (Proposition 15.8) and by
transitivity of <, we have ∀G (: < G → < < G). If
< = : , then ∀G (: < G →< < G) by logic alone. �e
last line then follows from the corresponding conjunct
in j (",F,=), ∀G (: < G →< < G), and i (<,=). If
< < : , this already is j (",F,= + 1).
Now suppose< = : . In that case, a�er = + 1 steps, the
tape head has also visited square : +1, which now is the
right-most square visited. So j (",F,= + 1) has a new
conjunct, (0 (:

′
, =′), and the last conjuct is∀G (: ′ < G→
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(0 (G, =′)). We have to verify that these two sentences
are also implied.

We already have ∀G (: < G → (0 (G, =′)). In particular,
this gives us : < :

′→(0 (:
′
, =′). From the axiom∀G G <

G ′ we get : < :
′
. By modus ponens, (0 (:

′
, =′) follows.

Also, since g (",F) ` : < :
′
, the axiom for transitivity

of < gives us ∀G (: ′ < G → (0 (G, =′)). (We leave the
veri�cation of this as an exercise.)

2. Suppose there is an instruction of the form (2). �en,
by De�nition 15.7(3b),

∀G ∀~ ((&@ (G ′, ~) ∧ (f (G ′, ~)) →
(&@′ (G,~ ′) ∧ (f′ (G ′, ~ ′) ∧ i (G,~))) ∧

∀~ ((&@8 (0, ~) ∧ (f (0, ~)) →
(&@ 9 (0, ~ ′) ∧ (f′ (0, ~ ′) ∧ i (0, ~)))

is a conjunct of g (",F). If< > 0, then let ; = < − 1
(i.e.,< = ; + 1). �e �rst conjunct of the above sentence
entails the following:

(&@ (;
′
, =) ∧ (f (;

′
, =)) →

(&@′ (;, =′) ∧ (f′ (;
′
, =′) ∧ i (;, =))
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Otherwise, let ; = < = 0 and consider the following
sentence entailed by the second conjunct:

((&@8 (0, =) ∧ (f (0, =)) →
(&@ 9 (0, =′) ∧ (f′ (0, =′) ∧ i (0, =)))

Either sentence implies

&@′ (;, =′) ∧ (f′ (<,=′) ∧
(f0 (0, =′) ∧ · · · ∧ (f: (:, =′) ∧
∀G (: < G → (0 (G, =′))

as before. (Note that in the �rst case, ;
′ ≡ ; + 1 ≡< and

in the second case ; ≡ 0.) But this just is j (",F,= + 1).

3. Case (3) is le� as an exercise.

We have shown that for any =, g (",F) � j (",F,=). �

Lemma 15.12. If" halts on inputF , then g (",F)→U (",F)
is valid.

Proof. By Lemma 15.11, we know that, for any time =, the
description j (",F,=) of the con�guration of " at time = is
entailed by g (",F). Suppose " halts a�er : steps. It will be
scanning square<, say. �en j (",F, :) describes a halting
con�guration of" , i.e., it contains as conjuncts both&@ (<,:)
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and (f (<,:) with X (@, f) unde�ned. �us, by Lemma 15.10,
j (",F, :) � U (",F). But since g (",F) � j (",F, :), we
have g (",F) � U (",F) and therefore g (",F) → U (",F) is
valid. �

To complete the veri�cation of our claim, we also have to
establish the reverse direction: if g (",F) → U (",F) is valid,
then " does in fact halt when started on input<.

Lemma 15.13. If � g (",F) → U (",F), then " halts on in-
putF .

Proof. Consider the L" -structure M with domain N which
interprets 0 as 0, ′ as the successor function, and < as the
less-than relation, and the predicates &@ and (f as follows:

&M
@ = {〈<,=〉 | started onF , a�er = steps,

" is in state @ scanning square< }

(Mf = {〈<,=〉 | started onF , a�er = steps,
square< of " contains symbol f }

In other words, we construct the structure M so that it de-
scribes what " started on inputF actually does, step by step.
Clearly, M � g (",F). If � g (",F) → U (",F), then also
M � U (",F), i.e.,

M � ∃G ∃~ (
∨
〈@,f 〉∈-

(&@ (G,~) ∧ (f (G,~))).
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As |M | = N, there must be<, = ∈ N so that M � &@ (<,=) ∧
(f (<,=) for some @ and f such that X (@, f) is unde�ned. By
the de�nition of M, this means that " started on input F
a�er = steps is in state @ and reading symbol f , and the tran-
sition function is unde�ned, i.e., " has halted. �

15.7 �e Decision Problem is Unsolvable

�eorem 15.14. �e decision problem is unsolvable.

Proof. Suppose the decision problem were solvable, i.e., sup-
pose there were a Turing machine � of the following sort.
Whenever � is started on a tape that contains a sentencek of
�rst-order logic as input,� eventually halts, and outputs 1 i�k
is valid and 0 otherwise. �en we could solve the halting prob-
lem as follows. We construct a Turing machine � that, given
as input the number 4 of Turing machine "4 and input F ,
computes the corresponding sentence g ("4 ,F) → U ("4 ,F)
and halts, scanning the le�most square on the tape. �e ma-
chine � ⌢ � would then, given input 4 and F , �rst com-
pute g ("4 ,F) → U ("4 ,F) and then run the decision prob-
lem machine � on that input. � halts with output 1 i�
g ("4 ,F) → U ("4 ,F) is valid and outputs 0 otherwise. By
Lemma 15.13 and Lemma 15.12, g ("4 ,F) → U ("4 ,F) is valid
i� "4 halts on input F . �us, � ⌢ � , given input 4 and F
halts with output 1 i� "4 halts on input F and halts with
output 0 otherwise. In other words, � ⌢ � would solve the
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halting problem. But we know, by �eorem 15.6, that no such
Turing machine can exist. �

Problems

Problem 15.1. �e �ree Halting (3-Halt) problem is the
problem of giving a decision procedure to determine whether
or not an arbitrarily chosen Turing Machine halts for an input
of three strokes on an otherwise blank tape. Prove that the
3-Halt problem is unsolvable.

Problem 15.2. Show that if the halting problem is solvable
for Turing machine and input pairs "4 and = where 4 ≠ =,
then it is also solvable for the cases where 4 = =.

Problem 15.3. We proved that the halting problem is un-
solvable if the input is a number 4 , which identi�es a Tur-
ing machine "4 via an enumaration of all Turing machines.
What if we allow the description of Turing machines from
section 15.2 directly as input? (�is would require a larger
alphabet of course.) Can there be a Turing machine which
decides the halting problem but takes as input descriptions
of Turing machines rather than indices? Explain why or why
not.

Problem 15.4. Prove Proposition 15.8. (Hint: use induction
on : −<).
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Problem 15.5. Complete case (3) of the proof of Lemma 15.11.

Problem 15.6. Give a derivation of (f8 (8, =′) from (f8 (8, =)
and i (<,=) (assuming 8 ≠<, i.e., either 8 < < or< < 8).

Problem 15.7. Give a derivation of ∀G (: ′ < G → (0 (G, =′))
from ∀G (: < G → (0 (G, =′)), ∀G G < G ′, and ∀G ∀~ ∀I ((G <

~ ∧ ~ < I) → G < I).)
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Chapter 16

Recursive Functions

16.1 Introduction

In order to develop a mathematical theory of computability,
one has to, �rst of all, develop a model of computability. We
now think of computability as the kind of thing that computers
do, and computers work with symbols. But at the beginning
of the development of theories of computability, the paradig-
matic example of computation was numerical computation.
Mathematicians were always interested in number-theoretic
functions, i.e., functions 5 : N= → N that can be computed. So
it is not surprising that at the beginning of the theory of com-
putability, it was such functions that were studied. �e most
familiar examples of computable numerical functions, such as

353



16. Recursive Functions

addition, multiplication, exponentiation (of natural numbers)
share an interesting feature: they can be de�ned recursively.
It is thus quite natural to a�empt a general de�nition of com-
putable function on the basis of recursive de�nitions. Among
the many possible ways to de�ne number-theoretic functions
recursively, one particulalry simple pa�ern of de�nition here
becomes central: so-called primitive recursion.

In addition to computable functions, we might be inter-
ested in computable sets and relations. A set is computable if
we can compute the answer to whether or not a given number
is an element of the set, and a relation is computable i� we
can compute whether or not a tuple 〈=1, . . . , =:〉 is an element
of the relation. By considering the characteristic function of
a set or relation, discussion of computable sets and relations
can be subsumed under that of computable functions. �us
we can de�ne primitive recursive relations as well, e.g., the
relation “= evenly divides<” is a primitive recursive relation.

Primitive recursive functions—those that can be de�ned
using just primitive recursion—are not, however, the only
computable number-theoretic functions. Many generaliza-
tions of primitive recursion have been considered, but the
most powerful and widely-accepted additional way of com-
puting functions is by unbounded search. �is leads to the
de�nition of partial recursive functions, and a related de�nition
to general recursive functions. General recursive functions are
computable and total, and the de�nition characterizes exactly
the partial recursive functions that happen to be total. Recur-
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sive functions can simulate every other model of computation
(Turing machines, lambda calculus, etc.) and so represent one
of the many accepted models of computation.

16.2 Primitive Recursion

A characteristic of the natural numbers is that every natu-
ral number can be reached from 0 by applying the successor
operation +1 �nitely many times—any natural number is ei-
ther 0 or the successor of . . . the successor of 0. One way to
specify a function 5 : N → N that makes use of this fact is
this: (a) specify what the value of 5 is for argument 0, and
(b) also specify how to, given the value of 5 (G), compute the
value of 5 (G + 1). For (a) tells us directly what 5 (0) is, so 5
is de�ned for 0. Now, using the instruction given by (b) for
G = 0, we can compute 5 (1) = 5 (0 + 1) from 5 (0). Using the
same instructions for G = 1, we compute 5 (2) = 5 (1+ 1) from
5 (1), and so on. For every natural number G , we’ll eventually
reach the step where we de�ne 5 (G) from 5 (G + 1), and so
5 (G) is de�ned for all G ∈ N.

For instance, suppose we specify ℎ : N→ N by the follow-
ing two equations:

ℎ(0) = 1
ℎ(G + 1) = 2 · ℎ(G)

If we already know how to multiply, then these equations give
us the information required for (a) and (b) above. Successively
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the second equation, we get that

ℎ(1) = 2 · ℎ(0) = 2,
ℎ(2) = 2 · ℎ(1) = 2 · 2,
ℎ(3) = 2 · ℎ(2) = 2 · 2 · 2,

...

We see that the function ℎ we have speci�ed is ℎ(G) = 2G .

�e characteristic feature of the natural numbers guaran-
tees that there is only one function 3 that meets these two
criteria. A pair of equations like these is called a de�nition by
primitive recursion of the function 3 . It is so-called because
we de�ne 5 “recursively,” i.e., the de�nition, speci�cally the
second equation, involves 5 itself on the right-hand-side. It
is “primitive” because in de�ning 5 (G + 1) we only use the
value 5 (G), i.e., the immediately preceding value. �is is the
simplest way of de�ning a function on N recursively.

We can de�ne even more fundamental functions like addi-
tion and multiplication by primitive recursion. In these cases,
however, the functions in question are 2-place. We �x one
of the argument places, and use the other for the recursion.
E.g, to de�ne add(G,~) we can �x G and de�ne the value �rst
for ~ = 0 and then for ~ + 1 in terms of ~. Since G is �xed, it
will appear on the le� and on the right side of the de�ning
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equations.

add(G, 0) = G
add(G,~ + 1) = add(G,~) + 1

�ese equations specify the value of add for all G and ~. To
�nd add(2, 3), for instance, we apply the de�ning equations
for G = 2, using the �rst to �nd add(2, 0) = 2, then using the
second to successively �nd add(2, 1) = 2 + 1 = 3, add(2, 2) =
3 + 1 = 4, add(2, 3) = 4 + 1 = 5.

In the de�nition of add we used + on the right-hand-side
of the second equation, but only to add 1. In other words,
we used the successor function succ(I) = I + 1 and applied
it to the previous value add(G,~) to de�ne add(G,~ + 1). So
we can think of the recursive de�nition as given in terms
of a single function which we apply to the previous value.
However, it doesn’t hurt—and sometimes is necessary—to
allow the function to depend not just on the previous value
but also on G and ~. Consider:

mult(G, 0) = 0
mult(G,~ + 1) = add(mult(G,~), G)

�is is a primitive recursive de�nition of a function mult by ap-
plying the function add to both the preceding value mult(G,~)
and the �rst argumentG . It also de�nes the function mult(G,~)
for all arguments G and ~. For instance, mult(2, 3) is de-
termined by successively computing mult(2, 0), mult(2, 1),
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mult(2, 2), and mult(2, 3):

mult(2, 0) = 0
mult(2, 1) = mult(2, 0 + 1) = add(mult(2, 0), 2) = add(0, 2) = 2
mult(2, 2) = mult(2, 1 + 1) = add(mult(2, 1), 2) = add(2, 2) = 4
mult(2, 3) = mult(2, 2 + 1) = add(mult(2, 2), 2) = add(4, 2) = 6

�e general pa�ern then is this: to give a primitive re-
cursive de�nition of a function ℎ(G0, . . . , G:−1, ~), we provide
two equations. �e �rst de�nes the value of ℎ(G0, . . . , G:−1, 0)
without reference to 5 . �e second de�nes the value of
ℎ(G0, . . . , G:−1, ~ + 1) in terms of ℎ(G0, . . . , G:−1, ~), the other
arguments G0, . . . , G:−1, and ~. Only the immediately preced-
ing value of ℎ may be used in that second equation. If we
think of the operations given by the right-hand-sides of these
two equations as themselves being functions 5 and 6, then
the pa�ern to de�ne a new function ℎ by primitive recursion
is this:

ℎ(G0, . . . , G:−1, 0) = 5 (G0, . . . , G:−1)
ℎ(G0, . . . , G:−1, ~ + 1) = 6(G0, . . . , G:−1, ~, ℎ(G0, . . . , G:−1, ~))

In the case of add, we have : = 0 and 5 (G0) = G0 (the identity
function), and 6(G0, ~, I) = I + 1 (the 3-place function that
returns the successor of its third argument):

add(G0, 0) = 5 (G0) = G0

add(G0, ~ + 1) = 6(G0, ~, add(G0, ~)) = succ(add(G0, ~))

358



16.3. Composition

In the case of mult, we have 5 (G0) = 0 (the constant function
always returning 0) and 6(G0, ~, I) = add(I, G0) (the 3-place
function that returns the sum of its last and �rst argument):

mult(G0, 0) = 5 (G0) = 0
mult(G0, ~ + 1) = 6(G0, ~,mult(G0, ~)) = add(mult(G0, ~), G0)

16.3 Composition

If 5 and 6 are two one-place functions of natural numbers, we
can compose them: ℎ(G) = 6(5 (G)). �e new function ℎ(G)
is then de�ned by composition from the functions 5 and 6.
We’d like to generalize this to functions of more than one
argument.

Here’s one way of doing this: suppose 5 is a :-place func-
tion, and 60, . . . , 6:−1 are : functions which are all =-place.
�en we can de�ne a new =-place function ℎ as follows:

ℎ(G0, . . . , G=−1) = 5 (60 (G0, . . . , G=−1), . . . , 6:−1 (G0, . . . , G=−1))

If 5 and all68 are computable, so isℎ: To computeℎ(G0, . . . , G=−1),
�rst compute the values ~8 = 68 (G0, . . . , G=−1) for each 8 =

0, . . . , : − 1. �en feed these values into 5 to compute
ℎ(G0, . . . , G:−1) = 5 (~0, . . . , ~:−1).

�is may seem like an overly restrictive characterization of
what happens when we compute a new function using some
existing ones. For one thing, sometimes we do not use all
the arguments of a function, as when we de�ned 6(G,~, I) =
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succ(I) for use in the primitive recursive de�nition of add.
Suppose we are allowed use of the following functions:

%=8 (G0, . . . , G=−1) = G8

�e functions %:8 are called projection functions: %=8 is an =-
place function. �en 6 can be de�ned by

6(G,~, I) = succ(%3
2 ).

Here the role of 5 is played by the 1-place function succ, so
: = 1. And we have one 3-place function %3

2 which plays the
role of 60. �e result is a 3-place function that returns the
successor of the third argument.

�e projection functions also allow us to de�ne new func-
tions by reordering or identifying arguments. For instance,
the function ℎ(G) = add(G, G) can be de�ned by

ℎ(G0) = add(%1
0 (G0), %1

0 (G0)) .

Here : = 2, = = 1, the role of 5 (~0, ~1) is played by add, and
the roles of 60 (G0) and 61 (G0) are both played by %1

0 (G0), the
one-place projection function (aka the identity function).

If 5 (~0, ~1) is a function we already have, we can de�ne
the function ℎ(G0, G1) = 5 (G1, G0) by

ℎ(G0, G1) = 5 (%2
1 (G0, G1), %2

0 (G0, G1)) .

Here : = 2, = = 2, and the roles of 60 and 61 are played by %2
1

and %2
0 , respectively.

360



16.4. Primitive Recursion Functions

You may also worry that 60, . . . , 6:−1 are all required to
have the same arity =. (Remember that the arity of a function
is the number of arguments; an =-place function has arity =.)
But adding the projection functions provides the desired �exi-
bility. For example, suppose 5 and 6 are 3-place functions and
ℎ is the 2-place function de�ned by

ℎ(G,~) = 5 (G, 6(G, G,~), ~).

�e de�nition of ℎ can be rewri�en with the projection func-
tions, as

ℎ(G,~) = 5 (%2
0 (G,~), 6(%2

0 (G,~), %2
0 (G,~), %2

1 (G,~)), %2
1 (G,~)) .

�en ℎ is the composition of 5 with %2
0 , ; , and %2

1 , where

; (G,~) = 6(%2
0 (G,~), %2

0 (G,~), %2
1 (G,~)),

i.e., ; is the composition of 6 with %2
0 , %2

0 , and %2
1 .

16.4 Primitive Recursion Functions

Let us record again how we can de�ne new functions from
existing ones using primitive recursion and composition.

De�nition 16.1. Suppose 5 is a :-place function (: ≥ 1) and
6 is a (: + 2)-place function. �e function de�ned by primitive
recursion from 5 and 6 is the (: + 1)-place function ℎ de�ned

361



16. Recursive Functions

by the equations

ℎ(G0, . . . , G:−1, 0) = 5 (G0, . . . , G:−1)
ℎ(G0, . . . , G:−1, ~ + 1) = 6(G0, . . . , G:−1, ~, ℎ(G0, . . . , G:−1, ~))

De�nition 16.2. Suppose 5 is a :-place function, and 60, . . . ,
6:−1 are : functions which are all =-place. �e function de-
�ned by composition from 5 and 60, . . . , 6:−1 is the =-place
function ℎ de�ned by

ℎ(G0, . . . , G=−1) = 5 (60 (G0, . . . , G=−1), . . . , 6:−1 (G0, . . . , G=−1)).

In addition to succ and the projection functions

%=8 (G0, . . . , G=−1) = G8 ,

for each natural number = and 8 < =, we will include among
the primitive recursive functions the function zero(G) = 0.

De�nition 16.3. �e set of primitive recursive functions is
the set of functions from N= to N, de�ned inductively by the
following clauses:

1. zero is primitive recursive.

2. succ is primitive recursive.

3. Each projection function %=8 is primitive recursive.
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4. If 5 is a :-place primitive recursive function and 60,
. . . , 6:−1 are =-place primitive recursive functions, then
the composition of 5 with 60, . . . , 6:−1 is primitive re-
cursive.

5. If 5 is a:-place primitive recursive function and6 is a:+
2-place primitive recursive function, then the function
de�ned by primitive recursion from 5 and 6 is primitive
recursive.

Put more concisely, the set of primitive recursive functions
is the smallest set containing zero, succ, and the projection
functions %=9 , and which is closed under composition and
primitive recursion.

Another way of describing the set of primitive recursive
functions is by de�ning it in terms of “stages.” Let (0 denote
the set of starting functions: zero, succ, and the projections.
�ese are the primitive recursive functions of stage 0. Once a
stage (8 has been de�ned, let (8+1 be the set of all functions you
get by applying a single instance of composition or primitive
recursion to functions already in (8 . �en

( =
⋃
8∈N

(8

is the set of all primitive recursive functions
Let us verify that add is a primitive recursive function.

Proposition 16.4. �e addition function add(G,~) = G + ~ is
primitive recursive.
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Proof. We already have a primitive recursive de�nition of add
in terms of two functions 5 and 6 which matches the format
of De�nition 16.1:

add(G0, 0) = 5 (G0) = G0

add(G0, ~ + 1) = 6(G0, ~, add(G0, ~)) = succ(add(G0, ~))

So add is primitive recursive provided 5 and 6 are as well.
5 (G0) = G0 = %1

0 (G0), and the projection functions count as
primitive recursive, so 5 is primitive recursive. �e function
6 is the three-place function 6(G0, ~, I) de�ned by

6(G0, ~, I) = succ(I).

�is does not yet tell us that 6 is primitive recursive, since 6
and succ are not quite the same function: succ is one-place,
and 6 has to be three-place. But we can de�ne 6 “o�cially” by
composition as

6(G0, ~, I) = succ(%3
2 (G0, ~, I))

Since succ and %3
2 count as primitive recursive functions, 6

does as well, since it can be de�ned by composition from
primitive recursive functions. �

Proposition 16.5. �e multiplication function mult(G,~) =
G · ~ is primitive recursive.

Proof. Exercise. �
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Example 16.6. Here’s our very �rst example of a primitive
recursive de�nition:

ℎ(0) = 1
ℎ(~ + 1) = 2 · ℎ(~) .

�is function cannot �t into the form required by De�ni-
tion 16.1, since : = 0. �e de�nition also involves the con-
stants 1 and 2. To get around the �rst problem, let’s introduce
a dummy argument and de�ne the function ℎ′:

ℎ′(G0, 0) = 5 (G0) = 1
ℎ′(G0, ~ + 1) = 6(G0, ~, ℎ

′(G0, ~)) = 2 · ℎ′(G0, ~).

�e function 5 (G0) = 1 can be de�ned from succ and zero by
composition: 5 (G0) = succ(zero(G0)). �e function 6 can be
de�ned by composition from 6′(I) = 2 · I and projections:

6(G0, ~, I) = 6′(%3
2 (G0, ~, I))

and 6′ in turn can be de�ned by composition as

6′(I) = mult(6′′(I), %1
0 (I))

and

6′′(I) = succ(5 (I)),
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where 5 is as above: 5 (I) = succ(zero(I)). Now that we have
ℎ′we can use composition again to letℎ(~) = ℎ′(%1

0 (~), %1
0 (~)).

�is shows thatℎ can be de�ned from the basic functions using
a sequence of compositions and primitive recursions, so ℎ is
primitive recursive.

16.5 Primitive Recursion Notations

One advantage to having the precise inductive description
of the primitive recursive functions is that we can be sys-
tematic in describing them. For example, we can assign a
“notation” to each such function, as follows. Use symbols
zero, succ, and %=8 for zero, successor, and the projections.
Now suppose 5 is de�ned by composition from a :-place
function ℎ and =-place functions 60, . . . , 6:−1, and we have as-
signed notations � , �0, . . . ,�:−1 to the la�er functions. �en,
using a new symbol Comp:,= , we can denote the function
5 by Comp:,= [�,�0, . . . ,�:−1]. For the functions de�ned by
primitive recursion, we can use analogous notations of the
form Rec: [�,� ], where : +1 is the arity of the function being
de�ned. With this setup, we can denote the addition function
by

Rec2 [%1
0 ,Comp1,3 [succ, %3

2 ]] .

Having these notations sometimes proves useful.
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16.6 Primitive Recursive Functions are
Computable

Suppose a function ℎ is de�ned by primitive recursion

ℎ( ®G, 0) = 5 ( ®G)
ℎ( ®G,~ + 1) = 6( ®G,~, ℎ( ®G,~))

and suppose the functions 5 and 6 are computable. (We use
®G to abbreviate G0, . . . , G:−1.) �en ℎ( ®G, 0) can obviously be
computed, since it is just 5 ( ®G) which we assume is computable.
ℎ( ®G, 1) can then also be computed, since 1 = 0+1 and soℎ( ®G, 1)
is just

ℎ( ®G, 1) = 6( ®G, 0, ℎ( ®G, 0)) = 6( ®G, 0, 5 ( ®G)) .

We can go on in this way and compute

ℎ( ®G, 2) = 6( ®G, 1, ℎ( ®G, 1)) = 6( ®G, 1, 6( ®G, 0, 5 ( ®G)))
ℎ( ®G, 3) = 6( ®G, 2, ℎ( ®G, 2)) = 6( ®G, 2, 6( ®G, 1, 6( ®G, 0, 5 ( ®G))))
ℎ( ®G, 4) = 6( ®G, 3, ℎ( ®G, 3)) = 6( ®G, 3, 6( ®G, 2, 6( ®G, 1, 6( ®G, 0, 5 ( ®G)))))

...

�us, to compute ℎ( ®G,~) in general, successively compute
ℎ( ®G, 0), ℎ( ®G, 1), . . . , until we reach ℎ( ®G,~).

�us, a primitive recursive de�nition yields a new com-
putable function if the functions 5 and6 are computable. Com-
position of functions also results in a computable function if
the functions 5 and 68 are computable.
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Since the basic functions zero, succ, and %=8 are com-
putable, and composition and primitive recursion yield com-
putable functions from computable functions, this means that
every primitive recursive function is computable.

16.7 Examples of Primitive Recursive
Functions

We already have some examples of primitive recursive func-
tions: the addition and multiplication functions add and mult.
�e identity function id(G) = G is primitive recursive, since
it is just %1

0 . �e constant functions const= (G) = = are primi-
tive recursive since they can be de�ned from zero and succ
by successive composition. �is is useful when we want to
use constants in primitive recursive de�nitions, e.g., if we
want to de�ne the function 5 (G) = 2 · G can obtain it by
composition from const= (G) and multiplication as 5 (G) =

mult(const2 (G), %1
0 (G)). We’ll make use of this trick from now

on.

Proposition 16.7. �e exponentiation function exp(G,~) =
G~ is primitive recursive.

Proof. We can de�ne exp primitive recursively as

exp(G, 0) = 1
exp(G,~ + 1) = mult(G, exp(G,~)) .
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Strictly speaking, this is not a recursive de�nition from primi-
tive recursive functions. O�cially, though, we have:

exp(G, 0) = 5 (G)
exp(G,~ + 1) = 6(G,~, exp(G,~)) .

where

5 (G) = succ(zero(G)) = 1
6(G,~, I) = mult(%3

0 (G,~, I), %3
2 (G,~, I)) = G · I

and so 5 and 6 are de�ned from primitive recursive functions
by composition. �

Proposition 16.8. �e predecessor function pred(~) de�ned
by

pred(~) =
{

0 if ~ = 0
~ − 1 otherwise

is primitive recursive.

Proof. Note that

pred(0) = 0 and
pred(~ + 1) = ~.

�is is almost a primitive recursive de�nition. It does not,
strictly speaking, �t into the pa�ern of de�nition by primitive
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recursion, since that pa�ern requires at least one extra argu-
ment G . It is also odd in that it does not actually use pred(~) in
the de�nition of pred(~+1). But we can �rst de�ne pred′(G,~)
by

pred′(G, 0) = zero(G) = 0,
pred′(G,~ + 1) = %3

1 (G,~, pred′(G,~)) = ~.

and then de�ne pred from it by composition, e.g., as pred(G) =
pred′(zero(G), %1

0 (G)). �

Proposition 16.9. �e factorial function fac(G) = G ! = 1 · 2 ·
3 · · · · · G is primitive recursive.

Proof. �e obvious primitive recursive de�nition is

fac(0) = 1
fac(~ + 1) = fac(~) · (~ + 1).

O�cially, we have to �rst de�ne a two-place function ℎ

ℎ(G, 0) = const1 (G)
ℎ(G,~) = 6(G,~, ℎ(G,~))

where6(G,~, I) = mult(%3
2 (G,~, I), succ(%3

1 (G,~, I))) and then
let

fac(~) = ℎ(%1
0 (~), %1

0 (~))
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From now on we’ll be a bit more laissez-faire and not give the
o�cial de�nitions by composition and primitive recursion.�

Proposition 16.10. Truncated subtraction, G ¤− ~, de�ned by

G ¤− ~ =

{
0 if G > ~

G − ~ otherwise

is primitive recursive.

Proof. We have:

G ¤− 0 = G

G ¤− (~ + 1) = pred(G ¤− ~) �

Proposition 16.11. �e distance between G and ~, |G − ~ |, is
primitive recursive.

Proof. We have |G − ~ | = (G ¤−~) + (~ ¤−G), so the distance can
be de�ned by composition from + and ¤−, which are primitive
recursive. �

Proposition 16.12. �e maximum of G and ~, max(G,~), is
primitive recursive.

Proof. We can de�ne max(G,~) by composition from + and ¤−
by

max(G,~) = G + (~ ¤− G) .
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If G is the maximum, i.e., G ≥ ~, then~ ¤−G = 0, so G + (~ ¤−G) =
G + 0 = G . If ~ is the maximum, then ~ ¤− G = ~ − G , and so
G + (~ ¤− G) = G + (~ − G) = ~. �

Proposition 16.13. �e minimum of G and ~, min(G,~), is
primitive recursive.

Proof. Exercise. �

Proposition 16.14. �e set of primitive recursive functions is
closed under the following two operations:

1. Finite sums: if 5 ( ®G, I) is primitive recursive, then so is the
function

6( ®G,~) =
~∑
I=0

5 ( ®G, I).

2. Finite products: if 5 ( ®G, I) is primitive recursive, then so
is the function

ℎ( ®G,~) =
~∏
I=0

5 ( ®G, I).

Proof. For example, �nite sums are de�ned recursively by the
equations

6( ®G, 0) = 5 ( ®G, 0)
6( ®G,~ + 1) = 6( ®G,~) + 5 ( ®G,~ + 1). �
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16.8 Primitive Recursive Relations

De�nition 16.15. A relation '( ®G) is said to be primitive re-
cursive if its characteristic function,

j' ( ®G) =
{

1 if '( ®G)
0 otherwise

is primitive recursive.

In other words, when one speaks of a primitive recur-
sive relation '( ®G), one is referring to a relation of the form
j' ( ®G) = 1, where j' is a primitive recursive function which,
on any input, returns either 1 or 0. For example, the relation
IsZero(G), which holds if and only if G = 0, corresponds to
the function jIsZero, de�ned using primitive recursion by

jIsZero (0) = 1, jIsZero (G + 1) = 0.

It should be clear that one can compose relations with
other primitive recursive functions. So the following are also
primitive recursive:

1. �e equality relation, G = ~, de�ned by IsZero(|G − ~ |)

2. �e less-than relation, G ≤ ~, de�ned by IsZero(G ¤− ~)

Proposition 16.16. �e set of primitive recursive relations is
closed under boolean operations, that is, if % ( ®G) and & ( ®G) are
primitive recursive, so are
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1. ¬% ( ®G)

2. % ( ®G) ∧& ( ®G)

3. % ( ®G) ∨& ( ®G)

4. % ( ®G) →& ( ®G)

Proof. Suppose % ( ®G) and & ( ®G) are primitive recursive, i.e.,
their characteristic functions j% and j& are. We have to
show that the characteristic functions of ¬% ( ®G), etc., are also
primitive recursive.

j¬% ( ®G) =
{

0 if j% ( ®G) = 1
1 otherwise

We can de�ne j¬% ( ®G) as 1 ¤− j% ( ®G).

j%∧& ( ®G) =
{

1 if j% ( ®G) = j& ( ®G) = 1
0 otherwise

We can de�ne j%∧& ( ®G) as j% ( ®G)·j& ( ®G) or as min(j% ( ®G), j& ( ®G)).
Similarly, j%∨& ( ®G) = max(j% ( ®G), j& ( ®G)) and j%→& ( ®G) =

max(1 ¤− j% ( ®G), j& ( ®G)). �

Proposition 16.17. �e set of primitive recursive relations is
closed under bounded quanti�cation, i.e., if '( ®G, I) is a primitive
recursive relation, then so are the relations (∀I < ~) '( ®G, I)
and (∃I < ~) '( ®G, I).

((∀I < ~) '( ®G, I) holds of ®G and ~ if and only if '( ®G, I)
holds for every I less than~, and similarly for (∃I < ~) '( ®G, I).)
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Proof. By convention, we take (∀I < 0) '( ®G, I) to be true
(for the trivial reason that there are no I less than 0) and
(∃I < 0) '( ®G, I) to be false. A universal quanti�er functions
just like a �nite product or iterated minimum, i.e., if % ( ®G,~) ⇔
(∀I < ~) '( ®G, I) then j% ( ®G,~) can be de�ned by

j% ( ®G, 0) = 1
j% ( ®G,~ + 1) = min(j% ( ®G,~), j' ( ®G,~))) .

Bounded existential quanti�cation can similarly be de�ned us-
ing max. Alternatively, it can be de�ned from bounded univer-
sal quanti�cation, using the equivalence (∃I < ~) '( ®G, I) ↔
¬(∀I < ~) ¬'( ®G, I). Note that, for example, a bounded
quanti�er of the form (∃G ≤ ~) . . . G . . . is equivalent to
(∃G < ~ + 1) . . . G . . . . �

Another useful primitive recursive function is the condi-
tional function, cond(G,~, I), de�ned by

cond(G,~, I) =
{
~ if G = 0
I otherwise.

�is is de�ned recursively by

cond(0, ~, I) = ~, cond(G + 1, ~, I) = I.

One can use this to justify de�nitions of primitive recursive
functions by cases from primitive recursive relations:
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Proposition 16.18. If 60 ( ®G), . . . , 6< ( ®G) are primitive recur-
sive functions, and '0 ( ®G), . . . , '<−1 ( ®G) are primitive recursive
relations, then the function 5 de�ned by

5 ( ®G) =



60 ( ®G) if '0 ( ®G)
61 ( ®G) if '1 ( ®G) and not '0 ( ®G)
...

6<−1 ( ®G) if '<−1 ( ®G) and none of the previous hold
6< ( ®G) otherwise

is also primitive recursive.

Proof. When< = 1, this is just the function de�ned by

5 ( ®G) = cond(j¬'0 ( ®G), 60 ( ®G), 61 ( ®G)) .

For< greater than 1, one can just compose de�nitions of this
form. �

16.9 Bounded Minimization

It is o�en useful to de�ne a function as the least number sat-
isfying some property or relation % . If % is decidable, we can
compute this function simply by trying out all the possible
numbers, 0, 1, 2, . . . , until we �nd the least one satisfying % .
�is kind of unbounded search takes us out of the realm of
primitive recursive functions. However, if we’re only inter-
ested in the least number less than some independently given
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bound, we stay primitive recursive. In other words, and a
bit more generally, suppose we have a primitive recursive
relation '(G, I). Consider the function that maps G and ~ to
the least I < ~ such that '(G, I). It, too, can be computed, by
testing whether '(G, 0), '(G, 1), . . . , '(G,~ − 1). But why is it
primitive recursive?

Proposition 16.19. If '( ®G, I) is primitive recursive, so is the
function<' ( ®G,~) which returns the least I less than ~ such that
'( ®G, I) holds, if there is one, and ~ otherwise. We will write the
function<' as

(min I < ~) '( ®G, I),

Proof. Note than there can be no I < 0 such that '( ®G, I) since
there is no I < 0 at all. So<' ( ®G, 0) = 0.

In case the bound is of the form ~ + 1 we have three
cases: (a) �ere is a I < ~ such that '( ®G, I), in which case
<' ( ®G,~ + 1) =<' ( ®G,~). (b) �ere is no such I < ~ but '( ®G,~)
holds, then<' ( ®G,~ + 1) = ~. (c) �ere is no I < ~ + 1 such
that '( ®G, I), then<' (®I,~ + 1) = ~ + 1. So,

<' ( ®G, 0) = 0

<' ( ®G,~ + 1) =


<' ( ®G,~) if<' ( ®G,~) ≠ ~
~ if<' ( ®G,~) = ~ and '( ®G,~)
~ + 1 otherwise.

Note that there is a I < ~ such that '( ®G, I) i�<' ( ®G,~) ≠ ~.�
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16.10 Primes

Bounded quanti�cation and bounded minimization provide us
with a good deal of machinery to show that natural functions
and relations are primitive recursive. For example, consider
the relation “G divides ~”, wri�en G | ~. �e relation G | ~
holds if division of ~ by G is possible without remainder, i.e.,
if ~ is an integer multiple of G . (If it doesn’t hold, i.e., the
remainder when dividing G by ~ is > 0, we write G - ~.) In
other words, G | ~ i� for some I, G ·I = ~. Obviously, any such
I, if it exists, must be ≤ ~. So, we have that G | ~ i� for some
I ≤ ~, G · I = ~. We can de�ne the relation G | ~ by bounded
existential quanti�cation from = and multiplication by

G | ~ ⇔ (∃I ≤ ~) (G · I) = ~.

We’ve thus shown that G | ~ is primitive recursive.
A natural number G is prime if it is neither 0 nor 1 and is

only divisible by 1 and itself. In other words, prime numbers
are such that, whenever ~ | G , either ~ = 1 or ~ = G . To test if
G is prime, we only have to check if ~ | G for all ~ ≤ G , since
if ~ > G , then automatically ~ - G . So, the relation Prime(G),
which holds i� G is prime, can be de�ned by

Prime(G) ⇔ G ≥ 2 ∧ (∀~ ≤ G) (~ | G → ~ = 1 ∨ ~ = G)

and is thus primitive recursive.
�e primes are 2, 3, 5, 7, 11, etc. Consider the function ? (G)

which returns the Gth prime in that sequence, i.e., ? (0) = 2,
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? (1) = 3, ? (2) = 5, etc. (For convenience we will o�en write
? (G) as ?G (?0 = 2, ?1 = 3, etc.)

If we had a function nextPrime(x), which returns the �rst
prime number larger than G , ? can be easily de�ned using
primitive recursion:

? (0) = 2
? (G + 1) = nextPrime(? (G))

Since nextPrime(G) is the least ~ such that ~ > G and ~ is
prime, it can be easily computed by unbounded search. But
it can also be de�ned by bounded minimization, thanks to a
result due to Euclid: there is always a prime number between
G and G ! + 1.

nextPrime(x) = (min ~ ≤ G ! + 1) (~ > G ∧ Prime(~)) .

�is shows, that nextPrime(G) and hence ? (G) are (not just
computable but) primitive recursive.

(If you’re curious, here’s a quick proof of Euclid’s theorem.
Suppose ?= is the largest prime ≤ G and consider the product
? = ?0 · ?1 · · · · · ?= of all primes ≤ G . Either ? + 1 is prime or
there is a prime between G and ? + 1. Why? Suppose ? + 1 is
not prime. �en some prime number @ | ? + 1 where @ < ? + 1.
None of the primes ≤ G divide ? + 1. (By de�nition of ? , each
of the primes ?8 ≤ G divides ? , i.e., with remainder 0. So, each
of the primes ?8 ≤ G divides ? + 1 with remainder 1, and so
?8 - ? + 1.) Hence, @ is a prime > G and < ? + 1. And ? ≤ G !,
so there is a prime > G and ≤ G ! + 1.)
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16.11 Sequences

�e set of primitive recursive functions is remarkably robust.
But we will be able to do even more once we have developed a
adequate means of handling sequences. We will identify �nite
sequences of natural numbers with natural numbers in the
following way: the sequence 〈00, 01, 02, . . . , 0:〉 corresponds
to the number

?
00+1
0 · ?01+1

1 · ?02+1
2 · · · · · ?0:+1

:
.

We add one to the exponents to guarantee that, for example,
the sequences 〈2, 7, 3〉 and 〈2, 7, 3, 0, 0〉 have distinct numeric
codes. We can take both 0 and 1 to code the empty sequence;
for concreteness, let Λ denote 0.

�e reason that this coding of sequences works is the so-
called Fundamental �eorem of Arithmetic: every natural
number = ≥ 2 can be wri�en in one and only one way in the
form

= = ?
00
0 · ?

01
1 · · · · · ?

0:
:

with0: ≥ 1. �is guarantees that the mapping 〈〉(00, . . . , 0: ) =
〈00, . . . , 0:〉 is injective: di�erent sequences are mapped to
di�erent numbers; to each number only at most one sequence
corresponds.

We’ll now show that the operations of determining the
length of a sequence, determining its 8th element, appending
an element to a sequence, and concatenating two sequences,
are all primitive recursive.
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Proposition 16.20. �e function len(B), which returns the
length of the sequence B , is primitive recursive.

Proof. Let '(8, B) be the relation de�ned by

'(8, B) i� ?8 | B ∧ ?8+1 - B .

' is clearly primitive recursive. Whenever B is the code of a
non-empty sequence, i.e.,

B = ?
00+1
0 · · · · · ?0:+1

:
,

'(8, B) holds if ?8 is the largest prime such that ?8 | B , i.e., 8 = : .
�e length of B thus is 8 + 1 i� ?8 is the largest prime that
divides B , so we can let

len(B) =
{

0 if B = 0 or B = 1
1 + (min 8 < B) '(8, B) otherwise

We can use bounded minimization, since there is only one 8
that satis�es '(B, 8) when B is a code of a sequence, and if 8
exists it is less than B itself. �

Proposition 16.21. �e function append(B, 0), which returns
the result of appending 0 to the sequence B , is primitive recursive.

Proof. append can be de�ned by:

append(B, 0) =
{

20+1 if B = 0 or B = 1
B · ?0+1len(B) otherwise. �
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Proposition 16.22. �e function element(B, 8), which returns
the 8th element of B (where the initial element is called the 0th),
or 0 if 8 is greater than or equal to the length of B , is primitive
recursive.

Proof. Note that 0 is the 8th element of B i� ?0+18 is the largest
power of ?8 that divides B , i.e., ?0+18 | B but ?0+28 - B . So:

element(B, 8) =
{

0 if 8 ≥ len(B)
(min 0 < B) (?0+28 - B) otherwise. �

Instead of using the o�cial names for the functions de-
�ned above, we introduce a more compact notation. We will
use (B)8 instead of element(B, 8), and 〈B0, . . . , B:〉 to abbreviate

append(append(. . . append(Λ, B0) . . . ), B: ).

Note that if B has length : , the elements of B are (B)0, . . . , (B):−1.

Proposition 16.23. �e function concat(B, C), which concate-
nates two sequences, is primitive recursive.

Proof. We want a function concat with the property that

concat(〈00, . . . , 0:〉, 〈10, . . . , 1; 〉) = 〈00, . . . , 0: , 10, . . . , 1; 〉.

We’ll use a “helper” function hconcat(B, C, =) which concate-
nates the �rst = symbols of C to B . �is function can be de�ned
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by primitive recursion as follows:

hconcat(B, C, 0) = B
hconcat(B, C, = + 1) = append(hconcat(B, C, =), (C)=)

�en we can de�ne concat by

concat(B, C) = hconcat(B, C, len(C)). �

We will write B ⌢ C instead of concat(B, C).
It will be useful for us to be able to bound the numeric code

of a sequence in terms of its length and its largest element.
Suppose B is a sequence of length : , each element of which
is less than or equal to some number G . �en B has at most :
prime factors, each at most ?:−1, and each raised to at most
G + 1 in the prime factorization of B . In other words, if we
de�ne

sequenceBound(G, :) = ?: · (G+1)
:−1 ,

then the numeric code of the sequence B described above is at
most sequenceBound(G, :).

Having such a bound on sequences gives us a way of
de�ning new functions using bounded search. For example,
we can de�ne concat using bounded search. All we need to do
is write down a primitive recursive speci�cation of the object
(number of the concatenated sequence) we are looking for,
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and a bound on how far to look. �e following works:

concat(B, C) = (min E < sequenceBound(B + C, len(B) + len(C)))
(len(E) = len(B) + len(C) ∧
(∀8 < len(B)) ((E)8 = (B)8 ) ∧
(∀9 < len(C)) ((E)len(B)+9 = (C) 9 ))

Proposition 16.24. �e function subseq(B, 8, =) which returns
the subsequence of B of length = beginning at the 8th element, is
primitive recursive.

Proof. Exercise. �

16.12 Trees

Sometimes it is useful to represent trees as natural numbers,
just like we can represent sequences by numbers and proper-
ties of and operations on them by primitive recursive relations
and functions on their codes. We’ll use sequences and their
codes to do this. A tree can be either a single node (possibly
with a label) or else a node (possibly with a label) connected
to a number of subtrees. �e node is called the root of the tree,
and the subtrees it is connected to its immediate subtrees.

We code trees recursively as a sequence 〈:, 31, . . . , 3:〉,
where : is the number of immediate subtrees and 31, . . . , 3:
the codes of the immediate subtrees. If the nodes have la-
bels, they can be included a�er the immediate subtrees. So
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a tree consisting just of a single node with label ; would be
coded by 〈0, ;〉, and a tree consisting of a root (labelled ;1)
connected to two single nodes (labelled ;2, ;3) would be coded
by 〈2, 〈0, ;2〉, 〈0, ;3〉, ;1〉.

Proposition 16.25. �e function SubtreeSeq(C), which re-
turns the code of a sequence the elements of which are the codes
of all subtrees of the tree with code C , is primitive recursive.

Proof. First note that ISubtrees(C) = subseq(C, 1, (C)0) is prim-
itive recursive and returns the codes of the immediate sub-
trees of a tree C . Now we can de�ne a helper function
hSubtreeSeq(C, =) which computes the sequence of all sub-
trees which are = nodes removed from the root. �e sequence
of subtrees of C which is 0 nodes removed from the root—in
other words, begins at the root of C—is the sequence con-
sisting just of C . To obtain a sequence of all level = + 1
subtrees of C , we concatenate the level = subtrees with a
sequence consisting of all immediate subtrees of the level
= subtrees. To get a list of all these, note that if 5 (G) is a
primitive recursive function returning codes of sequences,
then 65 (B, :) = 5 ((B)0) ⌢ . . . ⌢ 5 ((B): ) is also primitive
recursive:

6(B, 0) = 5 ((B)0)
6(B, : + 1) = 6(B, :) ⌢ 5 ((B):+1)

For instance, if B is a sequence of trees, thenℎ(B) = 6ISubtrees (B, len(B))
gives the sequence of the immediate subtrees of the elements
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of B . We can use it to de�ne hSubtreeSeq by
hSubtreeSeq(C, 0) = 〈C〉

hSubtreeSeq(C, = + 1) = hSubtreeSeq(C, =) ⌢ ℎ(hSubtree(C, =)).
�e maximum level of subtrees in a tree coded by C , i.e.,
the maximum distance between the root and a leaf node, is
bounded by the code C . So a sequence of codes of all subtrees
of the tree coded by C is given by hSubtreeSeq(C, C). �

16.13 Other Recursions

Using pairing and sequencing, we can justify more exotic (and
useful) forms of primitive recursion. For example, it is o�en
useful to de�ne two functions simultaneously, such as in the
following de�nition:

ℎ0 ( ®G, 0) = 50 ( ®G)
ℎ1 ( ®G, 0) = 51 ( ®G)

ℎ0 ( ®G,~ + 1) = 60 ( ®G,~, ℎ0 ( ®G,~), ℎ1 ( ®G,~))
ℎ1 ( ®G,~ + 1) = 61 ( ®G,~, ℎ0 ( ®G,~), ℎ1 ( ®G,~))

�is is an instance of simultaneous recursion. Another useful
way of de�ning functions is to give the value of ℎ( ®G,~ + 1) in
terms of all the values ℎ( ®G, 0), . . . , ℎ( ®G,~), as in the following
de�nition:

ℎ( ®G, 0) = 5 ( ®G)
ℎ( ®G,~ + 1) = 6( ®G,~, 〈ℎ( ®G, 0), . . . , ℎ( ®G,~)〉) .
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�e following schema captures this idea more succinctly:

ℎ( ®G,~) = 6( ®G,~, 〈ℎ( ®G, 0), . . . , ℎ( ®G,~ − 1)〉)

with the understanding that the last argument to 6 is just
the empty sequence when ~ is 0. In either formulation, the
idea is that in computing the “successor step,” the function
ℎ can make use of the entire sequence of values computed
so far. �is is known as a course-of-values recursion. For a
particular example, it can be used to justify the following type
of de�nition:

ℎ( ®G,~) =
{
6( ®G,~, ℎ( ®G, : ( ®G,~))) if : ( ®G,~) < ~
5 ( ®G) otherwise

In other words, the value of ℎ at ~ can be computed in terms
of the value of ℎ at any previous value, given by : .

You should think about how to obtain these functions
using ordinary primitive recursion. One �nal version of prim-
itive recursion is more �exible in that one is allowed to change
the parameters (side values) along the way:

ℎ( ®G, 0) = 5 ( ®G)
ℎ( ®G,~ + 1) = 6( ®G,~, ℎ(: ( ®G), ~))

�is, too, can be simulated with ordinary primitive recursion.
(Doing so is tricky. For a hint, try unwinding the computation
by hand.)
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16.14 Non-Primitive Recursive Functions

�e primitive recursive functions do not exhaust the intu-
itively computable functions. It should be intuitively clear
that we can make a list of all the unary primitive recursive
functions, 50, 51, 52, . . . such that we can e�ectively compute
the value of 5G on input ~; in other words, the function 6(G,~),
de�ned by

6(G,~) = 5G (~)
is computable. But then so is the function

ℎ(G) = 6(G, G) + 1
= 5G (G) + 1.

For each primitive recursive function 58 , the value of ℎ and 58
di�er at 8 . So ℎ is computable, but not primitive recursive; and
one can say the same about 6. �is is an “e�ective” version of
Cantor’s diagonalization argument.

One can provide more explicit examples of computable
functions that are not primitive recursive. For example, let
the notation 6= (G) denote 6(6(. . . 6(G))), with = 6’s in all; and
de�ne a sequence 60, 61, . . . of functions by

60 (G) = G + 1
6=+1 (G) = 6G= (G)

You can con�rm that each function 6= is primitive recursive.
Each successive function grows much faster than the one
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before; 61 (G) is equal to 2G , 62 (G) is equal to 2G · G , and 63 (G)
grows roughly like an exponential stack of G 2’s. Ackermann’s
function is essentially the function � (G) = 6G (G), and one
can show that this grows faster than any primitive recursive
function.

Let us return to the issue of enumerating the primitive re-
cursive functions. Remember that we have assigned symbolic
notations to each primitive recursive function; so it su�ces to
enumerate notations. We can assign a natural number #(� )
to each notation � , recursively, as follows:

#(0) = 〈0〉
#(() = 〈1〉

#(%=8 ) = 〈2, =, 8〉
#(Comp:,; [�,�0, . . . ,�:−1]) = 〈3, :, ;, #(� ), #(�0), . . . , #(�:−1)〉

#(Rec; [�,� ]) = 〈4, ;, #(�), #(� )〉
Here we are using the fact that every sequence of numbers
can be viewed as a natural number, using the codes from
the last section. �e upshot is that every code is assigned a
natural number. Of course, some sequences (and hence some
numbers) do not correspond to notations; but we can let 58 be
the unary primitive recursive function with notation coded
as 8 , if 8 codes such a notation; and the constant 0 function
otherwise. �e net result is that we have an explicit way of
enumerating the unary primitive recursive functions.

(In fact, some functions, like the constant zero function,
will appear more than once on the list. �is is not just an
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artifact of our coding, but also a result of the fact that the
constant zero function has more than one notation. We will
later see that one can not computably avoid these repetitions;
for example, there is no computable function that decides
whether or not a given notation represents the constant zero
function.)

We can now take the function 6(G,~) to be given by 5G (~),
where 5G refers to the enumeration we have just described.
How do we know that 6(G,~) is computable? Intuitively, this
is clear: to compute 6(G,~), �rst “unpack” G , and see if it is a
notation for a unary function. If it is, compute the value of
that function on input ~.

You may already be convinced that (with some work!) one
can write a program (say, in Java or C++) that does this; and
now we can appeal to the Church-Turing thesis, which says
that anything that, intuitively, is computable can be computed
by a Turing machine.

Of course, a more direct way to show that 6(G,~) is com-
putable is to describe a Turing machine that computes it,
explicitly. �is would, in particular, avoid the Church-Turing
thesis and appeals to intuition. Soon we will have built up
enough machinery to show that 6(G,~) is computable, appeal-
ing to a model of computation that can be simulated on a
Turing machine: namely, the recursive functions.
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16.15 Partial Recursive Functions

To motivate the de�nition of the recursive functions, note
that our proof that there are computable functions that are
not primitive recursive actually establishes much more. �e
argument was simple: all we used was the fact was that it
is possible to enumerate functions 50, 51, . . . such that, as a
function of G and ~, 5G (~) is computable. So the argument
applies to any class of functions that can be enumerated in such
a way. �is puts us in a bind: we would like to describe the
computable functions explicitly; but any explicit description
of a collection of computable functions cannot be exhaustive!

�e way out is to allow partial functions to come into
play. We will see that it is possible to enumerate the partial
computable functions. In fact, we already pre�y much know
that this is the case, since it is possible to enumerate Turing
machines in a systematic way. We will come back to our diag-
onal argument later, and explore why it does not go through
when partial functions are included.

�e question is now this: what do we need to add to the
primitive recursive functions to obtain all the partial recursive
functions? We need to do two things:

1. Modify our de�nition of the primitive recursive func-
tions to allow for partial functions as well.

2. Add something to the de�nition, so that some new par-
tial functions are included.
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�e �rst is easy. As before, we will start with zero, suc-
cessor, and projections, and close under composition and
primitive recursion. �e only di�erence is that we have to
modify the de�nitions of composition and primitive recursion
to allow for the possibility that some of the terms in the def-
inition are not de�ned. If 5 and 6 are partial functions, we
will write 5 (G) ↓ to mean that 5 is de�ned at G , i.e., G is in the
domain of 5 ; and 5 (G) ↑ to mean the opposite, i.e., that 5 is
not de�ned at G . We will use 5 (G) ' 6(G) to mean that either
5 (G) and 6(G) are both unde�ned, or they are both de�ned
and equal. We will use these notations for more complicated
terms as well. We will adopt the convention that if ℎ and 60,
. . . , 6: all are partial functions, then

ℎ(60 ( ®G), . . . , 6: ( ®G))
is de�ned if and only if each 68 is de�ned at ®G , and ℎ is de�ned
at 60 ( ®G), . . . , 6: ( ®G). With this understanding, the de�nitions
of composition and primitive recursion for partial functions
is just as above, except that we have to replace “=” by “'”.

What we will add to the de�nition of the primitive recur-
sive functions to obtain partial functions is the unbounded
search operator. If 5 (G, ®I) is any partial function on the natural
numbers, de�ne `G 5 (G, ®I) to be

the least G such that 5 (0, ®I), 5 (1, ®I), . . . , 5 (G, ®I)
are all de�ned, and 5 (G, ®I) = 0, if such an G exists

with the understanding that `G 5 (G, ®I) is unde�ned otherwise.
�is de�nes `G 5 (G, ®I) uniquely.
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Note that our de�nition makes no reference to Turing
machines, or algorithms, or any speci�c computational model.
But like composition and primitive recursion, there is an op-
erational, computational intuition behind unbounded search.
When it comes to the computability of a partial function,
arguments where the function is unde�ned correspond to
inputs for which the computation does not halt. �e proce-
dure for computing `G 5 (G, ®I) will amount to this: compute
5 (0, ®I), 5 (1, ®I), 5 (2, ®I) until a value of 0 is returned. If any of
the intermediate computations do not halt, however, neither
does the computation of `G 5 (G, ®I).

If '(G, ®I) is any relation, `G '(G, ®I) is de�ned to be `G (1 ¤−
j' (G, ®I)). In other words, `G '(G, ®I) returns the least value
of G such that '(G, ®I) holds. So, if 5 (G, ®I) is a total function,
`G 5 (G, ®I) is the same as `G (5 (G, ®I) = 0). But note that
our original de�nition is more general, since it allows for the
possibility that 5 (G, ®I) is not everywhere de�ned (whereas,
in contrast, the characteristic function of a relation is always
total).

De�nition 16.26. �e set of partial recursive functions is the
smallest set of partial functions from the natural numbers
to the natural numbers (of various arities) containing zero,
successor, and projections, and closed under composition,
primitive recursion, and unbounded search.

Of course, some of the partial recursive functions will
happen to be total, i.e., de�ned for every argument.
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De�nition 16.27. �e set of recursive functions is the set of
partial recursive functions that are total.

A recursive function is sometimes called “total recursive”
to emphasize that it is de�ned everywhere.

16.16 General Recursive Functions

�ere is another way to obtain a set of total functions. Say a
total function 5 (G, ®I) is regular if for every sequence of natural
numbers ®I, there is an G such that 5 (G, ®I) = 0. In other words,
the regular functions are exactly those functions to which one
can apply unbounded search, and end up with a total function.
One can, conservatively, restrict unbounded search to regular
functions:

De�nition 16.28. �e set of general recursive functions is
the smallest set of functions from the natural numbers to the
natural numbers (of various arities) containing zero, succes-
sor, and projections, and closed under composition, primitive
recursion, and unbounded search applied to regular functions.

Clearly every general recursive function is total. �e dif-
ference between De�nition 16.28 and De�nition 16.27 is that
in the la�er one is allowed to use partial recursive functions
along the way; the only requirement is that the function you
end up with at the end is total. So the word “general,” a his-
toric relic, is a misnomer; on the surface, De�nition 16.28 is
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less general than De�nition 16.27. But, fortunately, the di�er-
ence is illusory; though the de�nitions are di�erent, the set of
general recursive functions and the set of recursive functions
are one and the same.

Problems

Problem 16.1. Prove Proposition 16.5 by showing that the
primitive recursive de�nition of mult is can be put into the
form required by De�nition 16.1 and showing that the corre-
sponding functions 5 and 6 are primitive recursive.

Problem 16.2. Give the complete primitive recursive nota-
tion for mult.

Problem 16.3. Prove Proposition 16.13.

Problem 16.4. Show that

5 (G,~) = 2(2
. .
.2
G

)

}
~ 2’s

is primitive recursive.

Problem 16.5. Show that integer division 3 (G,~) = bG/~c
(i.e., division, where you disregard everything a�er the deci-
mal point) is primitive recursive. When ~ = 0, we stipulate
3 (G,~) = 0. Give an explicit de�nition of 3 using primitive
recursion and composition.
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Problem 16.6. Suppose '( ®G, I) is primitive recursive. De�ne
the function <′

'
( ®G,~) which returns the least I less than ~

such that '( ®G, I) holds, if there is one, and 0 otherwise, by
primitive recursion from j' .

Problem 16.7. De�ne integer division3 (G,~) using bounded
minimization.

Problem 16.8. Show that there is a primitive recursive func-
tion sconcat(B) with the property that

sconcat(〈B0, . . . , B:〉) = B0 ⌢ . . . ⌢ B: .

Problem 16.9. Show that there is a primitive recursive func-
tion tail(B) with the property that

tail(Λ) = 0 and
tail(〈B0, . . . , B:〉) = 〈B1, . . . , B:〉.

Problem 16.10. Prove Proposition 16.24.

Problem 16.11. �e de�nition of hSubtreeSeq in the proof
of Proposition 16.25 in general includes repetitions. Give an
alternative de�nition which guarantees that the code of a
subtree occurs only once in the resulting list.
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Chapter 17

Arithmetization of Syntax

17.1 Introduction

In order to connect computability and logic, we need a way
to talk about the objects of logic (symbols, terms, formulas,
derivations), operations on them, and their properties and
relations, in a way amenable to computational treatment. We
can do this directly, by considering computable functions and
relations on symbols, sequences of symbols, and other objects
built from them. Since the objects of logical syntax are all
�nite and built from a countable sets of symbols, this is pos-
sible for some models of computation. But other models of
computation—such as the recursive functions—-are restricted
to numbers, their relations and functions. Moreover, ulti-
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mately we also want to be able to deal with syntax within
certain theories, speci�cally, in theories formulated in the
language of arithmetic. In these cases it is necessary to arith-
metize syntax, i.e., to represent syntactic objects, operations
on them, and their relations, as numbers, arithmetical func-
tions, and arithmetical relations, respectively. �e idea, which
goes back to Leibniz, is to assign numbers to syntactic objects.

It is relatively straightforward to assign numbers to sym-
bols as their “codes.” Some symbols pose a bit of a challenge,
since, e.g., there are in�nitely many variables, and even in-
�nitely many function symbols of each arity =. But of course
it’s possible to assign numbers to symbols systematically in
such a way that, say, E2 and E3 are assigned di�erent codes.
Sequences of symbols (such as terms and formulas) are a big-
ger challenge. But if we can deal with sequences of numbers
purely arithmetically (e.g., by the powers-of-primes coding of
sequences), we can extend the coding of individual symbols to
coding of sequences of symbols, and then further to sequences
or other arrangements of formulas, such as derivations. �is
extended coding is called “Gödel numbering.” Every term,
formula, and derivation is assigned a Gödel number.

By coding sequences of symbols as sequences of their
codes, and by chosing a system of coding sequences that can
be dealt with using computable functions, we can then also
deal with Gödel numbers using computable functions. In
practice, all the relevant functions will be primitive recursive.
For instance, computing the length of a sequence and com-
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puting the 8-th element of a sequence from the code of the
sequence are both primitive recursive. If the number coding
the sequence is, e.g., the Gödel number of a formula i , we
immediately see that the length of a formula and the (code
of the) 8-th symbol in a formula can also be computed from
the Gödel number of i . It is a bit harder to prove that, e.g.,
the property of being the Gödel number of a correctly formed
term or of a correct derivation is primitive recursive. It is nev-
ertheless possible, because the sequences of interest (terms,
formulas, derivations) are inductively de�ned.

As an example, consider the operation of substitution. If
i is a formula, G a variable, and C a term, then i [C/G] is the
result of replacing every free occurrence of G in i by C . Now
suppose we have assigned Gödel numbers to i , G , C—say, : , ; ,
and<, respectively. �e same scheme assigns a Gödel number
to i [C/G], say, =. �is mapping—of : , ; , and < to =—is the
arithmetical analog of the substitution operation. When the
substitution operation mapsi , G , C toi [C/G], the arithmetized
substitution functions maps the Gödel numbers : , ; ,< to the
Gödel number =. We will see that this function is primitive
recursive.

Arithmetization of syntax is not just of abstract interest,
although it was originally a non-trivial insight that languages
like the language of arithmetic, which do not come with mech-
anisms for “talking about” languages can, a�er all, formalize
complex properties of expressions. It is then just a small step
to ask what a theory in this language, such as Peano arithmetic,
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can prove about its own language (including, e.g., whether
sentences are provable or true). �is leads us to the famous
limitative theorems of Gödel (about unprovability) and Tarski
(the unde�nability of truth). But the trick of arithmetizing
syntax is also important in order to prove some important
results in computability theory, e.g., about the computational
prower of theories or the relationship between di�erent mod-
els of computability. �e arithmetization of syntax serves as
a model for arithmetizing other objects and properties. For
instance, it is similarly possible to arithmetize con�gurations
and computations (say, of Turing machines). �is makes it
possible to simulate computations in one model (e.g., Turing
machines) in another (e.g., recursive functions).

17.2 Coding Symbols

�e basic language L of �rst order logic makes use of the
symbols

⊥ ¬ ∨ ∧ → ∀ ∃ = ( ) ,

together with countable sets of variables and constant sym-
bols, and countable sets of function symbols and predicate
symbols of arbitrary arity. We can assign codes to each of
these symbols in such a way that every symbol is assigned a
unique number as its code, and no two di�erent symbols are
assigned the same number. We know that this is possible since
the set of all symbols is countable and so there is a bijection
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between it and the set of natural numbers. But we want to
make sure that we can recover the symbol (as well as some
information about it, e.g., the arity of a function symbol) from
its code in a computable way. �ere are many possible ways
of doing this, of course. Here is one such way, which uses
primitive recursive functions. (Recall that 〈=0, . . . , =:〉 is the
number coding the sequence of numbers =0, . . . , =: .)

De�nition 17.1. If B is a symbol of L, let the symbol code cB
be de�ned as follows:

1. If B is among the logical symbols, cB is given by the
following table:

⊥ ¬ ∨ ∧ → ∀
〈0, 0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 〈0, 4〉 〈0, 5〉
∃ = ( ) ,

〈0, 6〉 〈0, 7〉 〈0, 8〉 〈0, 9〉 〈0, 10〉

2. If B is the 8-th variable E8 , then cB = 〈1, 8〉.

3. If B is the 8-th constant symbol 28 , then cB = 〈2, 8〉.

4. If B is the 8-th =-ary function symbol 5 =8 , then cB =

〈3, =, 8〉.

5. If B is the 8-th =-ary predicate symbol %=8 , then cB =

〈4, =, 8〉.

Proposition 17.2. �e following relations are primitive recur-
sive:
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1. Fn(G, =) i� G is the code of 5 =8 for some 8 , i.e., G is the code
of an =-ary function symbol.

2. Pred(G, =) i� G is the code of %=8 for some 8 or G is the code
of = and = = 2, i.e., G is the code of an =-ary predicate
symbol.

De�nition 17.3. If B0, . . . , B=−1 is a sequence of symbols, its
Gödel number is 〈cB0 , . . . , cB=−1〉.

Note that codes and Gödel numbers are di�erent things.
For instance, the variable E5 has a code cE5 = 〈1, 5〉 = 22 · 36.
But the variable E5 considered as a term is also a sequence of
symbols (of length 1). �e Gödel number #E5

# of the term E5 is
〈cE5〉 = 2cE5+1 = 222 ·36+1.

Example 17.4. Recall that if :0, . . . , :=−1 is a sequence of
numbers, then the code of the sequence 〈:0, . . . , :=−1〉 in the
power-of-primes coding is

2:0+1 · 3:1+1 · · · · · ?:=−1
=−1 ,

where ?8 is the 8-th prime (starting with ?0 = 2). So for
instance, the formula E0 = 0, or, more explicitly, =(E0, 20), has
the Gödel number

〈c=, c(, cE0 , c,, c20 , c)〉.
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Here, c= is 〈0, 7〉 = 20+1 · 37=1, cE0 is 〈1, 0〉 = 21+1 · 30+1, etc. So
#= (E0, 20)# is

2c=+1 · 3c(+1 · 5cE0+1 · 7c,+1 · 11c20+1 · 13c)+1 =

221 ·38+1 · 321 ·39+1 · 522 ·31+1 · 721 ·311+1 · 1123 ·31+1 · 1321 ·310+1 =

213 123 · 339 367 · 513 · 7354 295 · 1125 · 13118 099.

17.3 Coding Terms

A term is simply a certain kind of sequence of symbols: it is
built up inductively from constants and variables according to
the formation rules for terms. Since sequences of symbols can
be coded as numbers—using a coding scheme for the symbols
plus a way to code sequences of numbers—assigning Gödel
numbers to terms is not di�cult. �e challenge is rather to
show that the property a number has if it is the Gödel number
of a correctly formed term is computable, or in fact primitive
recursive.

Variables and constant symbols are the simplest terms,
and testing whether G is the Gödel number of such a term
is easy: Var(G) holds if G is #E8

# for some 8 . In other words,
G is a sequence of length 1 and its single element (G)0 is the
code of some variable E8 , i.e., G is 〈〈1, 8〉〉 for some 8 . Similarly,
Const(G) holds if G is #28

# for some 8 . Both of these relations
are primitive recursive, since if such an 8 exists, it must be
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< G :

Var(G) ⇔ (∃8 < G) G = 〈〈1, 8〉〉
Const(G) ⇔ (∃8 < G) G = 〈〈2, 8〉〉

Proposition 17.5. �e relations Term(G) and ClTerm(G) which
hold i� G is the Gödel number of a term or a closed term, respec-
tively, are primitive recursive.

Proof. A sequence of symbols B is a term i� there is a se-
quence B0, . . . , B:−1 = B of terms which records how the term B

was formed from constant symbols and variables according to
the formation rules for terms. To express that such a putative
formation sequence follows the formation rules it has to be
the case that, for each 8 < : , either

1. B8 is a variable E 9 , or

2. B8 is a constant symbol 2 9 , or

3. B8 is built from = terms C1, . . . , C= occurring prior to
place 8 using an =-place function symbol 5 =9 .

To show that the corresponding relation on Gödel numbers is
primitive recursive, we have to express this condition primi-
tive recursively, i.e., using primitive recursive functions, rela-
tions, and bounded quanti�cation.

Suppose ~ is the number that codes the sequence B0, . . . ,
B:−1, i.e., ~ = 〈 #B0

#, . . . , #B:−1
#〉. It codes a formation sequence

for the term with Gödel number G i� for all 8 < : :
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1. Var((~)8 ), or

2. Const((~)8 ), or

3. there is an = and a number I = 〈I1, . . . , I=〉 such that
each I; is equal to some (~)8′ for 8 ′ < 8 and

(~)8 = #5 =9 (# ⌢ �a�en(I) ⌢ #)#,

and moreover (~):−1 = G . (�e function �a�en(I) turns the
sequence 〈 #C1

#, . . . , #C=
#〉 into #C1, . . . , C=

# and is primitive recur-
sive.)

�e indices 9 , =, the Gödel numbers I; of the terms C; , and
the code I of the sequence 〈I1, . . . , I=〉, in (3) are all less than~.
We can replace : above with len(~). Hence we can express
“~ is the code of a formation sequence of the term with Gödel
number G” in a way that shows that this relation is primitive
recursive.

We now just have to convince ourselves that there is a
primitive recursive bound on ~. But if G is the Gödel number
of a term, it must have a formation sequence with at most
len(G) terms (since every term in the formation sequence of B
must start at some place in B , and no two subterms can start
at the same place). �e Gödel number of each subterm of B is
of course ≤ G . Hence, there always is a formation sequence
with code ≤ G len(G) .

For ClTerm, simply leave out the clause for variables. �
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Proposition 17.6. �e function num(=) = #=# is primitive
recursive.

Proof. We de�ne num(=) by primitive recursion:

num(0) = #0#

num(= + 1) = #′(# ⌢ num(=) ⌢ #)#. �

17.4 Coding Formulas

Proposition 17.7. �e relation Atom(G) which holds i� G is
the Gödel number of an atomic formula, is primitive recursive.

Proof. �e number G is the Gödel number of an atomic for-
mula i� one of the following holds:

1. �ere are =, 9 < G , and I < G such that for each 8 < =,
Term((I)8 ) and G =

#%=9 (# ⌢ �a�en(I) ⌢ #)#.

2. �ere are I1, I2 < G such that Term(I1), Term(I2), and
G =

#=(# ⌢ I1 ⌢
#,# ⌢ I2 ⌢

#)#.

3. G = #⊥#. �
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Proposition 17.8. �e relation Frm(G) which holds i� G is the
Gödel number of a formula is primitive recursive.

Proof. A sequence of symbols B is a formula i� there is for-
mation sequence B0, . . . , B:−1 = B of formula which records
how B was formed from atomic formulas according to the
formation rules. �e code for each B8 (and indeed of the code
of the sequence 〈B0, . . . , B:−1〉) is less than the code G of B . �

Proposition 17.9. �e relation FreeOcc(G, I, 8), which holds
i� the 8-th symbol of the formula with Gödel number G is a free
occurrence of the variable with Gödel number I, is primitive
recursive.

Proof. Exercise. �

Proposition 17.10. �e property Sent(G) which holds i� G is
the Gödel number of a sentence is primitive recursive.

Proof. A sentence is a formula without free occurrences of
variables. So Sent(G) holds i�

(∀8 < len(G)) (∀I < G)
((∃ 9 < I) I = #E 9

#→¬FreeOcc(G, I, 8)). �
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17.5 Substitution

Recall that substitution is the operation of replacing all free
occurrences of a variable D in a formula i by a term C , wri�en
i [C/D]. �is operation, when carried out on Gödel numbers
of variables, formulas, and terms, is primitive recursive.

Proposition 17.11. �ere is a primitive recursive function
Subst(G,~, I) with the property that

Subst( #i #, #C #, #D#) = #i [C/D]#

Proof. We can then de�ne a function hSubst by primitive
recursion as follows:

hSubst(G,~, I, 0) = Λ

hSubst(G,~, I, 8 + 1) ={
hSubst(G,~, I, 8) ⌢ ~ if FreeOcc(G, I, 8)
append(hSubst(G,~, I, 8), (G)8 ) otherwise.

Subst(G,~, I) can now be de�ned as hSubst(G,~, I, len(G)). �

Proposition 17.12. �e relation FreeFor(G,~, I), which holds
i� the term with Gödel number ~ is free for the variable with
Gödel number I in the formula with Gödel numberG , is primitive
recursive.

Proof. Exercise. �
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17.6. Derivations in Natural Deduction

17.6 Derivations in Natural Deduction

In order to arithmetize derivations, we must represent deriva-
tions as numbers. Since derivations are trees of formulas
where each inference carries one or two labels, a recursive
representation is the most obvious approach: we represent a
derivation as a tuple, the components of which are the number
of immediate sub-derivations leading to the premises of the
last inference, the representations of these sub-derivations,
and the end-formula, the discharge label of the last inference,
and a number indicating the type of the last inference.

De�nition 17.13. If X is a derivation in natural deduction,
then #X# is de�ned inductively as follows:

1. If X consists only of the assumption i , then #X# is
〈0, #i#, =〉. �e number = is 0 if it is an undischarged
assumption, and the numerical label otherwise.

2. IfX ends in an inference with one, two, or three premises,
then #X# is

〈1, #X1
#, #i#, =, :〉,

〈2, #X1
#, #X2

#, #i#, =, :〉, or
〈3, #X1

#, #X2
#, #X3

#, #i#, =, :〉,

respectively. Here X1, X2, X3 are the sub-derivations
ending in the premise(s) of the last inference in X , i
is the conclusion of the last inference in X , = is the
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discharge label of the last inference (0 if the inference
does not discharge any assumptions), and : is given by
the following table according to which rule was used
in the last inference.

Rule: ∧I ∧E ∨I ∨E
: : 1 2 3 4

Rule: →I →E ¬I ¬E
: : 5 6 7 8

Rule: ⊥E RAA ∀I ∀E
: : 9 10 11 12

Rule: ∃I ∃E =I =E
: : 13 14 15 16

Example 17.14. Consider the very simple derivation

[i ∧k ]1
∧Ei →I1(i ∧k ) → i

�e Gödel number of the assumption would be30 = 〈0, #i ∧k #, 1〉.
�e Gödel number of the derivation ending in the conclu-
sion of ∧E would be 31 = 〈1, 30,

#i#, 0, 2〉 (1 since ∧E has
one premise, the Gödel number of conclusion i , 0 because
no assumption is discharged, and 2 is the number coding
∧E). �e Gödel number of the entire derivation then is
〈1, 31,

#((i ∧k ) → i)#, 1, 5〉, i.e.,

〈1, 〈1, 〈0, #(i ∧k )#, 1〉, #i#, 0, 2〉, #((i ∧k ) → i)#, 1, 5〉.
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Having se�led on a representation of derivations, we
must also show that we can manipulate Gödel numbers of
such derivations primitive recursively, and express their es-
sential properties and relations. Some operations are simple:
e.g., given a Gödel number 3 of a derivation, EndFmla(3) =
(3) (3)0+1 gives us the Gödel number of its end-formula, DischargeLabel(3) =
(3) (3)0+2 gives us the discharge label and LastRule(3) =

(3) (3)0+3 the number indicating the type of the last infer-
ence. Some are much harder. We’ll at least sketch how to do
this. �e goal is to show that the relation “X is a derivation
of i from Γ” is a primitive recursive relation of the Gödel
numbers of X and i .

Proposition 17.15. �e following relations are primitive re-
cursive:

1. i occurs as an assumption in X with label =.

2. All assumptions in X with label = are of the form i (i.e.,
we can discharge the assumption i using label = in X).

Proof. We have to show that the corresponding relations be-
tween Gödel numbers of formulas and Gödel numbers of
derivations are primitive recursive.

1. We want to show that Assum(G, 3, =), which holds if
G is the Gödel number of an assumption of the deriva-
tion with Gödel number 3 labelled =, is primitive re-
cursive. �is is the case if the derivation with Gödel
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number 〈0, G, =〉 is a sub-derivation of 3 . Note that the
way we code derivations is a special case of the coding
of trees introduced in section 16.12, so the primitive
recursive function SubtreeSeq(3) gives a sequence of
Gödel numbers of all sub-derivations of 3 (of length a
most 3). So we can de�ne

Assum(G, 3, =) ⇔ (∃8 < 3) (SubtreeSeq(3))8 = 〈0, G, =〉.

2. We want to show that Discharge(G, 3, =), which holds if
all assumptions with label= in the derivation with Gödel
number 3 all are the formula with Gödel number G . But
this relation holds i� (∀~ < 3) (Assum(~,3, =)→~ = G).
�

Proposition 17.16. �e property Correct(3) which holds i�
the last inference in the derivation X with Gödel number 3 is
correct, is primitive recursive.

Proof. Here we have to show that for each rule of infer-
ence ' the relation FollowsBy' (3) is primitive recursive,
where FollowsBy' (3) holds i� 3 is the Gödel number of
derivation X , and the end-formula of X follows by a correct
application of ' from the immediate sub-derivations of X .

A simple case is that of the ∧I rule. If X ends in a correct
∧I inference, it looks like this:
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X1

i

X2

k
∧I

i ∧k

�en the Gödel number 3 of X is 〈2, 31, 32,
#(i ∧k )#, 0, :〉

where EndFmla(31) = #i#, EndFmla(32) = #�#, = = 0, and
: = 1. So we can de�ne FollowsBy∧I (3) as

(3)0 = 2 ∧ DischargeLabel(3) = 0 ∧ LastRule(3) = 1 ∧
EndFmla(3) = #(# ⌢ EndFmla((3)1) ⌢ #∧# ⌢ EndFmla((3)2) ⌢ #)#.

Another simple example if the =I rule. Here the premise
is an empty derivation, i.e., (3)1 = 0, and no discharge label,
i.e., = = 0. However, i must be of the form C = C , for a closed
term C . Here, a primitive recursive de�nition is

(3)0 = 1 ∧ (3)1 = 0 ∧ DischargeLabel(3) = 0 ∧
(∃C < 3) (ClTerm(C)∧EndFmla(3) = #=(# ⌢ C ⌢ #,# ⌢ C ⌢ #)#)

For a more complicated example, FollowsBy→I (3) holds
i� the end-formula of X is of the form (i → k ), where the
end-formula of X1 isk , and any assumption in X labelled = is
of the form i . We can express this primitive recursively by

(3)0 = 1 ∧
(∃0 < 3) (Discharge(0, (3)1,DischargeLabel(3)) ∧

EndFmla(3) = ( #(# ⌢ 0 ⌢ #→# ⌢ EndFmla((3)1) ⌢ #)#))
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(�ink of 0 as the Gödel number of i).
For another example, consider ∃I. Here, the last inference

in X is correct i� there is a formula i , a closed term C and
a variable G such that i [C/G] is the end-formula of the deriva-
tion X1 and ∃G i is the conclusion of the last inference. So,
FollowsBy∃I (3) holds i�

(3)0 = 1 ∧ DischargeLabel(3) = 0 ∧
(∃0 < 3) (∃G < 3) (∃C < 3) (ClTerm(C) ∧ Var(G) ∧

Subst(0, C, G) = EndFmla((3)1)∧EndFmla(3) = ( #∃# ⌢ G ⌢ 0)) .

We then de�ne Correct(3) as

Sent(EndFmla(3)) ∧
(LastRule(3) = 1 ∧ FollowsBy∧I (3)) ∨ · · · ∨
(LastRule(3) = 16 ∧ FollowsBy=E (3)) ∨

(∃= < 3) (∃G < 3) (3 = 〈0, G, =〉).

�e �rst line ensures that the end-formula of 3 is a sentence.
�e last line covers the case where 3 is just an assumption.�

Proposition 17.17. �e relation Deriv(3) which holds if 3 is
the Gödel number of a correct derivation X , is primitive recursive.

Proof. A derivation X is correct if every one of its inferences
is a correct application of a rule, i.e., if every one of its sub-
derivations ends in a correct inference. So, Deriv(3) i�
(∀8 < len(SubtreeSeq(3))) Correct((SubtreeSeq(3))8 ) �

414



17.6. Derivations in Natural Deduction

Proposition 17.18. �e relation OpenAssum(I, 3) that holds
if I is the Gödel number of an undischarged assumption i of
the derivation X with Gödel number 3 , is primitive recursive.

Proof. An occurrence of an assumption is discharged if it oc-
curs with label = in a sub-derivation of X that ends in a rule
with discharge label =. So i is an undischarged assumption
of X if at least one of its occurrences is not discharged in X .
We must be careful: X may contain both discharged and undis-
charged occurrences of i .

Consider a sequence X0, . . . , X: where X0 = 3 , X: is the
assumption [i]= (for some =), and X8 is an immediate sub-
derivation of X8+1. If such a sequence exists in which no X8
ends in an inference with discharge label =, then i is an undis-
charged assumption of X .

�e primitive recursive function SubtreeSeq(3) provides
us with a sequence of Gödel numbers of all sub-derivations
of X . Any sequence of Gödel numbers of sub-derivations of X
is a subsequence of it. Being a subsequence of is a primitive
recursive relation: Subseq(B, B ′) holds i� (∀8 < len(B)) ∃ 9 <
len(B ′) (B)8 = (B) 9 . Being an immediate sub-derivation is as
well: Subderiv(3,3 ′) i� (∃ 9 < (3 ′)0) 3 = (3 ′) 9 . So we can
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de�ne OpenAssum(I, 3) by

(∃B < SubtreeSeq(3)) (Subseq(B, SubtreeSeq(3))∧(B)0 = 3∧
(∃= < 3) ((B)len(B) ¤−1 = 〈0, I, =〉 ∧

(∀8 < (len(B) ¤− 1)) (Subderiv((B)8 , (B)8+1)] ∧
DischargeLabel((B)8+1) ≠ =))). �

Proposition 17.19. Suppose Γ is a primitive recursive set of
sentences. �en the relation PrfΓ (G,~) expressing “G is the code
of a derivation X of i from undischarged assumptions in Γ and
~ is the Gödel number of i” is primitive recursive.

Proof. Suppose “~ ∈ Γ” is given by the primitive recursive
predicate 'Γ (~). We have to show that PrfΓ (G,~) which holds
i� ~ is the Gödel number of a sentence i and G is the code
of a natural deduction derivation with end formula i and all
undischarged assumptions in Γ is primitive recursive.

By Proposition 17.17, the property Deriv(G) which holds
i� G is the Gödel number of a correct derivation X in natural
deduction is primitive recursive. �us we can de�ne PrfΓ (G,~)
by

PrfΓ (G,~) ⇔ Deriv(G) ∧ EndFmla(G) = ~ ∧
(∀I < G) (OpenAssum(I, G) → 'Γ (I)). �
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Problems

Problem 17.1. Show that the function �a�en(I), which
turns the sequence 〈 #C1

#, . . . , #C=
#〉 into #C1, . . . , C=

#, is primi-
tive recursive.

Problem 17.2. Give a detailed proof of Proposition 17.8
along the lines of the �rst proof of Proposition 17.5

Problem 17.3. Give a detailed proof of Proposition 17.8
along the lines of the alternate proof of Proposition 17.5

Problem 17.4. Prove Proposition 17.9. You may make use of
the fact that any substring of a formula which is a formula is
a sub-formula of it.

Problem 17.5. Prove Proposition 17.12

Problem 17.6. De�ne the following properties as in Propo-
sition 17.16:

1. FollowsBy→E (3),

2. FollowsBy=E (3),

3. FollowsBy∨E (3),

4. FollowsBy∀I (3).
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For the last one, you will have to also show that you can test
primitive recursively if the last inference of the derivation
with Gödel number 3 satis�es the eigenvariable condition,
i.e., the eigenvariable 0 of the ∀I inference occurs neither in
the end-formula of 3 nor in an open assumption of 3 . You
may use the primitive recursive predicate OpenAssum from
Proposition 17.18 for this.
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Chapter 18

Representability in Q

18.1 Introduction

�e incompleteness theorems apply to theories in which basic
facts about computable functions can be expressed and proved.
We will describe a very minimal such theory called “Q” (or,
sometimes, “Robinson’s & ,” a�er Raphael Robinson). We will
say what it means for a function to be representable in Q, and
then we will prove the following:

A function is representable in Q if and only if it
is computable.

For one thing, this provides us with another model of com-
putability. But we will also use it to show that the set {i |
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18. Representability in Q

Q ` i} is not decidable, by reducing the halting problem to it.
By the time we are done, we will have proved much stronger
things than this.

�e language of Q is the language of arithmetic; Q con-
sists of the following axioms (to be used in conjunction with
the other axioms and rules of �rst-order logic with identity
predicate):

∀G ∀~ (G ′ = ~ ′→ G = ~) (&1)
∀G 0 ≠ G ′ (&2)
∀G (G = 0 ∨ ∃~ G = ~ ′) (&3)
∀G (G + 0) = G (&4)
∀G ∀~ (G + ~ ′) = (G + ~) ′ (&5)
∀G (G × 0) = 0 (&6)
∀G ∀~ (G × ~ ′) = ((G × ~) + G) (&7)
∀G ∀~ (G < ~↔∃I (I ′ + G) = ~) (&8)

For each natural number =, de�ne the numeral = to be the
term 0′′...′ where there are = tick marks in all. So, 0 is the
constant symbol 0 by itself, 1 is 0′, 2 is 0′′, etc.

As a theory of arithmetic, Q is extremely weak; for ex-
ample, you can’t even prove very simple facts like ∀G G ≠ G ′

or ∀G ∀~ (G + ~) = (~ + G). But we will see that much of the
reason that Q is so interesting is because it is so weak. In fact,
it is just barely strong enough for the incompleteness theorem
to hold. Another reason Q is interesting is because it has a
�nite set of axioms.
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18.1. Introduction

A stronger theory than Q (called Peano arithmetic PA) is
obtained by adding a schema of induction to Q:

(i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G)

where i (G) is any formula. If i (G) contains free variables
other than G , we add universal quanti�ers to the front to
bind all of them (so that the corresponding instance of the
induction schema is a sentence). For instance, if i (G,~) also
contains the variable ~ free, the corresponding instance is

∀~ ((i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G))

Using instances of the induction schema, one can prove much
more from the axioms of PA than from those of Q. In fact, it
takes a good deal of work to �nd “natural” statements about
the natural numbers that can’t be proved in Peano arithmetic!

De�nition 18.1. A function 5 (G0, . . . , G: ) from the natural
numbers to the natural numbers is said to be representable in
Q if there is a formula i 5 (G0, . . . , G: , ~) such that whenever
5 (=0, . . . , =: ) =<, Q proves

1. i 5 (=0, . . . , =: ,<)

2. ∀~ (i 5 (=0, . . . , =: , ~) →< = ~).

�ere are other ways of stating the de�nition; for example,
we could equivalently require thatQ proves∀~ (i 5 (=0, . . . , =: , ~)↔
~ =<).
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18. Representability in Q

�eorem 18.2. A function is representable in Q if and only if
it is computable.

�ere are two directions to proving the theorem. �e
le�-to-right direction is fairly straightforward once arithmeti-
zation of syntax is in place. �e other direction requires more
work. Here is the basic idea: we pick “general recursive” as
a way of making “computable” precise, and show that every
general recursive function is representable in Q. Recall that
a function is general recursive if it can be de�ned from zero,
the successor function succ, and the projection functions %=8 ,
using composition, primitive recursion, and regular minimiza-
tion. So one way of showing that every general recursive
function is representable in Q is to show that the basic func-
tions are representable, and whenever some functions are
representable, then so are the functions de�ned from them
using composition, primitive recursion, and regular minimiza-
tion. In other words, we might show that the basic functions
are representable, and that the representable functions are
“closed under” composition, primitive recursion, and regular
minimization. �is guarantees that every general recursive
function is representable.

It turns out that the step where we would show that rep-
resentable functions are closed under primitive recursion is
hard. In order to avoid this step, we show �rst that in fact
we can do without primitive recursion. �at is, we show that
every general recursive function can be de�ned from basic
functions using composition and regular minimization alone.
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18.2. Functions Representable in Q are Computable

To do this, we show that primitive recursion can actually be
done by a speci�c regular minimization. However, for this
to work, we have to add some additional basic functions: ad-
dition, multiplication, and the characteristic function of the
identity relation j=. �en, we can prove the theorem by show-
ing that all of these basic functions are representable in Q, and
the representable functions are closed under composition and
regular minimization.

18.2 Functions Representable in Q are
Computable

Lemma 18.3. Every function that is representable in Q is com-
putable.

Proof. Let’s �rst give the intuitive idea for why this is true. If
5 (G0, . . . , G: ) is representable inQ, there is a formulai (G0, . . . , G: , ~)
such that

Q ` i 5 (=0, . . . , =: ,<) i� < = 5 (=0, . . . , =: ).

To compute 5 , we do the following. List all the possible deriva-
tions X in the language of arithmetic. �is is possible to do
mechanically. For each one, check if it is a derivation of
a formula of the form i 5 (=0, . . . , =: ,<). If it is, < must be
= 5 (=0, . . . , =: ) and we’ve found the value of 5 . �e search
terminates because Q ` i 5 (=0, . . . , =: , 5 (=0, . . . , =: )), so even-
tually we �nd a X of the right sort.
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18. Representability in Q

�is is not quite precise because our procedure operates
on derivations and formulas instead of just on numbers, and
we haven’t explained exactly why “listing all possible deriva-
tions” is mechanically possible. But as we’ve seen, it is possi-
ble to code terms, formulas, and derivations by Gödel num-
bers. We’ve also introduced a precise model of computation,
the general recursive functions. And we’ve seen that the re-
lation PrfQ (3,~), which holds i� 3 is the Gödel number of
a derivation of the formula with Gödel number G from the
axioms of Q, is (primitive) recursive. Other primitive recur-
sive functions we’ll need are num (Proposition 17.6) and Subst
(Proposition 17.11). From these, it is possible to de�ne 5 by
minimization; thus, 5 is recursive.

First, de�ne

�(=0, . . . , =: ,<) =
Subst(Subst(. . . Subst( #i 5

#, num(=0), #G0
#),

. . . ), num(=: ), #G:
#), num(<), #~#)

�is looks complicated, but it’s just the function�(=0, . . . , =: ,<) =
#i 5 (=0, . . . , =: ,<)#.

Now, consider the relation '(=0, . . . , =: , B) which holds if
(B)0 is the Gödel number of a derivation fromQ ofi 5 (=0, . . . , =: , (B)1):

'(=0, . . . , =: , B) i� PrfQ ((B)0, �(=0, . . . , =: , (B)1))

If we can �nd an B such that '(=0, . . . , =: , B) hold, we have
found a pair of numbers—(B)0 and (B1)—such that (B)0 is the
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18.3. �e Beta Function Lemma

Gödel number of a derivation of �5 (=0, . . . , =: , (B)1). So look-
ing for B is like looking for the pair 3 and < in the infor-
mal proof. And a computable function that “looks for” such
an B can be de�ned by regular minimization. Note that '
is regular: for every =0, . . . , =: , there is a derivation X of
Q ` i 5 (=0, . . . , =: , 5 (=0, . . . , =: )), so '(=0, . . . , =: , B) holds for
B = 〈 #X#, 5 (=0, . . . , =: )〉. So, we can write 5 as

5 (=0, . . . , =: ) = (`B '(=0, . . . , =: , B))1 . �

18.3 �e Beta Function Lemma

In order to show that we can carry out primitive recursion
if addition, multiplication, and j= are available, we need to
develop functions that handle sequences. (If we had expo-
nentiation as well, our task would be easier.) When we had
primitive recursion, we could de�ne things like the “=-th
prime,” and pick a fairly straightforward coding. But here
we do not have primitive recursion—in fact we want to show
that we can do primitive recursion using minimization—so
we need to be more clever.

Lemma 18.4. �ere is a function V (3, 8) such that for every
sequence 00, . . . , 0= there is a number 3 , such that for every
8 ≤ =, V (3, 8) = 08 . Moreover, V can be de�ned from the basic
functions using just composition and regular minimization.
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18. Representability in Q

�ink of 3 as coding the sequence 〈00, . . . , 0=〉, and V (3, 8)
returning the 8-th element. (Note that this “coding” does not
use the prower-of-primes coding we’re already familiar with!).
�e lemma is fairly minimal; it doesn’t say we can concatenate
sequences or append elements, or even that we can compute 3
from 00, . . . , 0= using functions de�nable by composition and
regular minimization. All it says is that there is a “decoding”
function such that every sequence is “coded.”

�e use of the notation V is Gödel’s. To repeat, the hard
part of proving the lemma is de�ning a suitable V using the
seemingly restricted resources, i.e., using just composition
and minimization—however, we’re allowed to use addition,
multiplication, and j=. �ere are various ways to prove this
lemma, but one of the cleanest is still Gödel’s original method,
which used a number-theoretic fact called the Chinese Re-
mainder theorem.

De�nition 18.5. Two natural numbers 0 and 1 are relatively
prime if their greatest common divisor is 1; in other words,
they have no other divisors in common.

De�nition 18.6. 0 ≡ 1 mod 2 means 2 | (0 − 1), i.e., 0 and
1 have the same remainder when divided by 2 .

Here is the Chinese Remainder theorem:

�eorem 18.7. Suppose G0, . . . , G= are (pairwise) relatively
prime. Let ~0, . . . , ~= be any numbers. �en there is a number I
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18.3. �e Beta Function Lemma

such that

I ≡ ~0 mod G0

I ≡ ~1 mod G1

...

I ≡ ~= mod G= .

Here is how we will use the Chinese Remainder theorem:
if G0, . . . , G= are bigger than ~0, . . . , ~= respectively, then we
can take I to code the sequence 〈~0, . . . , ~=〉. To recover ~8 ,
we need only divide I by G8 and take the remainder. To use
this coding, we will need to �nd suitable values for G0, . . . , G= .

A couple of observations will help us in this regard. Given
~0, . . . , ~= , let

9 = max(=,~0, . . . , ~=) + 1,

and let

G0 = 1 + 9 !
G1 = 1 + 2 · 9 !
G2 = 1 + 3 · 9 !
...

G= = 1 + (= + 1) · 9 !

�en two things are true:
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18. Representability in Q

1. G0, . . . , G= are relatively prime.

2. For each 8 , ~8 < G8 .

To see that (1) is true, note that if ? is a prime number and
? | G8 and ? | G: , then ? | 1 + (8 + 1) 9 ! and ? | 1 + (: + 1) 9 !.
But then ? divides their di�erence,

(1 + (8 + 1) 9 !) − (1 + (: + 1) 9 !) = (8 − :) 9 !.

Since ? divides 1+(8+1) 9 !, it can’t divide 9 ! as well (otherwise,
the �rst division would leave a remainder of 1). So ? divides
8 − : , since ? divides (8 − :) 9 !. But |8 − : | is at most =, and
we have chosen 9 > =, so this implies that ? | 9 !, again a
contradiction. So there is no prime number dividing both G8
and G: . Clause (2) is easy: we have ~8 < 9 < 9 ! < G8 .

Now let us prove the V function lemma. Remember that
we can use 0, successor, plus, times, j=, projections, and any
function de�ned from them using composition and minimiza-
tion applied to regular functions. We can also use a relation if
its characteristic function is so de�nable. As before we can
show that these relations are closed under boolean combina-
tions and bounded quanti�cation; for example:

1. not(G) = j= (G, 0)

2. (min G ≤ I) '(G,~) = `G ('(G,~) ∨ G = I)

3. (∃G ≤ I) '(G,~) ⇔ '((min G ≤ I) '(G,~), ~)
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18.3. �e Beta Function Lemma

We can then show that all of the following are also de�nable
without primitive recursion:

1. �e pairing function, � (G,~) = 1
2 [(G +~) (G +~ + 1)] +G

2. Projections

 (I) = (min G ≤ @) (∃~ ≤ I [I = � (G,~)])

and

!(I) = (min ~ ≤ @) (∃G ≤ I [I = � (G,~)]).

3. G < ~

4. G | ~

5. �e function rem(G,~) which returns the remainder
when ~ is divided by G

Now de�ne

V∗ (30, 31, 8) = rem(1 + (8 + 1)31, 30)

and
V (3, 8) = V∗ ( (3), !(3), 8).

�is is the function we need. Given 00, . . . , 0= , as above, let

9 = max(=, 00, . . . , 0=) + 1,
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18. Representability in Q

and let 31 = 9 !. By the observations above, we know that
1 +31, 1 + 231, . . . , 1 + (= + 1)31 are relatively prime and all are
bigger than 00, . . . , 0= . By the Chinese Remainder theorem
there is a value 30 such that for each 8 ,

30 ≡ 08 mod (1 + (8 + 1)31)

and so (because 31 is greater than 08 ),

08 = rem(1 + (8 + 1)31, 30).

Let 3 = � (30, 31). �en for each 8 ≤ =, we have

V (3, 8) = V∗ (30, 31, 8)
= rem(1 + (8 + 1)31, 30)
= 08

which is what we need. �is completes the proof of the V-
function lemma.

18.4 Simulating Primitive Recursion

Now we can show that de�nition by primitive recursion can be
“simulated” by regular minimization using the beta function.
Suppose we have 5 ( ®G) and6( ®G,~, I). �en the functionℎ(G, ®I)
de�ned from 5 and 6 by primitive recursion is

ℎ( ®G,~) = 5 (®I)
ℎ( ®G,~ + 1) = 6( ®G,~, ℎ( ®G,~)) .
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18.4. Simulating Primitive Recursion

We need to show that ℎ can be de�ned from 5 and 6 using
just composition and regular minimization, using the basic
functions and functions de�ned from them using composition
and regular minimization (such as V).

Lemma 18.8. If ℎ can be de�ned from 5 and 6 using primitive
recursion, it can be de�ned from 5 , 6, the functions zero, succ,
%=8 , add, mult, j=, using composition and regular minimization.

Proof. First, de�ne an auxiliary function ℎ̂( ®G,~) which returns
the least number3 such that3 codes a sequence which satis�es

1. (3)0 = 5 ( ®G), and

2. for each 8 < ~, (3)8+1 = 6( ®G, 8, (3)8 ),

where now (3)8 is short for V (3, 8). In other words, ℎ̂ returns
the sequence 〈ℎ( ®G, 0), ℎ( ®G, 1), . . . , ℎ( ®G,~)〉. We can write ℎ̂ as

ℎ̂( ®G,~) = `3 (V (3, 0) = 5 ( ®G)∧(∀8 < ~) V (3, 8+1) = 6( ®G, 8, V (3, 8)) .

Note: no primitive recursion is needed here, just minimiza-
tion. �e function we minimize is regular because of the beta
function lemma Lemma 18.4.

But now we have

ℎ( ®G,~) = V (ℎ̂( ®G,~), ~),

so ℎ can be de�ned from the basic functions using just com-
position and regular minimization. �
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18. Representability in Q

18.5 Basic Functions are Representable in Q

First we have to show that all the basic functions are rep-
resentable in Q. In the end, we need to show how to as-
sign to each :-ary basic function 5 (G0, . . . , G:−1) a formula
i 5 (G0, . . . , G:−1, ~) that represents it.

We will be able to represent zero, successor, plus, times,
the characteristic function for equality, and projections. In
each case, the appropriate representing function is entirely
straightforward; for example, zero is represented by the for-
mula ~ = 0, successor is represented by the formula G ′0 = ~,
and addition is represented by the formula (G0 + G1) = ~. �e
work involves showing that Q can prove the relevant sen-
tences; for example, saying that addition is represented by the
formula above involves showing that for every pair of natural
numbers< and =, Q proves

= +< = = +< and
∀~ ((= +<) = ~→ ~ = = +<).

Proposition 18.9. �e zero function zero(G) = 0 is repre-
sented in Q by ~ = 0.

Proposition 18.10. �e successor function succ(G) = G + 1 is
represented in Q by ~ = G ′.

Proposition 18.11. �e projection function %=8 (G0, . . . , G=−1) =
G8 is represented in Q by ~ = G8 .
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18.5. Basic Functions are Representable in Q

Proposition 18.12. �e characteristic function of =,

j= (G0, G1) =
{

1 if G0 = G1

0 >Cℎ4AF8B4

is represented in Q by

(G0 = G1 ∧ ~ = 1) ∨ (G0 ≠ G1 ∧ ~ = 0) .

�e proof requires the following lemma.

Lemma 18.13. Given natural numbers = and <, if = ≠ <,
then Q ` = ≠<.

Proof. Use induction on = to show that for every<, if = ≠<,
then & ` = ≠<.

In the base case, = = 0. If< is not equal to 0, then< = :+1
for some natural number : . We have an axiom that says
∀G 0 ≠ G ′. By a quanti�er axiom, replacing G by : , we can
conclude 0 ≠ :

′
. But :

′
is just<.

In the induction step, we can assume the claim is true for
=, and consider = + 1. Let < be any natural number. �ere
are two possibilities: either < = 0 or for some : we have
< = : + 1. �e �rst case is handled as above. In the second
case, suppose = + 1 ≠ : + 1. �en = ≠ : . By the induction
hypothesis for = we have Q ` = ≠ : . We have an axiom that
says ∀G ∀~ G ′ = ~ ′→G = ~. Using a quanti�er axiom, we have
=′ = :

′→ = = : . Using propositional logic, we can conclude,
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18. Representability in Q

in Q, = ≠ :→=′ ≠ :
′
. Using modus ponens, we can conclude

=′ ≠ :
′
, which is what we want, since :

′
is<. �

Note that the lemma does not say much: in essence it says
that Q can prove that di�erent numerals denote di�erent ob-
jects. For example, Q proves 0′′ ≠ 0′′′. But showing that this
holds in general requires some care. Note also that although
we are using induction, it is induction outside of Q.

Proof of Proposition 18.12. If= =<, then= and< are the same
term, and j= (=,<) = 1. But Q ` (= =< ∧ 1 = 1), so it proves
i= (=,<, 1). If = ≠ <, then j= (=,<) = 0. By Lemma 18.13,
Q ` = ≠< and so also (= ≠< ∧ 0 = 0). �us Q ` i= (=,<, 0).

For the second part, we also have two cases. If = = <,
we have to show that Q ` ∀~ (i= (=,<,~) → ~ = 1). Arguing
informally, suppose i= (=,<,~), i.e.,

(= = = ∧ ~ = 1) ∨ (= ≠ = ∧ ~ = 0)

�e le� disjunct implies ~ = 1 by logic; the right contradicts
= = = which is provable by logic.

Suppose, on the other hand, that = ≠<. �en i= (=,<,~)
is

(= =< ∧ ~ = 1) ∨ (= ≠< ∧ ~ = 0)

Here, the le� disjunct contradicts = ≠<, which is provable in
Q by Lemma 18.13; the right disjunct entails ~ = 0. �
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Proposition 18.14. �e addition function add(G0, G1) = G0 +
G1 is represented in Q by

~ = (G0 + G1).

Lemma 18.15. Q ` (= +<) = = +<

Proof. We prove this by induction on<. If< = 0, the claim is
that Q ` (= + 0) = =. �is follows by axiom &4. Now suppose
the claim for <; let’s prove the claim for < + 1, i.e., prove
that Q ` (= +< + 1) = = +< + 1. Note that< + 1 is just<′,
and = +< + 1 is just = +<′. By axiom &5, Q ` (= +<′) =
(= +<) ′. By induction hypothesis, Q ` (= +<) = = +<. So
Q ` (= +<′) = = +<′. �

Proof of Proposition 18.14. �e formula iadd (G0, G1, ~) repre-
senting add is ~ = (G0 + G1). First we show that if add(=,<) =
: , then Q ` iadd (=,<, :), i.e., Q ` : = (= +<). But since
: = = +<, : just is = +<, and we’ve shown in Lemma 18.15
that Q ` (= +<) = = +<.

We also have to show that if add(=,<) = : , then

Q ` ∀~ (iadd (=,<,~) → ~ = :).

Suppose we have (= +<) = ~. Since

Q ` (= +<) = = +<,

we can replace the le� side with = +< and get = +< = ~, for
arbitrary ~. �
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Proposition 18.16. �e multiplication function mult(G0, G1) =
G0 · G1 is represented in Q by

~ = (G0 × G1).

Proof. Exercise. �

Lemma 18.17. Q ` (= ×<) = = ·<

Proof. Exercise. �

Recall that we use × for the function symbol of the lan-
guage of arithmetic, and · for the ordinary multiplication
operation on numbers. So · can appear between expressions
for numbers (such as in< · =) while × appears only between
terms of the language of arithmetic (such as in (< ×=)). Even
more confusingly, + is used for both the function symbol and
the addition operation. When it appears between terms—e.g.,
in (= +<)—it is the 2-place function symbol of the language
of arithmetic, and when it appears between numbers—e.g.,
in = +<—it is the addition operation. �is includes the case
= +<: this is the standard numeral corresponding to the num-
ber = +<.

18.6 Composition is Representable in Q

Suppose ℎ is de�ned by

ℎ(G0, . . . , G;−1) = 5 (60 (G0, . . . , G;−1), . . . , 6:−1 (G0, . . . , G;−1)) .
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where we have already found formulas i 5 , i60 , . . . , i6:−1 rep-
resenting the functions 5 , and 60, . . . , 6:−1, respectively. We
have to �nd a formula iℎ representing ℎ.

Let’s start with a simple case, where all functions are 1-
place, i.e., consider ℎ(G) = 5 (6(G)). If i 5 (~, I) represents 5 ,
and i6 (G,~) represents 6, we need a formula iℎ (G, I) that
represents ℎ. Note that ℎ(G) = I i� there is a ~ such that
both I = 5 (~) and ~ = 6(G). (If ℎ(G) = I, then 6(G) is such
a ~; if such a ~ exists, then since ~ = 6(G) and I = 5 (~),
I = 5 (6(G)).) �is suggests that ∃~ (i6 (G,~) ∧ i 5 (~, I)) is
a good candidate for iℎ (G, I). We just have to verify that Q
proves the relevant formulas.

Proposition 18.18. If ℎ(=) =<, then Q ` iℎ (=,<).

Proof. Suppose ℎ(=) = <, i.e., 5 (6(=)) = <. Let : = 6(=).
�en

Q ` i6 (=, :)

since i6 represents 6, and

Q ` i 5 (:,<)

since i 5 represents 5 . �us,

Q ` i6 (=, :) ∧ i 5 (:,<)
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and consequently also

Q ` ∃~ (i6 (=,~) ∧ i 5 (~,<)),

i.e., Q ` iℎ (=,<). �

Proposition 18.19. If ℎ(=) =<, then Q ` ∀I (iℎ (=, I)→I =

<).

Proof. Suppose ℎ(=) = <, i.e., 5 (6(=)) = <. Let : = 6(=).
�en

Q ` ∀~ (i6 (=,~) → ~ = :)

since i6 represents 6, and

Q ` ∀I (i 5 (:, I) → I =<)

since i 5 represents 5 . Using just a li�le bit of logic, we can
show that also

Q ` ∀I (∃~ (i6 (=,~) ∧ i 5 (~, I)) → I =<).

i.e., Q ` ∀~ (iℎ (=,~) → ~ =<). �

�e same idea works in the more complex case where 5
and 68 have arity greater than 1.
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Proposition 18.20. Ifi 5 (~0, . . . , ~:−1, I) represents 5 (~0, . . . , ~:−1)
in Q, and i68 (G0, . . . , G;−1, ~) represents 68 (G0, . . . , G;−1) in Q,
then

∃~0, . . . ∃~:−1 (i60 (G0, . . . , G;−1, ~0) ∧ · · · ∧
i6:−1 (G0, . . . , G;−1, ~:−1) ∧ i 5 (~0, . . . , ~:−1, I))

represents

ℎ(G0, . . . , G;−1) = 5 (60 (G0, . . . , G;−1), . . . , 6:−1 (G0, . . . , G;−1)) .

Proof. Exercise. �

18.7 Regular Minimization is Representable
in Q

Let’s consider unbounded search. Suppose 6(G, I) is regular
and representable in Q, say by the formula i6 (G, I,~). Let 5
be de�ned by 5 (I) = `G [6(G, I) = 0]. We would like to �nd
a formula i 5 (I,~) representing 5 . �e value of 5 (I) is that
number G which (a) satis�es 6(G, I) = 0 and (b) is the least
such, i.e., for any F < G , 6(F, I) ≠ 0. So the following is a
natural choice:

i 5 (I,~) ≡ i6 (~, I, 0) ∧ ∀F (F < ~→¬i6 (F, I, 0)) .

In the general case, of course, we would have to replace I with
I0, . . . , I: .
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�e proof, again, will involve some lemmas about things
Q is strong enough to prove.

Lemma 18.21. For every constant symbol 0 and every natural
number =,

Q ` (0′ + =) = (0 + =) ′.

Proof. �e proof is, as usual, by induction on =. In the base
case, = = 0, we need to show that Q proves (0′ + 0) = (0 + 0) ′.
But we have:

Q ` (0′ + 0) = 0′ by axiom &4 (18.1)
Q ` (0 + 0) = 0 by axiom &4 (18.2)
Q ` (0 + 0) ′ = 0′ by eq. (18.2) (18.3)
Q ` (0′ + 0) = (0 + 0) ′ by eq. (18.1) and eq. (18.3)

In the induction step, we can assume that we have shown that
Q ` (0′ +=) = (0 +=) ′. Since = + 1 is =′, we need to show that
Q proves (0′ + =′) = (0 + =′) ′. We have:

Q ` (0′ + =′) = (0′ + =) ′ by axiom &5 (18.4)
Q ` (0′ + =′) = (0 + =′) ′ inductive hypothesis (18.5)
Q ` (0′ + =) ′ = (0 + =′) ′ by eq. (18.4) and eq. (18.5). �

It is again worth mentioning that this is weaker than
saying that Q proves ∀G ∀~ (G ′ + ~) = (G + ~) ′. Although this
sentence is true in N, Q does not prove it.
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Lemma 18.22. Q ` ∀G ¬G < 0.

Proof. We give the proof informally (i.e., only giving hints as
to how to construct the formal derivation).

We have to prove ¬0 < 0 for an arbitrary 0. By the def-
inition of <, we need to prove ¬∃~ (~ ′ + 0) = 0 in Q. We’ll
assume ∃~ (~ ′ + 0) = 0 and prove a contradiction. Suppose
(1 ′ + 0) = 0. Using &3, we have that 0 = 0 ∨ ∃~ 0 = ~ ′. We
distinguish cases.

Case 1: 0 = 0 holds. From (1 ′+0) = 0, we have (1 ′+0) = 0.
By axiom &4 of Q, we have (1 ′ + 0) = 1 ′, and hence 1 ′ = 0.
But by axiom &2 we also have 1 ′ ≠ 0, a contradiction.

Case 2: For some 2 , 0 = 2 ′. But then we have (1 ′ + 2 ′) = 0.
By axiom &5, we have (1 ′ + 2) ′ = 0, again contradicting
axiom &2. �

Lemma 18.23. For every natural number =,

Q ` ∀G (G < = + 1→ (G = 0 ∨ · · · ∨ G = =)).

Proof. We use induction on =. Let us consider the base case,
when = = 0. In that case, we need to show 0 < 1→ 0 = 0, for
arbitrary 0. Suppose 0 < 1. �en by the de�ning axiom for <,
we have ∃~ (~ ′ + 0) = 0′ (since 1 ≡ 0′).

Suppose 1 has that property, i.e., we have (1 ′ + 0) = 0′.
We need to show 0 = 0. By axiom &3, we have either 0 = 0
or that there is a 2 such that 0 = 2 ′. In the former case,
there is nothing to show. So suppose 0 = 2 ′. �en we have
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(1 ′ + 2 ′) = 0′. By axiom &5 of Q, we have (1 ′ + 2) ′ = 0′. By
axiom &1, we have (1 ′ + 2) = 0. But this means, by axiom &8,
that 2 < 0, contradicting Lemma 18.22.

Now for the inductive step. We prove the case for = + 1,
assuming the case for =. So suppose 0 < = + 2. Again using
&3 we can distinguish two cases: 0 = 0 and for some 1, 0 = 2 ′.
In the �rst case, 0 = 0∨ · · · ∨0 = = + 1 follows trivially. In the
second case, we have 2 ′ < = + 2, i.e., 2 ′ < = + 1′. By axiom&8,
for some 3 , (3 ′ + 2 ′) = = + 1′. By axiom &5, (3 ′ + 2) ′ = = + 1′.
By axiom &1, (3 ′ + 2) = = + 1, and so 2 < = + 1 by axiom &8.
By inductive hypothesis, 2 = 0∨ · · · ∨2 = =. From this, we get
2 ′ = 0′ ∨ · · · ∨ 2 ′ = =′ by logic, and so 0 = 1 ∨ · · · ∨ 0 = = + 1
since 0 = 2 ′. �

Lemma 18.24. For every natural number<,

Q ` ∀~ ((~ < < ∨< < ~) ∨ ~ =<).

Proof. By induction on <. First, consider the case < = 0.
Q ` ∀~ (~ = 0 ∨ ∃I ~ = I ′) by &3. Let 0 be arbitrary. �en
either 0 = 0 or for some 1, 0 = 1 ′. In the former case, we
also have (0 < 0 ∨ 0 < 0) ∨ 0 = 0. But if 0 = 1 ′, then
(1 ′ + 0) = (0 + 0) by the logic of =. By &4, (0 + 0) = 0, so we
have (1 ′ + 0) = 0, and hence ∃I (I ′ + 0) = 0. By the de�nition
of < in &8, 0 < 0. If 0 < 0, then also (0 < 0 ∨ 0 < 0) ∨ 0 = 0.

Now suppose we have

Q ` ∀~ ((~ < < ∨< < ~) ∨ ~ =<)
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and we want to show

Q ` ∀~ ((~ < < + 1 ∨< + 1 < ~) ∨ ~ =< + 1)

Let 0 be arbitrary. By&3, either 0 = 0 or for some 1, 0 = 1 ′. In
the �rst case, we have<′ +0 =< + 1 by&4, and so 0 < < + 1
by &8.

Now consider the second case, 0 = 1 ′. By the induction
hypothesis, (1 < < ∨< < 1) ∨ 1 =<.

�e �rst disjunct 1 < < is equivalent (by &8) to ∃I (I ′ +
1) =<. Suppose 2 has this property. If (2 ′ + 1) =<, then also
(2 ′+1) ′ =<′. By&5, (2 ′+1) ′ = (2 ′+1 ′). Hence, (2 ′+1 ′) =<′.
We get ∃D (D ′ +1 ′) =< + 1 by existentially generalizing on 2 ′
and keeping in mind that<′ ≡ < + 1. Hence, if 1 < < then
1 ′ < < + 1 and so 0 < < + 1.

Now suppose < < 1, i.e., ∃I (I ′ +<) = 1. Suppose 2 is
such a I, i.e., (2 ′ +<) = 1. By logic, (2 ′ +<) ′ = 1 ′. By &5,
(2 ′ +<′) = 1 ′. Since 0 = 1 ′ and<′ ≡< + 1, (2 ′ +< + 1) = 0.
By &8,< + 1 < 0.

Finally, assume 1 = <. �en, by logic, 1 ′ = <′, and so
0 =< + 1.

Hence, from each disjunct of the case for< and 1, we can
obtain the corresponding disjunct for for< + 1 and 0. �

Proposition 18.25. If i6 (G, I,~) represents 6(G, I) in Q, then

i 5 (I,~) ≡ i6 (~, I, 0) ∧ ∀F (F < ~→¬i6 (F, I, 0)) .

represents 5 (I) = `G [6(G, I) = 0].
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Proof. First we show that if 5 (=) =<, then Q ` i 5 (=,<), i.e.,

Q ` i6 (<,=, 0) ∧ ∀F (F < <→¬i6 (F,=, 0)) .

Sincei6 (G, I,~) represents6(G, I) and6(<,=) = 0 if 5 (=) =<,
we have

Q ` i6 (<,=, 0).

If 5 (=) =<, then for every : < <, 6(:, =) ≠ 0. So

Q ` ¬i6 (:, =, 0).

We get that

Q ` ∀F (F < <→¬i6 (F,=, 0)) . (18.6)

by Lemma 18.22 in case< = 0 and by Lemma 18.23 otherwise.
Now let’s show that if 5 (=) =<, then Q ` ∀~ (i 5 (=,~) →

~ = <). We again sketch the argument informally, leaving
the formalization to the reader.

Suppose i 5 (=,1). From this we get (a) i6 (1, =, 0) and (b)
∀F (F < 1→¬i6 (F,=, 0)). By Lemma 18.24, (1 < < ∨< <

1) ∨ 1 =<. We’ll show that both 1 < < and< < 1 leads to a
contradiction.

If < < 1, then ¬i6 (<,=, 0) from (b). But < = 5 (=), so
6(<,=) = 0, and so Q ` i6 (<,=, 0) since i6 represents 6. So
we have a contradiction.
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Now suppose 1 < <. �en since Q ` ∀F (F < < →
¬i6 (F,=, 0)) by eq. (18.6), we get ¬i6 (1, =, 0). �is again
contradicts (a). �

18.8 Computable Functions are
Representable in Q

�eorem 18.26. Every computable function is representable
in Q.

Proof. For de�niteness, and using the Church-Turing �esis,
let’s say that a function is computable i� it is general recursive.
�e general recursive functions are those which can be de-
�ned from the zero function zero, the successor function succ,
and the projection function %=8 using composition, primitive
recursion, and regular minimization. By Lemma 18.8, any
function ℎ that can be de�ned from 5 and 6 can also be de-
�ned using composition and regular minimization from 5 , 6,
and zero, succ, %=8 , add, mult, j=. Consequently, a function is
general recursive i� it can be de�ned from zero, succ, %=8 , add,
mult, j= using composition and regular minimization.

We’ve furthermore shown that the basic functions in ques-
tion are representable in Q (Propositions 18.9 to 18.12, 18.14
and 18.16), and that any function de�ned from representable
functions by composition or regular minimization (Proposi-
tion 18.20, Proposition 18.25) is also representable. �us every
general recursive function is representable in Q. �
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We have shown that the set of computable functions can
be characterized as the set of functions representable in Q.
In fact, the proof is more general. From the de�nition of rep-
resentability, it is not hard to see that any theory extending
Q (or in which one can interpret Q) can represent the com-
putable functions. But, conversely, in any proof system in
which the notion of proof is computable, every representable
function is computable. So, for example, the set of computable
functions can be characterized as the set of functions repre-
sentable in Peano arithmetic, or even Zermelo-Fraenkel set
theory. As Gödel noted, this is somewhat surprising. We
will see that when it comes to provability, questions are very
sensitive to which theory you consider; roughly, the stronger
the axioms, the more you can prove. But across a wide range
of axiomatic theories, the representable functions are exactly
the computable ones; stronger theories do not represent more
functions as long as they are axiomatizable.

18.9 Representing Relations

Let us say what it means for a relation to be representable.

De�nition 18.27. A relation '(G0, . . . , G: ) on the natural
numbers is representable inQ if there is a formulai' (G0, . . . , G: )
such that whenever'(=0, . . . , =: ) is true,Q provesi' (=0, . . . , =: ),
and whenever '(=0, . . . , =: ) is false, Q proves ¬i' (=0, . . . , =: ).
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�eorem 18.28. A relation is representable in Q if and only
if it is computable.

Proof. For the forwards direction, suppose'(G0, . . . , G: ) is rep-
resented by the formula i' (G0, . . . , G: ). Here is an algorithm
for computing ': on input =0, . . . , =: , simultaneously search
for a proof of i' (=0, . . . , =: ) and a proof of ¬i' (=0, . . . , =: ).
By our hypothesis, the search is bound to �nd one or the
other; if it is the �rst, report “yes,” and otherwise, report “no.”

In the other direction, suppose'(G0, . . . , G: ) is computable.
By de�nition, this means that the function j' (G0, . . . , G: ) is
computable. By �eorem 18.2, j' is represented by a for-
mula, say ij' (G0, . . . , G: , ~). Let i' (G0, . . . , G: ) be the formula
ij' (G0, . . . , G: , 1). �en for any =0, . . . , =: , if '(=0, . . . , =: )
is true, then j' (=0, . . . , =: ) = 1, in which case Q proves
ij' (=0, . . . , =: , 1), and so Q proves i' (=0, . . . , =: ). On the
other hand, if '(=0, . . . , =: ) is false, then j' (=0, . . . , =: ) = 0.
�is means that Q proves

∀~ (ij' (=0, . . . , =: , ~) → ~ = 0).

Since Q proves 0 ≠ 1, Q proves ¬ij' (=0, . . . , =: , 1), and so it
proves ¬i' (=0, . . . , =: ). �

18.10 Undecidability

We call a theory T undecidable if there is no computational
procedure which, a�er �nitely many steps and unfailingly,
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provides a correct answer to the question “does T prove i?”
for any sentence i in the language of T. So Q would be
decidable i� there were a computational procedure which
decides, given a sentence i in the language of arithmetic,
whether Q ` i or not. We can make this more precise by
asking: Is the relation ProvQ (~), which holds of ~ i� ~ is the
Gödel number of a sentence provable in Q, recursive? �e
answer is: no.

�eorem 18.29. Q is undecidable, i.e., the relation

ProvQ (~) ⇔ Sent(~) ∧ ∃G PrfQ (G,~)

is not recursive.

Proof. Suppose it were. �en we could solve the halting prob-
lem as follows: Given 4 and =, we know that i4 (=) ↓ i�
there is an B such that ) (4, =, B), where ) is Kleene’s pred-
icate from �. Since) is primitive recursive it is representable
in Q by a formula k) , that is, Q ` k) (4, =, B) i� ) (4, =, B). If
Q ` k) (4, =, B) then also Q ` ∃~k) (4, =,~). If no such B exists,
then Q ` ¬k) (4, =, B) for every B . But Q is l-consistent, i.e., if
Q ` ¬i (=) for every = ∈ N, then Q 0 ∃~ i (~). We know this
because the axioms of Q are true in the standard model N.
So, Q 0 ∃~k) (4, =,~). In other words, Q ` ∃~k) (4, =,~) i�
there is an B such that ) (4, =, B), i.e., i� i4 (=) ↓. From 4 and =
we can compute #∃~k) (4, =,~)#, let 6(4, =) be the primitive
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recursive function which does that. So

ℎ(4, =) =
{

1 if ProvQ (6(4, =))
0 otherwise.

�is would show that ℎ is recursive if ProvQ is. But ℎ is not
recursive, by �, so ProvQ cannot be either. �

Corollary 18.30. First-order logic is undecidable.

Proof. If �rst-order logic were decidable, provability in Q
would be as well, since Q ` i i� ` l → i , where l is the
conjunction of the axioms of Q. �

Problems

Problem 18.1. Prove that ~ = 0, ~ = G ′, and ~ = G8 represent
zero, succ, and %=8 , respectively.

Problem 18.2. Prove Lemma 18.17.

Problem 18.3. Use Lemma 18.17 to prove Proposition 18.16.

Problem 18.4. Using the proofs of Proposition 18.19 and
Proposition 18.19 as a guide, carry out the proof of Proposi-
tion 18.20 in detail.

Problem 18.5. Show that if ' is representable in Q, so is j' .
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Chapter 19

Incompleteness and
Provability

19.1 Introduction

Hilbert thought that a system of axioms for a mathematical
structure, such as the natural numbers, is inadequate unless
it allows one to derive all true statements about the structure.
Combined with his later interest in formal systems of deduc-
tion, this suggests that he thought that we should guarantee
that, say, the formal systems we are using to reason about
the natural numbers is not only consistent, but also complete,
i.e., every statement in its language is either derivable or its
negation is. Gödel’s �rst incompleteness theorem shows that
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no such system of axioms exists: there is no complete, consis-
tent, axiomatizable formal system for arithmetic. In fact, no
“su�ciently strong,” consistent, axiomatizable mathematical
theory is complete.

A more important goal of Hilbert’s, the centerpiece of his
program for the justi�cation of modern (“classical”) mathemat-
ics, was to �nd �nitary consistency proofs for formal systems
representing classical reasoning. With regard to Hilbert’s pro-
gram, then, Gödel’s second incompleteness theorem was a
much bigger blow. �e second incompleteness theorem can be
stated in vague terms, like the �rst incompleteness theorem.
Roughly speaking, it says that no su�ciently strong theory
of arithmetic can prove its own consistency. We will have to
take “su�ciently strong” to include a li�le bit more than Q.

�e idea behind Gödel’s original proof of the incomplete-
ness theorem can be found in the Epimenides paradox. Epi-
menides, a Cretan, asserted that all Cretans are liars; a more
direct form of the paradox is the assertion “this sentence is
false.” Essentially, by replacing truth with derivability, Gödel
was able to formalize a sentence which, in a roundabout way,
asserts that it itself is not derivable. If that sentence were deriv-
able, the theory would then be inconsistent. Gödel showed
that the negation of that sentence is also not derivable from
the system of axioms he was considering. (For this second
part, Gödel had to assume that the theory T is what’s called
“l-consistent.” l-Consistency is related to consistency, but is
a stronger property. A few years a�er Gödel, Rosser showed
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that assuming simple consistency of T is enough.)
�e �rst challenge is to understand how one can construct

a sentence that refers to itself. For every formula i in the
language of Q, let piq denote the numeral corresponding
to #i#. �ink about what this means: i is a formula in the
language of Q, #i# is a natural number, and piq is a term in
the language of Q. So every formula i in the language of Q
has a name, piq, which is a term in the language of Q; this
provides us with a conceptual framework in which formulas
in the language of Q can “say” things about other formulas.
�e following lemma is known as the �xed-point lemma.

Lemma 19.1. Let T be any theory extending Q, and letk (G)
be any formula with only the variable G free. �en there is a
sentence i such that T ` i↔k (piq).

�e lemma asserts that given any propertyk (G), there is
a sentence i that asserts “k (G) is true of me,” and T “knows”
this.

How can we construct such a sentence? Consider the
following version of the Epimenides paradox, due to �ine:

“Yields falsehood when preceded by its quotation”
yields falsehood when preceded by its quotation.

�is sentence is not directly self-referential. It simply makes
an assertion about the syntactic objects between quotes, and,
in doing so, it is on par with sentences like

453



19. Incompleteness and Provability

1. “Robert” is a nice name.

2. “I ran.” is a short sentence.

3. “Has three words” has three words.

But what happens when one takes the phrase “yields falsehood
when preceded by its quotation,” and precedes it with a quoted
version of itself? �en one has the original sentence! In short,
the sentence asserts that it is false.

19.2 �e Fixed-Point Lemma

�e �xed-point lemma says that for any formulak (G), there is
a sentence i such that T ` i↔k (piq), provided T extends Q.
In the case of the liar sentence, we’d want i to be equivalent
(provably in T) to “piq is false,” i.e., the statement that #i#

is the Gödel number of a false sentence. To understand the
idea of the proof, it will be useful to compare it with �ine’s
informal gloss of i as, “‘yields a falsehood when preceded by
its own quotation’ yields a falsehood when preceded by its
own quotation.” �e operation of taking an expression, and
then forming a sentence by preceding this expression by its
own quotation may be called diagonalizing the expression,
and the result its diagonalization. So, the diagonalization
of ‘yields a falsehood when preceded by its own quotation’
is “‘yields a falsehood when preceded by its own quotation’
yields a falsehood when preceded by its own quotation.” Now
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note that �ine’s liar sentence is not the diagonalization of
‘yields a falsehood’ but of ‘yields a falsehood when preceded
by its own quotation.’ So the property being diagonalized to
yield the liar sentence itself involves diagonalization!

In the language of arithmetic, we form quotations of a for-
mula with one free variable by computing its Gödel numbers
and then substituting the standard numeral for that Gödel
number into the free variable. �e diagonalization of U (G)
is U (=), where = = #U (G)#. (From now on, let’s abbreviate
#U (G)# as pU (G)q.) So ifk (G) is “is a falsehood,” then “yields a

falsehood if preceded by its own quotation,” would be “yields a
falsehood when applied to the Gödel number of its diagonaliza-
tion.” If we had a symbol 3806 for the function diag(=) which
computes the Gödel number of the diagonalization of the for-
mula with Gödel number=, we could writeU (G) ask (3806(G)).
And �ine’s version of the liar sentence would then be the di-
agonalization of it, i.e., U (pU (G)q) ork (3806(pk (3806(G))q)).
Of course, k (G) could now be any other property, and the
same construction would work. For the incompleteness theo-
rem, we’ll takek (G) to be “G is not derivable in T.” �en U (G)
would be “yields a sentence not derivable in T when applied
to the Gödel number of its diagonalization.”

To formalize this in T, we have to �nd a way to for-
malize diag. �e function diag(=) is computable, in fact,
it is primitive recursive: if = is the Gödel number of a for-
mula U (G), diag(=) returns the Gödel number of U (pU (G)q).
(Recall, pU (G)q is the standard numeral of the Gödel number
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of U (G), i.e., #U (G)#). If 3806 were a function symbol in T rep-
resenting the function diag, we could take i to be the formula
k (3806(pk (3806(G))q)). Notice that

diag( #k (3806(G))#) = #k (3806(pk (3806(G))q))#

= #i#.

Assuming T can derive

3806(pk (3806(G))q) = piq,

it can derivek (3806(pk (3806(G))q)) ↔k (piq). But the le�
hand side is, by de�nition, i .

Of course, 3806 will in general not be a function symbol of
T, and certainly is not one of Q. But, since diag is computable,
it is representable in Q by some formula \diag (G,~). So instead
of writing k (3806(G)) we can write ∃~ (\diag (G,~) ∧ k (~)).
Otherwise, the proof sketched above goes through, and in
fact, it goes through already in Q.

Lemma 19.2. Let k (G) be any formula with one free vari-
able G . �en there is a sentence i such that Q ` i↔k (piq).

Proof. Given k (G), let U (G) be the formula ∃~ (\diag (G,~) ∧
k (~)) and leti be its diagonalization, i.e., the formulaU (pU (G)q).

Since \diag represents diag, and diag( #U (G)#) = #i#, Q can
derive

\diag (pU (G)q, piq) (19.1)
∀~ (\diag (pU (G)q, ~) → ~ = piq). (19.2)
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Now we show that Q ` i ↔k (piq). We argue informally,
using just logic and facts derivable in Q.

First, suppose i , i.e., U (pU (G)q). Going back to the de�ni-
tion of U (G), we see that U (pU (G)q) just is

∃~ (\diag (pU (G)q, ~) ∧k (~)).

Consider such a ~. Since \diag (pU (G)q, ~), by eq. (19.2), ~ =

piq. So, fromk (~) we havek (piq).
Now supposek (piq). By eq. (19.1), we have\diag (pU (G)q, piq)∧

k (piq). It follows that∃~ (\diag (pU (G)q, ~)∧k (~)). But that’s
just U (pUq), i.e., i . �

You should compare this to the proof of the �xed-point
lemma in computability theory. �e di�erence is that here we
want to de�ne a statement in terms of itself, whereas there we
wanted to de�ne a function in terms of itself; this di�erence
aside, it is really the same idea.

19.3 �e First Incompleteness �eorem

We can now describe Gödel’s original proof of the �rst in-
completeness theorem. Let T be any computably axiomatized
theory in a language extending the language of arithmetic,
such that T includes the axioms of Q. �is means that, in
particular, T represents computable functions and relations.

We have argued that, given a reasonable coding of for-
mulas and proofs as numbers, the relation Prf) (G,~) is com-
putable, where Prf) (G,~) holds if and only if G is the Gödel

457



19. Incompleteness and Provability

number of a derivation of the formula with Gödel number ~
in T. In fact, for the particular theory that Gödel had in mind,
Gödel was able to show that this relation is primitive recursive,
using the list of 45 functions and relations in his paper. �e
45th relation, G�~, is just Prf) (G,~) for his particular choice
of T. Remember that where Gödel uses the word “recursive” in
his paper, we would now use the phrase “primitive recursive.”

Since Prf) (G,~) is computable, it is representable in T. We
will use Prf) (G,~) to refer to the formula that represents it.
Let Prov) (~) be the formula ∃G Prf) (G,~). �is describes the
46th relation, Bew(~), on Gödel’s list. As Gödel notes, this
is the only relation that “cannot be asserted to be recursive.”
What he probably meant is this: from the de�nition, it is not
clear that it is computable; and later developments, in fact,
show that it isn’t.

Let T be an axiomatizable theory containing Q. �en
Prf) (G,~) is decidable, hence representable in Q by a for-
mula Prf) (G,~). Let Prov) (~) be the formula we described
above. By the �xed-point lemma, there is a formula WT such
that Q (and hence T) derives

WT↔¬Prov) (pWTq). (19.3)

Note that WT says, in essence, “WT is not derivable in T.”

Lemma 19.3. If T is a consistent, axiomatizable theory extend-
ing Q, then T 0 WT.
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Proof. Suppose T derives WT. �en there is a derivation, and
so, for some number<, the relation Prf) (<, #WT

#) holds. But
then Q derives the sentence Prf) (<, pWTq). So Q derives
∃G Prf) (G, pWTq), which is, by de�nition, Prov) (pWTq). By
eq. (19.3), Q derives ¬WT, and since T extends Q, so does T.
We have shown that if T derives WT, then it also derives ¬WT,
and hence it would be inconsistent. �

De�nition 19.4. A theory T is l-consistent if the following
holds: if ∃G i (G) is any sentence and T derives ¬i (0), ¬i (1),
¬i (2), . . . then T does not prove ∃G i (G).

Note that every l-consistent theory is also consistent.
�is follows simply from the fact that if T is inconsistent, then
T ` i for every i . In particular, if T is inconsistent, it derives
both ¬i (=) for every = and also derives ∃G i (G). So, if T is
inconsistent, it is l-inconsistent. By contraposition, if T is
l-consistent, it must be consistent.

Lemma 19.5. If T is an l-consistent, axiomatizable theory
extending Q, then T 0 ¬WT.

Proof. We show that if T derives ¬WT, then it isl-inconsistent.
SupposeT derives¬WT. IfT is inconsistent, it isl-inconsistent,
and we are done. Otherwise, T is consistent, so it does not
derive WT by Lemma 19.3. Since there is no derivation of WT in
T, Q derives

¬Prf) (0, pWTq),¬Prf) (1, pWTq),¬Prf) (2, pWTq), . . .
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and so does T. On the other hand, by eq. (19.3), ¬WT is equiva-
lent to ∃G Prf) (G, pWTq). So T is l-inconsistent. �

�eorem 19.6. Let T be any l-consistent, axiomatizable the-
ory extending Q. �en T is not complete.

Proof. If T is l-consistent, it is consistent, so T 0 WT by
Lemma 19.3. By Lemma 19.5, T 0 ¬WT. �is means that T
is incomplete, since it derives neither WT nor ¬WT. �

19.4 Rosser’s �eorem

Can we modify Gödel’s proof to get a stronger result, replac-
ing “l-consistent” with simply “consistent”? �e answer is
“yes,” using a trick discovered by Rosser. Rosser’s trick is to
use a “modi�ed” derivability predicate RProv) (~) instead of
Prov) (~).

�eorem 19.7. Let T be any consistent, axiomatizable theory
extending Q. �en T is not complete.

Proof. Recall that Prov) (~) is de�ned as ∃G Prf) (G,~), where
Prf) (G,~) represents the decidable relation which holds i�
G is the Gödel number of a derivation of the sentence with
Gödel number ~. �e relation that holds between G and ~ if
G is the Gödel number of a refutation of the sentence with
Gödel number ~ is also decidable. Let not(G) be the primitive
recursive function which does the following: if G is the code of
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a formula i , not(G) is a code of ¬i . �en Ref) (G,~) holds i�
Prf) (G, not(~)). Let Ref) (G,~) represent it. �en, if T ` ¬i
and X is a corresponding derivation, Q ` Ref) (pXq, piq). We
de�ne RProv) (~) as

∃G (Prf) (G,~) ∧ ∀I (I < G →¬Ref) (I,~))).

Roughly, RProv) (~) says “there is a proof of ~ in T, and
there is no shorter refutation of ~.” Assuming T is consis-
tent, RProv) (~) is true of the same numbers as Prov) (~); but
from the point of view of provability in T (and we now know
that there is a di�erence between truth and provability!) the
two have di�erent properties. If T is inconsistent, then the two
do not hold of the same numbers! (RProv) (~) is o�en read as
“~ is Rosser provable.” Since, as just discussed, Rosser prov-
ability is not some special kind of provability—in inconsistent
theories, there are sentences that are provable but not Rosser
provable—this may be confusing. To avoid the confusion, you
could instead read it as “~ is shmovable.”)

By the �xed-point lemma, there is a formula dT such that

Q ` dT↔¬RProv) (pdTq). (19.4)

In contrast to the proof of �eorem 19.6, here we claim that
if T is consistent, T doesn’t derive dT, and T also doesn’t
derive ¬dT. (In other words, we don’t need the assumption of
l-consistency.)

First, let’s show that T 0 d) . Suppose it did, so there is
a derivation of d) from ) ; let = be its Gödel number. �en
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Q ` Prf) (=, pd) q), since Prf) represents Prf) in Q. Also,
for each : < =, : is not the Gödel number of ¬d) , since T
is consistent. So for each : < =, Q ` ¬Ref) (:, pd) q). By
Lemma 18.23, Q ` ∀I (I < =→¬Ref) (I, pd) q)). �us,

Q ` ∃G (Prf) (G, pd) q) ∧ ∀I (I < G →¬Ref) (I, pd) q))),

but that’s just RProv) (pd) q). By eq. (19.4), Q ` ¬d) . Since
T extends Q, also T ` ¬d) . We’ve assumed that T ` d) , so
T would be inconsistent, contrary to the assumption of the
theorem.

Now, let’s show that T 0 ¬d) . Again, suppose it did,
and suppose = is the Gödel number of a derivation of ¬d) .
�en Ref) (=, #d)

#) holds, and since Ref) represents Ref) in
Q, Q ` Ref) (=, pd) q). We’ll again show that T would then be
inconsistent because it would also derive d) . Since

Q ` d) ↔¬RProv) (pd) q),

and since T extends Q, it su�ces to show that

Q ` ¬RProv) (pd) q).

�e sentence ¬RProv) (pd) q), i.e.,

¬∃G (Prf) (G, pd) q) ∧ ∀I (I < G →¬Ref) (I, pd) q)))

is logically equivalent to

∀G (Prf) (G, pd) q) → ∃I (I < G ∧ Ref) (I, pd) q)))
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We argue informally using logic, making use of facts about
what Q derives. Suppose G is arbitrary and Prf) (G, pd) q).
We already know that T 0 d) , and so for every : , Q `
¬Prf) (:, pd) q). �us, for every : it follows that G ≠ : . In
particular, we have (a) that G ≠ =. We also have ¬(G = 0∨G =

1 ∨ · · · ∨ G = = − 1) and so by Lemma 18.23, (b) ¬(G < =). By
Lemma 18.24, = < G . Since Q ` Ref) (=, pd) q), we have = <

G ∧ Ref) (=, pd) q), and from that ∃I (I < G ∧ Ref) (I, pd) q)).
Since G was arbitrary we get, as required, that

∀G (Prf) (G, pd) q) → ∃I (I < G ∧ Ref) (I, pd) q))). �

19.5 Comparison with Gödel’s Original
Paper

It is worthwhile to spend some time with Gödel’s 1931 paper.
�e introduction sketches the ideas we have just discussed.
Even if you just skim through the paper, it is easy to see what is
going on at each stage: �rst Gödel describes the formal system
% (syntax, axioms, proof rules); then he de�nes the primitive
recursive functions and relations; then he shows that G�~ is
primitive recursive, and argues that the primitive recursive
functions and relations are represented in P. He then goes on
to prove the incompleteness theorem, as above. In Section 3,
he shows that one can take the unprovable assertion to be a
sentence in the language of arithmetic. �is is the origin of
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the V-lemma, which is what we also used to handle sequences
in showing that the recursive functions are representable in
Q. Gödel doesn’t go so far to isolate a minimal set of axioms
that su�ce, but we now know that Q will do the trick. Finally,
in Section 4, he sketches a proof of the second incompleteness
theorem.

Problems

Problem 19.1. Everyl-consistent theory is consistent. Show
that the converse does not hold, i.e., that there are consis-
tent but l-inconsistent theories. Do this by showing that
Q ∪ {¬WQ} is consistent but l-inconsistent.
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Appendix A

Proofs

A.1 Introduction

Based on your experiences in introductory logic, you might
be comfortable with a proof system—probably a natural de-
duction or Fitch style proof system, or perhaps a proof-tree
system. You probably remember doing proofs in these sys-
tems, either proving a formula or show that a given argument
is valid. In order to do this, you applied the rules of the system
until you got the desired end result. In reasoning about logic,
we also prove things, but in most cases we are not using a
proof system. In fact, most of the proofs we consider are done
in English (perhaps, with some symbolic language thrown in)
rather than entirely in the language of �rst-order logic. When
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constructing such proofs, you might at �rst be at a loss—how
do I prove something without a proof system? How do I start?
How do I know if my proof is correct?

Before a�empting a proof, it’s important to know what a
proof is and how to construct one. As implied by the name,
a proof is meant to show that something is true. You might
think of this in terms of a dialogue—someone asks you if
something is true, say, if every prime other than two is an
odd number. To answer “yes” is not enough; they might want
to know why. In this case, you’d give them a proof.

In everyday discourse, it might be enough to gesture at
an answer, or give an incomplete answer. In logic and mathe-
matics, however, we want rigorous proof—we want to show
that something is true beyond any doubt. �is means that
every step in our proof must be justi�ed, and the justi�cation
must be cogent (i.e., the assumption you’re using is actually
assumed in the statement of the theorem you’re proving, the
de�nitions you apply must be correctly applied, the justi�ca-
tions appealed to must be correct inferences, etc.).

Usually, we’re proving some statement. We call the state-
ments we’re proving by various names: propositions, theo-
rems, lemmas, or corollaries. A proposition is a basic proof-
worthy statement: important enough to record, but perhaps
not particularly deep nor applied o�en. A theorem is a sig-
ni�cant, important proposition. Its proof o�en is broken into
several steps, and sometimes it is named a�er the person who
�rst proved it (e.g., Cantor’s �eorem, the Löwenheim-Skolem
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theorem) or a�er the fact it concerns (e.g., the completeness
theorem). A lemma is a proposition or theorem that is used
to in the proof of a more important result. Confusingly, some-
times lemmas are important results in themselves, and also
named a�er the person who introduced them (e.g., Zorn’s
Lemma). A corollary is a result that easily follows from an-
other one.

A statement to be proved o�en contains some assumption
that clari�es about which kinds of things we’re proving some-
thing. It might begin with “Let i be a formula of the form
k→ j” or “Suppose Γ ` i” or something of the sort. �ese are
hypotheses of the proposition, theorem, or lemma, and you
may assume these to be true in your proof. �ey restrict what
we’re proving about, and also introduce some names for the
objects we’re talking about. For instance, if your proposition
begins with “Let i be a formula of the form k → j ,” you’re
proving something about all formulas of a certain sort only
(namely, conditionals), and it’s understood thatk → j is an
arbitrary conditional that your proof will talk about.

A.2 Starting a Proof

But where do you even start?
You’ve been given something to prove, so this should be

the last thing that is mentioned in the proof (you can, obvi-
ously, announce that you’re going to prove it at the beginning,
but you don’t want to use it as an assumption). Write what
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you are trying to prove at the bo�om of a fresh sheet of
paper—this way you don’t lose sight of your goal.

Next, you may have some assumptions that you are able
to use (this will be made clearer when we talk about the
type of proof you are doing in the next section). Write these
at the top of the page and make sure to �ag that they are
assumptions (i.e., if you are assuming ? , write “assume that ? ,”
or “suppose that ?”). Finally, there might be some de�nitions
in the question that you need to know. You might be told to use
a speci�c de�nition, or there might be various de�nitions in
the assumptions or conclusion that you are working towards.
Write these down and ensure that you understand what they
mean.

How you set up your proof will also be dependent upon
the form of the question. �e next section provides details on
how to set up your proof based on the type of sentence.

A.3 Using De�nitions

We mentioned that you must be familiar with all de�nitions
that may be used in the proof, and that you can properly apply
them. �is is a really important point, and it is worth looking
at in a bit more detail. De�nitions are used to abbreviate prop-
erties and relations so we can talk about them more succinctly.
�e introduced abbreviation is called the de�niendum, and
what it abbreviates is the de�niens. In proofs, we o�en have
to go back to how the de�niendum was introduced, because

470



A.3. Using De�nitions

we have to exploit the logical structure of the de�niens (the
long version of which the de�ned term is the abbreviation)
to get through our proof. By unpacking de�nitions, you’re
ensuring that you’re ge�ing to the heart of where the logical
action is.

We’ll start with an example. Suppose you want to prove
the following:

Proposition A.1. For any sets � and �, � ∪ � = � ∪�.

In order to even start the proof, we need to know what it
means for two sets to be identical; i.e., we need to know what
the “=” in that equation means for sets. Sets are de�ned to
be identical whenever they have the same elements. So the
de�nition we have to unpack is:

De�nition A.2. Sets � and � are identical, � = �, i� every
element of � is an element of �, and vice versa.

�is de�nition uses � and � as placeholders for arbitrary
sets. What it de�nes—the de�niendum—is the expression “� =

�” by giving the condition under which � = � is true. �is
condition—“every element of � is an element of �, and vice
versa”—is the de�niens.1 �e de�nition speci�es that � = � is

1In this particular case—and very confusingly!—when � = �, the sets �
and � are just one and the same set, even though we use di�erent le�ers for
it on the le� and the right side. But the ways in which that set is picked out
may be di�erent, and that makes the de�nition non-trivial.
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true if, and only if (we abbreviate this to “i�”) the condition
holds.

When you apply the de�nition, you have to match the
� and � in the de�nition to the case you’re dealing with. In
our case, it means that in order for � ∪ � = � ∪� to be true,
each I ∈ � ∪ � must also be in � ∪ �, and vice versa. �e
expression � ∪ � in the proposition plays the role of � in
the de�nition, and � ∪ � that of �. Since � and � are used
both in the de�nition and in the statement of the proposition
we’re proving, but in di�erent uses, you have to be careful to
make sure you don’t mix up the two. For instance, it would
be a mistake to think that you could prove the proposition by
showing that every element of � is an element of �, and vice
versa—that would show that � = �, not that � ∪ � = � ∪ �.
(Also, since � and � may be any two sets, you won’t get very
far, because if nothing is assumed about � and � they may
well be di�erent sets.)

Within the proof we are dealing with set-theoretic notions
such as union, and so we must also know the meanings of
the symbol ∪ in order to understand how the proof should
proceed. And sometimes, unpacking the de�nition gives rise
to further de�nitions to unpack. For instance,�∪� is de�ned
as {I | I ∈ � or I ∈ �}. So if you want to prove that G ∈ �∪�,
unpacking the de�nition of ∪ tells you that you have to prove
G ∈ {I | I ∈ � or I ∈ �}. Now you also have to remember
that G ∈ {I | . . . I . . .} i� . . . G . . . . So, further unpacking the
de�nition of the {I | . . . I . . .} notation, what you have to
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show is: G ∈ � or G ∈ �. So, “every element of � ∪ � is also
an element of � ∪�” really means: “for every G , if G ∈ � or
G ∈ �, then G ∈ � or G ∈ �.” If we fully unpack the de�nitions
in the proposition, we see that what we have to show is this:

Proposition A.3. For any sets � and �: (a) for every G , if
G ∈ � or G ∈ �, then G ∈ � or G ∈ �, and (b) for every G , if
G ∈ � or G ∈ �, then G ∈ � or G ∈ �.

What’s important is that unpacking de�nitions is a neces-
sary part of constructing a proof. Properly doing it is some-
times di�cult: you must be careful to distinguish and match
the variables in the de�nition and the terms in the claim you’re
proving. In order to be successful, you must know what the
question is asking and what all the terms used in the question
mean—you will o�en need to unpack more than one de�ni-
tion. In simple proofs such as the ones below, the solution
follows almost immediately from the de�nitions themselves.
Of course, it won’t always be this simple.

A.4 Inference Patterns

Proofs are composed of individual inferences. When we make
an inference, we typically indicate that by using a word like
“so,” “thus,” or “therefore.” �e inference o�en relies on one or
two facts we already have available in our proof—it may be
something we have assumed, or something that we’ve con-
cluded by an inference already. To be clear, we may label these
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things, and in the inference we indicate what other statements
we’re using in the inference. An inference will o�en also con-
tain an explanation of why our new conclusion follows from
the things that come before it. �ere are some common pat-
terns of inference that are used very o�en in proofs; we’ll go
through some below. Some pa�erns of inference, like proofs
by induction, are more involved (and will be discussed later).

We’ve already discussed one pa�ern of inference: unpack-
ing, or applying, a de�nition. When we unpack a de�nition,
we just restate something that involves the de�niendum by
using the de�niens. For instance, suppose that we have al-
ready established in the course of a proof that � = � (a). �en
we may apply the de�nition of = for sets and infer: “�us, by
de�nition from (a), every element of � is an element of � and
vice versa.”

Somewhat confusingly, we o�en do not write the justi�-
cation of an inference when we actually make it, but before.
Suppose we haven’t already proved that � = �, but we want
to. If � = � is the conclusion we aim for, then we can restate
this aim also by applying the de�nition: to prove � = � we
have to prove that every element of � is an element of � and
vice versa. So our proof will have the form: (a) prove that
every element of� is an element of �; (b) every element of � is
an element of � ; (c) therefore, from (a) and (b) by de�nition of
=, � = �. But we would usually not write it this way. Instead
we might write something like,

We want to show � = �. By de�nition of =, this
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amounts to showing that every element of � is
an element of � and vice versa.
(a) . . . (a proof that every element of � is an ele-
ment of �) . . .
(b) . . . (a proof that every element of � is an ele-
ment of �) . . .

Using a Conjunction

Perhaps the simplest inference pa�ern is that of drawing as
conclusion one of the conjuncts of a conjunction. In other
words: if we have assumed or already proved that ? and @,
then we’re entitled to infer that ? (and also that @). �is is
such a basic inference that it is o�en not mentioned. For
instance, once we’ve unpacked the de�nition of � = � we’ve
established that every element of � is an element of � and
vice versa. From this we can conclude that every element of �
is an element of � (that’s the “vice versa” part).

Proving a Conjunction

Sometimes what you’ll be asked to prove will have the form
of a conjunction; you will be asked to “prove ? and @.” In
this case, you simply have to do two things: prove ? , and
then prove @. You could divide your proof into two sections,
and for clarity, label them. When you’re making your �rst
notes, you might write “(1) Prove ?” at the top of the page,
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and “(2) Prove @” in the middle of the page. (Of course, you
might not be explicitly asked to prove a conjunction but �nd
that your proof requires that you prove a conjunction. For
instance, if you’re asked to prove that � = � you will �nd
that, a�er unpacking the de�nition of =, you have to prove:
every element of � is an element of � and every element of �
is an element of �).

Proving a Disjunction

When what you are proving takes the form of a disjunction
(i.e., it is an statement of the form “? or@”), it is enough to show
that one of the disjuncts is true. However, it basically never
happens that either disjunct just follows from the assumptions
of your theorem. More o�en, the assumptions of your theorem
are themselves disjunctive, or you’re showing that all things
of a certain kind have one of two properties, but some of the
things have the one and others have the other property. �is
is where proof by cases is useful (see below).

Conditional Proof

Many theorems you will encounter are in conditional form
(i.e., show that if ? holds, then @ is also true). �ese cases are
nice and easy to set up—simply assume the antecedent of the
conditional (in this case, ?) and prove the conclusion @ from
it. So if your theorem reads, “If ? then @,” you start your proof
with “assume ?” and at the end you should have proved @.
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Conditionals may be stated in di�erent ways. So instead
of “If ? then @,” a theorem may state that “? only if @,” “@ if
? ,” or “@, provided ? .” �ese all mean the same and require
assuming ? and proving @ from that assumption. Recall that
a biconditional (“? if and only if (i�) @”) is really two condi-
tionals put together: if ? then @, and if @ then ? . All you have
to do, then, is two instances of conditional proof: one for the
�rst conditional and another one for the second. Sometimes,
however, it is possible to prove an “i�” statement by chaining
together a bunch of other “i�” statements so that you start
with “?” an end with “@”—but in that case you have to make
sure that each step really is an “i�.”

Universal Claims

Using a universal claim is simple: if something is true for
anything, it’s true for each particular thing. So if, say, the
hypothesis of your proof is � ⊆ �, that means (unpacking
the de�nition of ⊆), that, for every G ∈ �, G ∈ �. �us, if you
already know that I ∈ �, you can conclude I ∈ �.

Proving a universal claim may seem a li�le bit tricky. Usu-
ally these statements take the following form: “If G has % ,
then it has &” or “All %s are &s.” Of course, it might not �t
this form perfectly, and it takes a bit of practice to �gure out
what you’re asked to prove exactly. But: we o�en have to
prove that all objects with some property have a certain other
property.
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�e way to prove a universal claim is to introduce names
or variables, for the things that have the one property and
then show that they also have the other property. We might
put this by saying that to prove something for all %s you
have to prove it for an arbitrary % . And the name introduced
is a name for an arbitrary % . We typically use single le�ers
as these names for arbitrary things, and the le�ers usually
follow conventions: e.g., we use = for natural numbers, i for
formulas, � for sets, 5 for functions, etc.

�e trick is to maintain generality throughout the proof.
You start by assuming that an arbitrary object (“G”) has the
property % , and show (based only on de�nitions or what you
are allowed to assume) that G has the property & . Because
you have not stipulated what G is speci�cally, other that it
has the property % , then you can assert that all every % has
the property & . In short, G is a stand-in for all things with
property % .

Proposition A.4. For all sets � and �, � ⊆ � ∪ �.

Proof. Let � and � be arbitrary sets. We want to show that
� ⊆ � ∪ �. By de�nition of ⊆, this amounts to: for every G , if
G ∈ � then G ∈ � ∪ �. So let G ∈ � be an arbitrary element
of �. We have to show that G ∈ � ∪ �. Since G ∈ �, G ∈ � or
G ∈ �. �us, G ∈ {G | G ∈ � ∨ G ∈ �}. But that, by de�nition
of ∪, means G ∈ � ∪ �. �
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Proof by Cases

Suppose you have a disjunction as an assumption or as an
already established conclusion—you have assumed or proved
that ? or@ is true. You want to prove A . You do this in two steps:
�rst you assume that ? is true, and prove A , then you assume
that@ is true and prove A again. �is works because we assume
or know that one of the two alternatives holds. �e two steps
establish that either one is su�cient for the truth of A . (If both
are true, we have not one but two reasons for why A is true.
It is not necessary to separately prove that A is true assuming
both ? and @.) To indicate what we’re doing, we announce
that we “distinguish cases.” For instance, suppose we know
that G ∈ � ∪ � . � ∪ � is de�ned as {G | G ∈ � or G ∈ �}.
In other words, by de�nition, G ∈ � or G ∈ � . We would
prove that G ∈ � from this by �rst assuming that G ∈ �,
and proving G ∈ � from this assumption, and then assume
G ∈ � , and again prove G ∈ � from this. You would write
“We distinguish cases” under the assumption, then “Case (1):
G ∈ �” underneath, and “Case (2): G ∈ � halfway down the
page. �en you’d proceed to �ll in the top half and the bo�om
half of the page.

Proof by cases is especially useful if what you’re proving
is itself disjunctive. Here’s a simple example:

Proposition A.5. Suppose � ⊆ � and � ⊆ �. �en � ∪� ⊆
� ∪ �.
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Proof. Assume (a) that � ⊆ � and (b) � ⊆ �. By de�nition,
any G ∈ � is also ∈ � (c) and any G ∈ � is also ∈ � (d). To
show that � ∪� ⊆ � ∪ �, we have to show that if G ∈ � ∪�
then G ∈ � ∪ � (by de�nition of ⊆). G ∈ � ∪ � i� G ∈ � or
G ∈ � (by de�nition of ∪). Similarly, G ∈ � ∪ � i� G ∈ � or
G ∈ �. So, we have to show: for any G , if G ∈ � or G ∈ � , then
G ∈ � or G ∈ �.

So far we’ve only unpacked de�nitions! We’ve
reformulated our proposition without ⊆ and ∪
and are le� with trying to prove a universal condi-
tional claim. By what we’ve discussed above, this
is done by assuming that G is something about
which we assume the “if” part is true, and we’ll
go on to show that the “then” part is true as well.
In other words, we’ll assume that G ∈ � or G ∈ �
and show that G ∈ � or G ∈ �.2

Suppose that G ∈ � or G ∈ � . We have to show that G ∈ �
or G ∈ �. We distinguish cases.

Case 1: G ∈ �. By (c), G ∈ � . �us, G ∈ � or G ∈ �.
(Here we’ve made the inference discussed in the preceding
subsection!)

Case 2: G ∈ � . By (d), G ∈ �. �us, G ∈ � or G ∈ �. �

2�is paragraph just explains what we’re doing—it’s not part of the proof,
and you don’t have to go into all this detail when you write down your own
proofs.
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Proving an Existence Claim

When asked to prove an existence claim, the question will
usually be of the form “prove that there is an G such that
. . . G . . . ”, i.e., that some object that has the property described
by “. . . G . . . ”. In this case you’ll have to identify a suitable
object show that is has the required property. �is sounds
straightforward, but a proof of this kind can be tricky. Typi-
cally it involves constructing or de�ning an object and proving
that the object so de�ned has the required property. Finding
the right object may be hard, proving that it has the required
property may be hard, and sometimes it’s even tricky to show
that you’ve succeeded in de�ning an object at all!

Generally, you’d write this out by specifying the object,
e.g., “let G be . . . ” (where . . . speci�es which object you have
in mind), possibly proving that . . . in fact describes an object
that exists, and then go on to show that G has the property & .
Here’s a simple example.

Proposition A.6. Suppose that G ∈ �. �en there is an� such
that � ⊆ � and � ≠ ∅.

Proof. Assume G ∈ �. Let � = {G}.

Here we’ve de�ned the set � by enumerating its
elements. Since we assume that G is an object,
and we can always form a set by enumerating its
elements, we don’t have to show that we’ve suc-
ceeded in de�ning a set� here. However, we still
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have to show that � has the properties required
by the proposition. �e proof isn’t complete with-
out that!

Since G ∈ �, � ≠ ∅.

�is relies on the de�nition of � as {G} and the
obvious facts that G ∈ {G} and G ∉ ∅.

Since G is the only element of {G}, and G ∈ �, every element
of � is also an element of �. By de�nition of ⊆, � ⊆ �. �

Using Existence Claims

Suppose you know that some existence claim is true (you’ve
proved it, or it’s a hypothesis you can use), say, “for some G ,
G ∈ �” or “there is an G ∈ �.” If you want to use it in your
proof, you can just pretend that you have a name for one of
the things which your hypothesis says exist. Since � contains
at least one thing, there are things to which that name might
refer. You might of course not be able to pick one out or
describe it further (other than that it is ∈ �). But for the
purpose of the proof, you can pretend that you have picked it
out and give a name to it. It’s important to pick a name that
you haven’t already used (or that appears in your hypotheses),
otherwise things can go wrong. In your proof, you indicate
this by going from “for some G , G ∈ �” to “Let 0 ∈ �.” Now
you can reason about 0, use some other hypotheses, etc., until
you come to a conclusion, ? . If ? no longer mentions 0, ? is
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independent of the asusmption that 0 ∈ �, and you’ve shown
that it follows just from the assumption “for some G , G ∈ �.”

Proposition A.7. If � ≠ ∅, then � ∪ � ≠ ∅.

Proof. Suppose � ≠ ∅. So for some G , G ∈ �.

Here we �rst just restated the hypothesis of the
proposition. �is hypothesis, i.e., � ≠ ∅, hides
an existential claim, which you get to only by
unpacking a few de�nitions. �e de�nition of =
tells us that � = ∅ i� every G ∈ � is also ∈ ∅ and
every G ∈ ∅ is also ∈ �. Negating both sides, we
get: � ≠ ∅ i� either some G ∈ � is ∉ ∅ or some
G ∈ ∅ is ∉ �. Since nothing is ∈ ∅, the second
disjunct can never be true, and “G ∈ � and G ∉ ∅”
reduces to just G ∈ �. So G ≠ ∅ i� for some G ,
G ∈ �. �at’s an existence claim. Now we use
that existence claim by introducing a name for
one of the elements of �:

Let 0 ∈ �.

Now we’ve introduced a name for one of the
things ∈ �. We’ll continue to argue about 0, but
we’ll be careful to only assume that 0 ∈ � and
nothing else:

Since 0 ∈ �, 0 ∈ � ∪ �, by de�nition of ∪. So for some G ,
G ∈ � ∪ �, i.e., � ∪ � ≠ ∅.

483



A. Proofs

In that last step, we went from “0 ∈ � ∪ �” to
“for some G , G ∈ � ∪ �.” �at doesn’t mention 0
anymore, so we know that “for some G , G ∈ �∪�”
follows from “for some G , G ∈ � alone.” But that
means that � ∪ � ≠ ∅. �

It’s maybe good practice to keep bound variables like
“G” separate from hypothetical names like 0, like we did. In
practice, however, we o�en don’t and just use G , like so:

Suppose � ≠ ∅, i.e., there is an G ∈ �. By de�ni-
tion of ∪, G ∈ � ∪ �. So � ∪ � ≠ ∅.

However, when you do this, you have to be extra careful that
you use di�erent G ’s and ~’s for di�erent existential claims.
For instance, the following is not a correct proof of “If � ≠ ∅
and � ≠ ∅ then � ∩ � ≠ ∅” (which is not true).

Suppose � ≠ ∅ and � ≠ ∅. So for some G , G ∈ �
and also for some G , G ∈ �. Since G ∈ � and G ∈ �,
G ∈ � ∩ �, by de�nition of ∩. So � ∩ � ≠ ∅.

Can you spot where the incorrect step occurs and explain
why the result does not hold?

A.5 An Example

Our �rst example is the following simple fact about unions and
intersections of sets. It will illustrate unpacking de�nitions,
proofs of conjunctions, of universal claims, and proof by cases.
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Proposition A.8. For any sets �, �, and � , � ∪ (� ∩ �) =
(� ∪ �) ∩ (� ∪�)

Let’s prove it!

Proof. We want to show that for any sets �, �, and � , � ∪
(� ∩�) = (� ∪ �) ∩ (� ∪�)

First we unpack the de�nition of “=” in the state-
ment of the proposition. Recall that proving sets
identical means showing that the sets have the
same elements. �at is, all elements of�∪(�∩�)
are also elements of (� ∪ �) ∩ (� ∪�), and vice
versa. �e “vice versa” means that also every el-
ement of (� ∪ �) ∩ (� ∪�) must be an element
of � ∪ (� ∩ �). So in unpacking the de�nition,
we see that we have to prove a conjunction. Let’s
record this:

By de�nition,�∪(�∩�) = (�∪�)∩ (�∪�) i� every element
of � ∪ (� ∩�) is also an element of (� ∪ �) ∩ (� ∪�), and
every element of (�∪�)∩ (�∪�) is an element of�∪(�∩�).

Since this is a conjunction, we must prove each
conjunct separately. Lets start with the �rst: let’s
prove that every element of � ∪ (� ∩�) is also
an element of (� ∪ �) ∩ (� ∪�).
�is is a universal claim, and so we consider an
arbitrary element of � ∪ (� ∩�) and show that
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it must also be an element of (� ∪ �) ∩ (� ∪�).
We’ll pick a variable to call this arbitrary element
by, say, I. Our proof continues:

First, we prove that every element of � ∪ (� ∩ �) is also
an element of (� ∪ �) ∩ (� ∪ �). Let I ∈ � ∪ (� ∩ �). We
have to show that I ∈ (� ∪ �) ∩ (� ∪�).

Now it is time to unpack the de�nition of∪ and∩.
For instance, the de�nition of ∪ is: � ∪ � = {I |
I ∈ � or I ∈ �}. When we apply the de�nition to
“� ∪ (� ∩�),” the role of the “�” in the de�nition
is now played by “� ∩� ,” so � ∪ (� ∩�) = {I |
I ∈ � or I ∈ � ∩ �}. So our assumption that
I ∈ �∪ (�∩�) amounts to: I ∈ {I | I ∈ � or I ∈
� ∩�}. And I ∈ {I | . . . I . . .} i� . . .I . . . , i.e., in
this case, I ∈ � or I ∈ � ∩� .

By the de�nition of ∪, either I ∈ � or I ∈ � ∩� .

Since this is a disjunction, it will be useful to apply
proof by cases. We take the two cases, and show
that in each one, the conclusion we’re aiming for
(namely, “I ∈ (� ∪ �) ∩ (� ∪�)”) obtains.

Case 1: Suppose that I ∈ �.

�ere’s not much more to work from based on
our assumptions. So let’s look at what we have
to work with in the conclusion. We want to show
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that I ∈ (�∪�)∩ (�∪�). Based on the de�nition
of∩, if we want to show that I ∈ (�∪�)∩(�∪�),
we have to show that it’s in both (� ∪ �) and
(� ∪ �). But I ∈ � ∪ � i� I ∈ � or I ∈ �, and
we already have (as the assumption of case 1)
that I ∈ �. By the same reasoning—switching
� for �—I ∈ � ∪ � . �is argument went in the
reverse direction, so let’s record our reasoning in
the direction needed in our proof.

Since I ∈ �, I ∈ � or I ∈ �, and hence, by de�nition of ∪,
I ∈ � ∪ �. Similarly, I ∈ � ∪ � . But this means that I ∈
(� ∪ �) ∩ (� ∪�), by de�nition of ∩.

�is completes the �rst case of the proof by cases.
Now we want to derive the conclusion in the
second case, where I ∈ � ∩� .

Case 2: Suppose that I ∈ � ∩� .

Again, we are working with the intersection of
two sets. Let’s apply the de�nition of ∩:

Since I ∈ � ∩ � , I must be an element of both � and � , by
de�nition of ∩.

It’s time to look at our conclusion again. We have
to show that I is in both (� ∪ �) and (� ∪ �).
And again, the solution is immediate.
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Since I ∈ �, I ∈ (� ∪ �). Since I ∈ � , also I ∈ (� ∪�). So,
I ∈ (� ∪ �) ∩ (� ∪�).

Here we applied the de�nitions of ∪ and ∩ again,
but since we’ve already recalled those de�nitions,
and already showed that if I is in one of two sets
it is in their union, we don’t have to be as explicit
in what we’ve done.
We’ve completed the second case of the proof by
cases, so now we can assert our �rst conclusion.

So, if I ∈ � ∪ (� ∩�) then I ∈ (� ∪ �) ∩ (� ∪�).

Now we just want to show the other direction,
that every element of (� ∪ �) ∩ (� ∪�) is an el-
ement of � ∪ (� ∩�). As before, we prove this
universal claim by assuming we have an arbitrary
element of the �rst set and show it must be in the
second set. Let’s state what we’re about to do.

Now, assume that I ∈ (� ∪ �) ∩ (� ∪�). We want to show
that I ∈ � ∪ (� ∩�).

We are now working from the hypothesis that
I ∈ (� ∪ �) ∩ (� ∪ �). It hopefully isn’t too
confusing that we’re using the same I here as
in the �rst part of the proof. When we �nished
that part, all the assumptions we’ve made there
are no longer in e�ect, so now we can make new
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assumptions about what I is. If that is confusing
to you, just replace I with a di�erent variable in
what follows.
We know that I is in both � ∪ � and � ∪ � , by
de�nition of ∩. And by the de�nition of ∪, we
can further unpack this to: either I ∈ � or I ∈ �,
and also either I ∈ � or I ∈ � . �is looks like a
proof by cases again—except the “and” makes it
confusing. You might think that this amounts to
there being three possibilities: I is either in �, �
or� . But that would be a mistake. We have to be
careful, so let’s consider each disjunction in turn.

By de�nition of ∩, I ∈ � ∪ � and I ∈ � ∪� . By de�nition of
∪, I ∈ � or I ∈ �. We distinguish cases.

Since we’re focusing on the �rst disjunction, we
haven’t go�en our second disjunction (from un-
packing � ∪�) yet. In fact, we don’t need it yet.
�e �rst case is I ∈ �, and an element of a set is
also an element of the union of that set with any
other. So case 1 is easy:

Case 1: Suppose that I ∈ �. It follows that I ∈ � ∪ (� ∩�).

Now for the second case, I ∈ �. Here we’ll un-
pack the second ∪ and do another proof-by-cases:

Case 2: Suppose that I ∈ �. Since I ∈ � ∪� , either I ∈ � or
I ∈ � . We distinguish cases further:
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Case 2a: I ∈ �. �en, again, I ∈ � ∪ (� ∩�).

Ok, this was a bit weird. We didn’t actually need
the assumption that I ∈ � for this case, but that’s
ok.

Case 2b: I ∈ � . �en I ∈ � and I ∈ � , so I ∈ � ∩ � , and
consequently, I ∈ � ∪ (� ∩�).

�is concludes both proofs-by-cases and so we’re
done with the second half.

So, if I ∈ (� ∪ �) ∩ (� ∪�) then I ∈ � ∪ (� ∩�). �

A.6 Another Example

Proposition A.9. If � ⊆ � , then � ∪ (� \�) = � .

Proof. Suppose that� ⊆ � . We want to show that�∪(�\�) =
� .

We begin by observing that this is a conditional
statement. It is tacitly universally quanti�ed: the
proposition holds for all sets � and � . So � and
� are variables for arbitrary sets. To prove such a
statement, we assume the antecedent and prove
the consequent.
We continue by using the assumption that� ⊆ � .
Let’s unpack the de�nition of ⊆: the assumption
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means that all elements of � are also elements
of� . Let’s write this down—it’s an important fact
that we’ll use throughout the proof.

By the de�nition of ⊆, since � ⊆ � , for all I, if I ∈ �, then
I ∈ � .

We’ve unpacked all the de�nitions that are given
to us in the assumption. Now we can move onto
the conclusion. We want to show that � ∪ (� \
�) = � , and so we set up a proof similarly to
the last example: we show that every element of
�∪(� \�) is also an element of� and, conversely,
every element of � is an element of � ∪ (� \�).
We can shorten this to: � ∪ (� \ �) ⊆ � and
� ⊆ � ∪ (� \�). (Here we’re doing the opposite
of unpacking a de�nition, but it makes the proof
a bit easier to read.) Since this is a conjunction,
we have to prove both parts. To show the �rst
part, i.e., that every element of�∪ (� \�) is also
an element of � , we assume that I ∈ � ∪ (� \�)
for an arbitrary I and show that I ∈ � . By the
de�nition of ∪, we can conclude that I ∈ � or
I ∈ � \� from I ∈ � ∪ (� \�). You should now
be ge�ing the hang of this.

� ∪ (� \ �) = � i� � ∪ (� \ �) ⊆ � and � ⊆ (� ∪ (� \ �).
First we prove that � ∪ (� \�) ⊆ � . Let I ∈ � ∪ (� \�). So,
either I ∈ � or I ∈ (� \�).
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We’ve arrived at a disjunction, and from it we
want to prove that I ∈ � . We do this using proof
by cases.

Case 1: I ∈ �. Since for all I, if I ∈ �, I ∈ � , we have that
I ∈ � .

Here we’ve used the fact recorded earlier which
followed from the hypothesis of the proposition
that � ⊆ � . �e �rst case is complete, and we
turn to the second case, I ∈ (� \�). Recall that
�\� denotes the di�erence of the two sets, i.e., the
set of all elements of � which are not elements
of�. But any element of� not in� is in particular
an element of � .

Case 2: I ∈ (� \�). �is means that I ∈ � and I ∉ �. So, in
particular, I ∈ � .

Great, we’ve proved the �rst direction. Now for
the second direction. Here we prove that � ⊆
� ∪ (� \�). So we assume that I ∈ � and prove
that I ∈ � ∪ (� \�).

Now let I ∈ � . We want to show that I ∈ � or I ∈ � \�.

Since all elements of � are also elements of � ,
and� \� is the set of all things that are elements
of � but not �, it follows that I is either in � or
in � \ �. �is may be a bit unclear if you don’t

492



A.7. Proof by Contradiction

already know why the result is true. It would
be be�er to prove it step-by-step. It will help
to use a simple fact which we can state without
proof: I ∈ � or I ∉ �. �is is called the “principle
of excluded middle:” for any statement ? , either
? is true or its negation is true. (Here, ? is the
statement that I ∈ �.) Since this is a disjunction,
we can again use proof-by-cases.

Either I ∈ � or I ∉ �. In the former case, I ∈ � ∪ (� \ �).
In the la�er case, I ∈ � and I ∉ �, so I ∈ � \ �. But then
I ∈ � ∪ (� \�).

Our proof is complete: we have shown that � ∪
(� \�) = � . �

A.7 Proof by Contradiction

In the �rst instance, proof by contradiction is an inference
pa�ern that is used to prove negative claims. Suppose you
want to show that some claim ? is false, i.e., you want to
show ¬? . �e most promising strategy is to (a) suppose that
? is true, and (b) show that this assumption leads to something
you know to be false. “Something known to be false” may
be a result that con�icts with—contradicts—? itself, or some
other hypothesis of the overall claim you are considering. For
instance, a proof of “if @ then ¬?” involves assuming that @ is
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true and proving ¬? from it. If you prove ¬? by contradiction,
that means assuming ? in addition to @. If you can prove
¬@ from ? , you have shown that the assumption ? leads to
something that contradicts your other assumption @, since
@ and ¬@ cannot both be true. Of course, you have to use
other inference pa�erns in your proof of the contradiction, as
well as unpacking de�nitions. Let’s consider an example.

Proposition A.10. If � ⊆ � and � = ∅, then � has no ele-
ments.

Proof. Suppose � ⊆ � and � = ∅. We want to show that �
has no elements.

Since this is a conditional claim, we assume the
antecedent and want to prove the consequent.
�e consequent is: � has no elements. We can
make that a bit more explicit: it’s not the case
that there is an G ∈ �.

� has no elements i� it’s not the case that there is an G such
that G ∈ �.

So we’ve determined that what we want to prove
is really a negative claim ¬? , namely: it’s not
the case that there is an G ∈ �. To use proof by
contradiction, we have to assume the correspond-
ing positive claim ? , i.e., there is an G ∈ �, and
prove a contradiction from it. We indicate that
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we’re doing a proof by contradiction by writing
“by way of contradiction, assume” or even just
“suppose not,” and then state the assumption ? .

Suppose not: there is an G ∈ �.

�is is now the new assumption we’ll use to ob-
tain a contradiction. We have two more assump-
tions: that � ⊆ � and that � = ∅. �e �rst gives
us that G ∈ �:

Since � ⊆ �, G ∈ �.

But since � = ∅, every element of � (e.g., G ) must
also be an element of ∅.

Since � = ∅, G ∈ ∅. �is is a contradiction, since by de�nition
∅ has no elements.

�is already completes the proof: we’ve arrived
at what we need (a contradiction) from the as-
sumptions we’ve set up, and this means that the
assumptions can’t all be true. Since the �rst two
assumptions (� ⊆ � and � = ∅) are not contested,
it must be the last assumption introduced (there
is an G ∈ �) that must be false. But if we want to
be thorough, we can spell this out.

�us, our assumption that there is an G ∈ � must be false,
hence, � has no elements by proof by contradiction. �
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Every positive claim is trivially equivalent to a negative
claim: ? i� ¬¬? . So proofs by contradiction can also be used
to establish positive claims “indirectly,” as follows: To prove ? ,
read it as the negative claim ¬¬? . If we can prove a contra-
diction from ¬? , we’ve established ¬¬? by proof by contra-
diction, and hence ? .

In the last example, we aimed to prove a negative claim,
namely that � has no elements, and so the assumption we
made for the purpose of proof by contradiction (i.e., that there
is an G ∈ �) was a positive claim. It gave us something to
work with, namely the hypothetical G ∈ � about which we
continued to reason until we got to G ∈ ∅.

When proving a positive claim indirectly, the assumption
you’d make for the purpose of proof by contradiction would be
negative. But very o�en you can easily reformulate a positive
claim as a negative claim, and a negative claim as a positive
claim. Our previous proof would have been essentially the
same had we proved “� = ∅” instead of the negative conse-
quent “� has no elements.” (By de�nition of =, “� = ∅” is
a general claim, since it unpacks to “every element of � is
an element of ∅ and vice versa”.) But it is easily seen to be
equivalent to the negative claim “not: there is an G ∈ �.”

So it is sometimes easier to work with¬? as an assumption
than it is to prove ? directly. Even when a direct proof is just as
simple or even simpler (as in the next example), some people
prefer to proceed indirectly. If the double negation confuses
you, think of a proof by contradiction of some claim as a
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proof of a contradiction from the opposite claim. So, a proof
by contradiction of ¬? is a proof of a contradiction from the
assumption ?; and proof by contradiction of ? is a proof of a
contradiction from ¬? .

Proposition A.11. � ⊆ � ∪ �.

Proof. We want to show that � ⊆ � ∪ �.

On the face of it, this is a positive claim: every
G ∈ � is also in � ∪ �. �e negation of that is:
some G ∈ � is ∉ �∪�. So we can prove the claim
indirectly by assuming this negated claim, and
showing that it leads to a contradiction.

Suppose not, i.e., � * � ∪ �.

We have a de�nition of � ⊆ � ∪ �: every G ∈ �
is also ∈ � ∪ �. To understand what � * � ∪ �
means, we have to use some elementary logical
manipulation on the unpacked de�nition: it’s
false that every G ∈ � is also ∈ � ∪ � i� there
is some G ∈ � that is ∉ � . (�is is a place where
you want to be very careful: many students’ at-
tempted proofs by contradiction fail because they
analyze the negation of a claim like “all�s are �s”
incorrectly.) In other words, � * � ∪ � i� there
is an G such that G ∈ � and G ∉ � ∪ �. From then
on, it’s easy.
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So, there is an G ∈ � such that G ∉ � ∪ �. By de�nition of ∪,
G ∈ � ∪ � i� G ∈ � or G ∈ �. Since G ∈ �, we have G ∈ � ∪ �.
�is contradicts the assumption that G ∉ � ∪ �. �

Proposition A.12. If � ⊆ � and � ⊆ � then � ⊆ � .

Proof. Suppose � ⊆ � and � ⊆ � . We want to show � ⊆ � .

Let’s proceed indirectly: we assume the negation
of what we want to etablish.

Suppose not, i.e., � * � .

As before, we reason that � * � i� not every
G ∈ � is also ∈ � , i.e., some G ∈ � is ∉ � . Don’t
worry, with practice you won’t have to think hard
anymore to unpack negations like this.

In other words, there is an G such that G ∈ � and G ∉ � .

Now we can use this to get to our contradiction.
Of course, we’ll have to use the other two assump-
tions to do it.

Since � ⊆ �, G ∈ �. Since � ⊆ � , G ∈ � . But this contradicts
G ∉ � . �

Proposition A.13. If � ∪ � = � ∩ � then � = �.

Proof. Suppose � ∪ � = � ∩ �. We want to show that � = �.
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�e beginning is now routine:

Assume, by way of contradiction, that � ≠ �.

Our assumption for the proof by contradiction
is that � ≠ �. Since � = � i� � ⊆ � an � ⊆ �,
we get that � ≠ � i� � * � or � * �. (Note how
important it is to be careful when manipulating
negations!) To prove a contradiction from this
disjunction, we use a proof by cases and show
that in each case, a contradiction follows.

� ≠ � i� � * � or � * �. We distinguish cases.

In the �rst case, we assume� * �, i.e., for some G ,
G ∈ � but ∉ �. �∩� is de�ned as those elements
that � and � have in common, so if something
isn’t in one of them, it’s not in the intersection.
� ∪ � is � together with �, so anything in either
is also in the union. �is tells us that G ∈ � ∪ �
but G ∉ � ∩ �, and hence that � ∩ � ≠ � ∩�.

Case 1: � * �. �en for some G , G ∈ � but G ∉ �. Since
G ∉ �, then G ∉ �∩�. Since G ∈ �, G ∈ �∪�. So,�∩� ≠ �∩�,
contradicting the assumption that � ∩ � = � ∪ �.

Case 2: � * �. �en for some ~, ~ ∈ � but ~ ∉ �. As
before, we have ~ ∈ �∪� but ~ ∉ �∩�, and so�∩� ≠ �∪�,
again contradicting � ∩ � = � ∪ �. �
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A.8 Reading Proofs

Proofs you �nd in textbooks and articles very seldom give all
the details we have so far included in our examples. Authors
o�en do not draw a�ention to when they distinguish cases,
when they give an indirect proof, or don’t mention that they
use a de�nition. So when you read a proof in a textbook, you
will o�en have to �ll in those details for yourself in order to
understand the proof. Doing this is also good practice to get
the hang of the various moves you have to make in a proof.
Let’s look at an example.

Proposition A.14 (Absorption). For all sets �, �,

� ∩ (� ∪ �) = �

Proof. If I ∈ � ∩ (� ∪ �), then I ∈ �, so � ∩ (� ∪ �) ⊆ �.
Now suppose I ∈ �. �en also I ∈ � ∪ �, and therefore also
I ∈ � ∩ (� ∪ �). �

�e preceding proof of the absorption law is very con-
densed. �ere is no mention of any de�nitions used, no “we
have to prove that” before we prove it, etc. Let’s unpack it.
�e proposition proved is a general claim about any sets� and
�, and when the proof mentions � or �, these are variables
for arbitrary sets. �e general claims the proof establishes
is what’s required to prove identity of sets, i.e., that every
element of the le� side of the identity is an element of the
right and vice versa.
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“If I ∈ �∩(�∪�), then I ∈ �, so�∩(�∪�) ⊆ �.”

�is is the �rst half of the proof of the identity: it es-
tabishes that if an arbitrary I is an element of the le� side, it
is also an element of the right, i.e., � ∩ (� ∪ �) ⊆ �. Assume
that I ∈ � ∩ (� ∪ �). Since I is an element of the intersection
of two sets i� it is an element of both sets, we can conclude
that I ∈ � and also I ∈ � ∪ �. In particular, I ∈ �, which is
what we wanted to show. Since that’s all that has to be done
for the �rst half, we know that the rest of the proof must be a
proof of the second half, i.e., a proof that � ⊆ � ∩ (� ∪ �).

“Now suppose I ∈ �. �en also I ∈ � ∪ �, and
therefore also I ∈ � ∩ (� ∪ �).”

We start by assuming that I ∈ �, since we are showing
that, for any I, if I ∈ � then I ∈ � ∩ (� ∪ �). To show that
I ∈ �∩ (�∪�), we have to show (by de�nition of “∩”) that (i)
I ∈ � and also (ii) I ∈ � ∪ �. Here (i) is just our assumption,
so there is nothing further to prove, and that’s why the proof
does not mention it again. For (ii), recall that I is an element
of a union of sets i� it is an element of at least one of those
sets. Since I ∈ �, and � ∪ � is the union of � and �, this is
the case here. So I ∈ � ∪ �. We’ve shown both (i) I ∈ � and
(ii) I ∈ � ∪ �, hence, by de�nition of “∩,” I ∈ � ∩ (� ∪ �).
�e proof doesn’t mention those de�nitions; it’s assumed the
reader has already internalized them. If you haven’t, you’ll
have to go back and remind yourself what they are. �en
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you’ll also have to recognize why it follows from I ∈ � that
I ∈ �∪�, and from I ∈ � and I ∈ �∪� that I ∈ �∩ (�∪�).

Here’s another version of the proof above, with everything
made explicit:

Proof. [By de�nition of = for sets, � ∩ (� ∪ �) = � we have
to show (a) � ∩ (� ∪ �) ⊆ � and (b) � ∩ (� ∪ �) ⊆ �. (a): By
de�nition of ⊆, we have to show that if I ∈ � ∩ (� ∪ �), then
I ∈ �.] If I ∈ �∩ (�∪�), then I ∈ � [since by de�nition of ∩,
I ∈ � ∩ (� ∪ �) i� I ∈ � and I ∈ � ∪ �], so � ∩ (� ∪ �) ⊆ �.
[(b): By de�nition of ⊆, we have to show that if I ∈ �, then
I ∈ � ∩ (� ∪ �).] Now suppose [(1)] I ∈ �. �en also [(2)]
I ∈ � ∪ � [since by (1) I ∈ � or I ∈ �, which by de�nition of
∪means I ∈ �∪�], and therefore also I ∈ �∩ (�∪�) [since
the de�nition of ∩ requires that I ∈ �, i.e., (1), and I ∈ �∪�),
i.e., (2)]. �

A.9 I Can’t Do It!

We all get to a point where we feel like giving up. But you
can do it. Your instructor and teaching assistant, as well as
your fellow students, can help. Ask them for help! Here are a
few tips to help you avoid a crisis, and what to do if you feel
like giving up.

To make sure you can solve problems successfully, do the
following:

502



A.9. I Can’t Do It!

1. Start as far in advance as possible. We get busy through-
out the semester and many of us struggle with procras-
tination, one of the best things you can do is to start
your homework assignments early. �at way, if you’re
stuck, you have time to look for a solution (that isn’t
crying).

2. Talk to your classmates. You are not alone. Others in
the class may also struggle—but the may struggle with
di�erent things. Talking it out with your peers can give
you a di�erent perspective on the problem that might
lead to a breakthrough. Of course, don’t just copy their
solution: ask them for a hint, or explain where you get
stuck and ask them for the next step. And when you
do get it, reciprocate. Helping someone else along, and
explaining things will help you understand be�er, too.

3. Ask for help. You have many resources available to
you—your instructor and teaching assistant are there
for you and want you to succeed. �ey should be able
to help you work out a problem and identify where in
the process you’re struggling.

4. Take a break. If you’re stuck, it might be because you’ve
been staring at the problem for too long. Take a short
break, have a cup of tea, or work on a di�erent problem
for a while, then return to the problem with a fresh
mind. Sleep on it.
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Notice how these strategies require that you’ve started
to work on the proof well in advance? If you’ve started the
proof at 2am the day before it’s due, these might not be so
helpful.

�is might sound like doom and gloom, but solving a proof
is a challenge that pays o� in the end. Some people do this as
a career—so there must be something to enjoy about it. Like
basically everything, solving problems and doing proofs is
something that requires practice. You might see classmates
who �nd this easy: they’ve probably just had lots of practice
already. Try not to give in too easily.

If you do run out of time (or patience) on a particular
problem: that’s ok. It doesn’t mean you’re stupid or that you
will never get it. Find out (from your instructor or another
student) how it is done, and identify where you went wrong
or got stuck, so you can avoid doing that the next time you
encounter a similar issue. �en try to do it without looking
at the solution. And next time, start (and ask for help) earlier.

A.10 Other Resources

�ere are many books on how to do proofs in mathematics
which may be useful. Check out How to Read and do Proofs:
An Introduction to Mathematical �ought Processes (Solow,
2013) and How to Prove It: A Structured Approach (Velleman,
2019) in particular. �e Book of Proof (Hammack, 2013) and
Mathematical Reasoning (Sandstrum, 2019) are books on proof

504

http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
https://scholarworks.gvsu.edu/books/7/


A.10. Other Resources

that are freely available online. Philosophers might �nd More
Precisely: �e Math you need to do Philosophy (Steinhart, 2018)
to be a good primer on mathematical reasoning.

�ere are also various shorter guides to proofs available on
the internet; e.g., “Introduction to Mathematical Arguments”
(Hutchings, 2003) and “How to write proofs” (Cheng, 2004).

Motivational Videos

Feel like you have no motivation to do your homework? Feel-
ing down? �ese videos might help!

• https://www.youtube.com/watch?v=ZXsQAXx
ao0

• https://www.youtube.com/watch?v=BQ4yd2W50No

• https://www.youtube.com/watch?v=StTqXEQ2l-Y

Problems

Problem A.1. Suppose you are asked to prove that�∩� ≠ ∅.
Unpack all the de�nitions occuring here, i.e., restate this in a
way that does not mention “∩”, “=”, or “∅.

Problem A.2. Prove indirectly that � ∩ � ⊆ �.

Problem A.3. Expand the following proof of�∪(�∩�) = �,
where you mention all the inference pa�erns used, why each
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step follows from assumptions or claims established before it,
and where we have to appeal to which de�nitions.

Proof. If I ∈ �∪ (�∩�) then I ∈ � or I ∈ �∩�. If I ∈ �∩�,
I ∈ �. Any I ∈ � is also ∈ � ∪ (� ∩ �). �

506



Appendix B

Induction

B.1 Introduction

Induction is an important proof technique which is used, in
di�erent forms, in almost all areas of logic, theoretical com-
puter science, and mathematics. It is needed to prove many
of the results in logic.

Induction is o�en contrasted with deduction, and charac-
terized as the inference from the particular to the general. For
instance, if we observe many green emeralds, and nothing
that we would call an emerald that’s not green, we might
conclude that all emeralds are green. �is is an inductive
inference, in that it proceeds from many particlar cases (this
emerald is green, that emerald is green, etc.) to a general
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claim (all emeralds are green). Mathematical induction is also
an inference that concludes a general claim, but it is of a very
di�erent kind that this “simple induction.”

Very roughly, an inductive proof in mathematics con-
cludes that all mathematical objects of a certain sort have
a certain property. In the simplest case, the mathematical
objects an inductive proof is concerned with are natural num-
bers. In that case an inductive proof is used to establish that
all natural numbers have some property, and it does this by
showing that

1. 0 has the property, and (2)

2. whenever a number : has the property, so does : + 1.

Induction on natural numbers can then also o�en be used to
prove general about mathematical objects that can be assigned
numbers. For instance, �nite sets each have a �nite number =
of elements, and if we can use induction to show that every
number = has the property “all �nite sets of size = are . . . ”
then we will have shown something about all �nite sets.

Induction can also be generalized to mathematical objects
that are inductively de�ned. For instance, expressions of a
formal language such as those of �rst-order logic are de�ned
inductively. Structural induction is a way to prove results
about all such expressions. Structural induction, in particular,
is very useful—and widely used—in logic.
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B.2 Induction on N

In its simplest form, induction is a technique used to prove
results for all natural numbers. It uses the fact that by starting
from 0 and repeatedly adding 1 we eventually reach every
natural number. So to prove that something is true for every
number, we can (1) establish that it is true for 0 and (2) show
that whenever it is true for a number =, it is also true for the
next number =+1. If we abbreviate “number = has property %”
by % (=) (and “number : has property %” by % (:), etc.), then a
proof by induction that % (=) for all = ∈ N consists of:

1. a proof of % (0), and

2. a proof that, for any : , if % (:) then % (: + 1).

To make this crystal clear, suppose we have both (1) and (2).
�en (1) tells us that % (0) is true. If we also have (2), we
know in particular that if % (0) then % (0 + 1), i.e., % (1). �is
follows from the general statement “for any : , if % (:) then
% (: + 1)” by pu�ing 0 for : . So by modus ponens, we have
that % (1). From (2) again, now taking 1 for =, we have: if
% (1) then % (2). Since we’ve just established % (1), by modus
ponens, we have % (2). And so on. For any number =, a�er
doing this = times, we eventually arrive at % (=). So (1) and (2)
together establish % (=) for any = ∈ N.

Let’s look at an example. Suppose we want to �nd out
how many di�erent sums we can throw with = dice. Although
it might seem silly, let’s start with 0 dice. If you have no dice
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there’s only one possible sum you can “throw”: no dots at
all, which sums to 0. So the number of di�erent possible
throws is 1. If you have only one die, i.e., = = 1, there are six
possible values, 1 through 6. With two dice, we can throw
any sum from 2 through 12, that’s 11 possibilities. With three
dice, we can throw any number from 3 to 18, i.e., 16 di�erent
possibilities. 1, 6, 11, 16: looks like a pa�ern: maybe the
answer is 5= + 1? Of course, 5= + 1 is the maximum possible,
because there are only 5= + 1 numbers between =, the lowest
value you can throw with = dice (all 1’s) and 6=, the highest
you can throw (all 6’s).

�eorem B.1. With = dice one can throw all 5= + 1 possible
values between = and 6=.

Proof. Let % (=) be the claim: “It is possible to throw any
number between = and 6= using = dice.” To use induction, we
prove:

1. �e induction basis % (1), i.e., with just one die, you can
throw any number between 1 and 6.

2. �e induction step, for all : , if % (:) then % (: + 1).

(1) Is proved by inspecting a 6-sided die. It has all 6 sides,
and every number between 1 and 6 shows up one on of the
sides. So it is possible to throw any number between 1 and 6
using a single die.

To prove (2), we assume the antecedent of the conditional,
i.e., % (:). �is assumption is called the inductive hypothesis.
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We use it to prove % (: + 1). �e hard part is to �nd a way of
thinking about the possible values of a throw of : + 1 dice in
terms of the possible values of throws of : dice plus of throws
of the extra : + 1-st die—this is what we have to do, though,
if we want to use the inductive hypothesis.

�e inductive hypothesis says we can get any number
between : and 6: using : dice. If we throw a 1 with our
(: + 1)-st die, this adds 1 to the total. So we can throw any
value between : + 1 and 6: + 1 by throwing 5 dice and then
rolling a 1 with the (:+1)-st die. What’s le�? �e values 6:+2
through 6: + 6. We can get these by rolling : 6s and then a
number between 2 and 6 with our (: +1)-st die. Together, this
means that with : + 1 dice we can throw any of the numbers
between : + 1 and 6(: + 1), i.e., we’ve proved % (: + 1) using
the assumption % (:), the inductive hypothesis. �

Very o�en we use induction when we want to prove some-
thing about a series of objects (numbers, sets, etc.) that is itself
de�ned “inductively,” i.e., by de�ning the (= + 1)-st object in
terms of the =-th. For instance, we can de�ne the sum B= of
the natural numbers up to = by

B0 = 0
B=+1 = B= + (= + 1)
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�is de�nition gives:

B0 = 0,
B1 = B0 + 1 = 1,
B2 = B1 + 2 = 1 + 2 = 3
B3 = B2 + 3 = 1 + 2 + 3 = 6, etc.

Now we can prove, by induction, that B= = =(= + 1)/2.

Proposition B.2. B= = =(= + 1)/2.

Proof. We have to prove (1) that B0 = 0 · (0 + 1)/2 and (2) if
B: = : (: + 1)/2 then B:+1 = (: + 1) (: + 2)/2. (1) is obvious. To
prove (2), we assume the inductive hypothesis: B: = : (:+1)/2.
Using it, we have to show that B:+1 = (: + 1) (: + 2)/2.

What is B:+1? By the de�nition, B:+1 = B: + (: + 1). By
inductive hypothesis, B: = : (: + 1)/2. We can substitute
this into the previous equation, and then just need a bit of
arithmetic of fractions:

B:+1 =
: (: + 1)

2 + (: + 1) =

=
: (: + 1)

2 + 2(: + 1)
2 =

=
=(: + 1) + 2(: + 1)

2 =

=
(: + 2) (: + 1)

2 . �
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�e important lesson here is that if you’re proving some-
thing about some inductively de�ned sequence 0= , induction
is the obvious way to go. And even if it isn’t (as in the case of
the possibilities of dice throws), you can use induction if you
can somehow relate the case for : + 1 to the case for : .

B.3 Strong Induction

In the principle of induction discussed above, we prove % (0)
and also if % (:), then % (: + 1). In the second part, we assume
that % (:) is true and use this assumption to prove % (: + 1).
Equivalently, of course, we could assume % (: − 1) and use it
to prove % (:)—the important part is that we be able to carry
out the inference from any number to its successor; that we
can prove the claim in question for any number under the
assumption it holds for its predecessor.

�ere is a variant of the principle of induction in which
we don’t just assume that the claim holds for the predecessor
: − 1 of : , but for all numbers smaller than : , and use this
assumption to establish the claim for : . �is also gives us the
claim % (=) for all = ∈ N. For once we have established % (0),
we have thereby established that % holds for all numbers less
than 1. And if we know that if % (;) for all ; < : , then % (:),
we know this in particular for : = 1. So we can conclude % (1).
With this we have proved % (0) and % (1), i.e., % (;) for all ; < 2,
and since we have also the conditional, if % (;) for all ; < 2,
then % (2), we can conclude % (2), and so on.
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In fact, if we can establish the general conditional “for all
: , if % (;) for all ; < : , then % (:),” we do not have to establish
% (0) anymore, since it follows from it. For remember that a
general claim like “for all ; < : , % (;)” is true if there are no
; < : . �is is a case of vacuous quanti�cation: “all �s are �s”
is true if there are no �s, ∀G (i (G) → k (G)) is true if no G
satis�es i (G). In this case, the formalized version would be
“∀; (; < :→% (;))”—and that is true if there are no ; < : . And
if : = 0 that’s exactly the case: no ; < 0, hence “for all ; < 0,
% (0)” is true, whatever % is. A proof of “if % (;) for all ; < : ,
then % (:)” thus automatically establishes % (0).

�is variant is useful if establishing the claim for : can’t
be made to just rely on the claim for : − 1 but may require
the assumption that it is true for one or more ; < : .

B.4 Inductive De�nitions

In logic we very o�en de�ne kinds of objects inductively,
i.e., by specifying rules for what counts as an object of the
kind to be de�ned which explain how to get new objects
of that kind from old objects of that kind. For instance, we
o�en de�ne special kinds of sequences of symbols, such as
the terms and formulas of a language, by induction. For a
simple example, consider strings of consisting of le�ers a, b,
c, d, the symbol ◦, and brackets [ and ], such as “[[c ◦ d] [”,
“[a[]◦]”, “a” or “[[a ◦ b] ◦ d]”. You probably feel that there’s
something “wrong” with the �rst two strings: the brackets
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don’t “balance” at all in the �rst, and you might feel that the
“◦” should “connect” expressions that themselves make sense.
�e third and fourth string look be�er: for every “[” there’s
a closing “]” (if there are any at all), and for any ◦ we can
�nd “nice” expressions on either side, surrounded by a pair of
parentheses.

We would like to precisely specify what counts as a “nice
term.” First of all, every le�er by itself is nice. Anything that’s
not just a le�er by itself should be of the form “[C ◦B]” where B
and C are themselves nice. Conversely, if C and B are nice, then
we can form a new nice term by pu�ing a ◦ between them
and surround them by a pair of brackets. We might use these
operations to de�ne the set of nice terms. �is is an inductive
de�nition.

De�nition B.3 (Nice terms). �e set of nice terms is induc-
tively de�ned as follows:

1. Any le�er a, b, c, d is a nice term.

2. If B1 and B2 are nice terms, then so is [B1 ◦ B2].

3. Nothing else is a nice term.

�is de�nition tells us that something counts as a nice
term i� it can be constructed according to the two conditions
(1) and (2) in some �nite number of steps. In the �rst step, we
construct all nice terms just consisting of le�ers by themselves,
i.e.,

a, b, c, d
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In the second step, we apply (2) to the terms we’ve constructed.
We’ll get

[a ◦ a], [a ◦ b], [b ◦ a], . . . , [d ◦ d]

for all combinations of two le�ers. In the third step, we apply
(2) again, to any two nice terms we’ve constructed so far. We
get new nice term such as [a◦ [a◦a]]—where C is a from step 1
and B is [a ◦ a] from step 2—and [[b ◦ c] ◦ [d ◦ b]] constructed
out of the two terms [b ◦ c] and [d ◦ b] from step 2. And so
on. Clause (3) rules out that anything not constructed in this
way sneaks into the set of nice terms.

Note that we have not yet proved that every sequence of
symbols that “feels” nice is nice according to this de�nition.
However, it should be clear that everything we can construct
does in fact “feel nice”: brackets are balanced, and ◦ connects
parts that are themselves nice.

�e key feature of inductive de�nitions is that if you want
to prove something about all nice terms, the de�nition tells
you which cases you must consider. For instance, if you are
told that C is a nice term, the inductive de�nition tells you
what C can look like: C can be a le�er, or it can be [B1 ◦ B2] for
some pair of nice terms B1 and B2. Because of clause (3), those
are the only possibilities.

When proving claims about all of an inductively de�ned
set, the strong form of induction becomes particularly impor-
tant. For instance, suppose we want to prove that for every
nice term of length =, the number of [ in it is < =/2. �is can
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be seen as a claim about all =: for every =, the number of [ in
any nice term of length = is < =/2.

Proposition B.4. For any =, the number of [ in a nice term of
length = is < =/2.

Proof. To prove this result by (strong) induction, we have to
show that the following conditional claim is true:

If for every ; < : , any nice term of length ; has
;/2 [’s, then any nice term of length : has :/2
[’s.

To show this conditional, assume that its antecedent is true,
i.e., assume that for any ; < : , nice terms of length ; contain
< ;/2 [’s. We call this assumption the inductive hypothesis.
We want to show the same is true for nice terms of length : .

So suppose C is a nice term of length : . Because nice terms
are inductively de�ned, we have two cases: (1) C is a le�er by
itself, or (2) C is [B1 ◦ B2] for some nice terms B1 and B2.

1. C is a le�er. �en : = 1, and the number of [ in C is 0.
Since 0 < 1/2, the claim holds.

2. C is [B1 ◦ B2] for some nice terms B1 and B2. Let’s let ;1
be the length of B1 and ;2 be the length of B2. �en the
length : of C is ;1 + ;2 + 3 (the lengths of B1 and B2 plus
three symbols [, ◦, ]). Since ;1 + ;2 + 3 is always greater
than ;1, ;1 < : . Similarly, ;2 < =. �at means that the
induction hypothesis applies to the terms B1 and B2: the

517



B. Induction

number<1 of [ in B1 is < ;1/2, and the number<2 of [
in B2 is < ;2/2.
�e number of [ in C is the number of [ in B1, plus the
number of [ in B2, plus 1, i.e., it is <1 +<2 + 1. Since
<1 < ;1/2 and<2 < ;2/2 we have:

<1+<2+1 <
;1
2 +

;2
2 +1 =

;1 + ;2 + 2
2 <

;1 + ; − 2 + 3
2 = :/2.

In each case, we’ve shown that the number of [ in C is < :/2
(on the basis of the inductive hypothesis). By strong induction,
the proposition follows. �

B.5 Structural Induction

So far we have used induction to establish results about all
natural numbers. But a corresponding principle can be used
directly to prove results about all elements of an inductively
de�ned set. �is o�en called structural induction, because it
depends on the structure of the inductively de�ned objects.

Generally, an inductive de�nition is given by (a) a list of
“initial” elements of the set and (b) a list of operations which
produce new elements of the set from old ones. In the case of
nice terms, for instance, the initial objects are the le�ers. We
only have one operation: the operations are

> (B1, B2) =[B1 ◦ B2]
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You can even think of the natural numbers N themselves as
being given be an inductive de�nition: the initial object is 0,
and the operation is the successor function G + 1.

In order to prove something about all elements of an in-
ductively de�ned set, i.e., that every element of the set has a
property % , we must:

1. Prove that the initial objects have %

2. Prove that for each operation > , if the arguments have % ,
so does the result.

For instance, in order to prove something about all nice terms,
we would prove that it is true about all le�ers, and that it is
true about [B1 ◦ B2] provided it is true of B1 and B2 individually.

Proposition B.5. �e number of [ equals the number of ] in
any nice term C .

Proof. We use structural induction. Nice terms are inductively
de�ned, with le�ers as initial objects and the operations > for
constructing new nice terms out of old ones.

1. �e claim is true for every le�er, since the number of
[ in a le�er by itself is 0 and the number of ] in it is
also 0.

2. Suppose the number of [ in B1 equals the number of ],
and the same is true for B2. �e number of [ in > (B1, B2),
i.e., in [B1 ◦B2], is the sum of the number of [ in B1 and B2.
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�e number of ] in > (B1, B2) is the sum of the number of
] in B1 and B2. �us, the number of [ in > (B1, B2) equals
the number of ] in > (B1, B2). �

Let’s give another proof by structural induction: a proper
initial segment of a string C of symbols is any string B that
agrees with C symbol by symbol, read from the le�, but C is
longer. So, e.g., [0 ◦ is a proper initial segment of [0 ◦ 1],
but neither are [1 ◦ (they disagree at the second symbol) nor
[0 ◦ 1] (they are the same length).

Proposition B.6. Every proper initial segment of a nice term C

has more [’s than ]’s.

Proof. By induction on C :

1. C is a le�er by itself: �en C has no proper initial seg-
ments.

2. C = [B1◦B2] for some nice terms B1 and B2. If A is a proper
initial segment of C , there are a number of possibilities:

a) A is just [: �en A has one more [ than it does ].
b) A is [A1 where A1 is a proper initial segment of B1:

Since B1 is a nice term, by induction hypothesis,
A1 has more [ than ] and the same is true for [A1.

c) A is [B1 or [B1◦ : By the previous result, the number
of [ and ] in B1 are equal; so the number of [ in [B1
or [B1 ◦ is one more than the number of ].
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d) A is [B1 ◦ A2 where A2 is a proper initial segment
of B2: By induction hypothesis, A2 contains more
[ than ]. By the previous result, the number of
[ and of ] in B1 are equal. So the number of [ in
[B1 ◦ A2 is greater than the number of ].

e) A is [B1 ◦ B2: By the previous result, the number
of [ and ] in B1 are equal, and the same for B2. So
there is one more [ in [B1 ◦ B2 than there are ]. �

B.6 Relations and Functions

When we have de�ned a set of objects (such as the natural
numbers or the nice terms) inductively, we can also de�ne
relations on these objects by induction. For instance, consider
the following idea: a nice term C1 is a subterm of a nice term C2
if it occurs as a part of it. Let’s use a symbol for it: C1 v C2.
Every nice term is a subterm of itself, of course: C v C . We can
give an inductive de�nition of this relation as follows:

De�nition B.7. �e relation of a nice term C1 being a subterm
of C2, C1 v C2, is de�ned by induction on C2 as follows:

1. If C2 is a le�er, then C1 v C2 i� C1 = C2.

2. If C2 is [B1 ◦ B2], then C1 v C2 i� C = C2, C1 v B1, or C1 v B2.

�is de�nition, for instance, will tell us that a v [b ◦ a].
For (2) says that a v [b ◦ a] i� a = [b ◦ a], or a v 1, or a v a.
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�e �rst two are false: a clearly isn’t identical to [b ◦ a], and
by (1), a v b i� a = b, which is also false. However, also by (1),
a v a i� a = a, which is true.

It’s important to note that the success of this de�nition
depends on a fact that we haven’t proved yet: every nice term C

is either a le�er by itself, or there are uniquely determined nice
terms B1 and B2 such that C = [B1 ◦ B2]. “Uniquely determined”
here means that if C = [B1 ◦ B2] it isn’t also = [A1 ◦ A2] with
B1 ≠ A1 or B2 ≠ A2. If this were the case, then clause (2) may
come in con�ict with itself: reading C2 as [B1 ◦ B2] we might
get C1 v C2, but if we read C2 as [A1 ◦ A2] we might get not
C1 v C2. Before we prove that this can’t happen, let’s look at
an example where it can happen.

De�nition B.8. De�ne bracketless terms inductively by

1. Every le�er is a bracketless term.

2. If B1 and B2 are bracketless terms, then B1 ◦ B2 is a brack-
etless term.

3. Nothing else is a bracketless term.

Bracketless terms are, e.g., a, b ◦ d, b ◦ a ◦ b. Now if we
de�ned “subterm” for bracketless terms the way we did above,
the second clause would read

If C2 = B1 ◦ B2, then C1 v C2 i� C1 = C2, C1 v B1, or C1 v B2.
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Now b ◦ a ◦ b is of the form B1 ◦ B2 with

B1 = b and B2 = a ◦ b.

It is also of the form A1 ◦ A2 with

A1 = b ◦ a and A2 = b.

Now is a ◦ b a subterm of b ◦ a ◦ b? �e answer is yes if we
go by the �rst reading, and no if we go by the second.

�e property that the way a nice term is built up from
other nice terms is unique is called unique readability. Since
inductive de�nitions of relations for such inductively de�ned
objects are important, we have to prove that it holds.

Proposition B.9. Suppose C is a nice term. �en either C is a
le�er by itself, or there are uniquely determined nice terms B1,
B2 such that C = [B1 ◦ B2].

Proof. If C is a le�er by itself, the condition is satis�ed. So
assume C isn’t a le�er by itself. We can tell from the inductive
de�nition that then C must be of the form [B1 ◦ B2] for some
nice terms B1 and B2. It remains to show that these are uniquely
determined, i.e., if C = [A1 ◦ A2], then B1 = A1 and B2 = A2.

So suppose C = [B1 ◦ B2] and also C = [A1 ◦ A2] for nice
terms B1, B2, A1, A2. We have to show that B1 = A1 and B2 = A2.
First, B1 and A1 must be identical, for otherwise one is a proper
initial segment of the other. But by Proposition B.6, that is
impossible if B1 and A1 are both nice terms. But if B1 = A1, then
clearly also B2 = A2. �
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We can also de�ne functions inductively: e.g., we can
de�ne the function 5 that maps any nice term to the maximum
depth of nested [. . . ] in it as follows:

De�nition B.10. �e depth of a nice term, 5 (C), is de�ned
inductively as follows:

5 (C) =
{

0 if C is a le�er
max(5 (B), 5 (B ′)) + 1 if C = [B1 ◦ B2].

For instance

5 ( [a ◦ b]) = max(5 (a), 5 (b)) + 1 =

= max(0, 0) + 1 = 1, and
5 ( [[a ◦ b] ◦ c]) = max(5 ( [a ◦ b]), 5 (c)) + 1 =

= max(1, 0) + 1 = 2.

Here, of course, we assume that B1 an B2 are nice terms,
and make use of the fact that every nice term is either a le�er
or of the form [B1 ◦ B2]. It is again important that it can be
of this form in only one way. To see why, consider again
the bracketless terms we de�ned earlier. �e corresponding
“de�nition” would be:

6(C) =
{

0 if C is a le�er
max(6(B), 6(B ′)) + 1 if C = [B1 ◦ B2].
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Now consider the bracketless term a ◦ b ◦ c ◦ d. It can be read
in more than one way, e.g., as B1 ◦ B2 with

B1 = a and B2 = b ◦ c ◦ d,

or as A1 ◦ A2 with

A1 = a ◦ 1 and A2 = c ◦ d.

Calculating 6 according to the �rst way of reading it would
give

6(B1 ◦ B2) = max(6(a), 6(b ◦ c ◦ d)) + 1 =

= max(0, 2) + 1 = 3

while according to the other reading we get

6(A1 ◦ A2) = max(6(a ◦ b), 6(c ◦ d)) + 1 =

= max(1, 1) + 1 = 2

But a function must always yield a unique value; so our “de�-
nition” of 6 doesn’t de�ne a function at all.

Problems

Problem B.1. De�ne the set of supernice terms by

1. Any le�er a, b, c, d is a supernice term.
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2. If B is a supernice term, then so is [B].

3. If B1 and B2 are supernice terms, then so is [B1 ◦ B2].

4. Nothing else is a supernice term.

Show that the number of [ in a supernice term C of length =
is ≤ =/2 + 1.

Problem B.2. Prove by structural induction that no nice
term starts with ].

Problem B.3. Give an inductive de�nition of the function ; ,
where ; (C) is the number of symbols in the nice term C .

Problem B.4. Prove by structural induction on nice terms C
that 5 (C) < ; (C) (where ; (C) is the number of symbols in C and
5 (C) is the depth of C as de�ned in De�nition B.10).
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Biographies

C.1 Georg Cantor

An early biography of Georg Cantor (gay-org kahn-tor)
claimed that he was born and found on a ship that was sail-
ing for Saint Petersburg, Russia, and that his parents were
unknown. �is, however, is not true; although he was born
in Saint Petersburg in 1845.

Cantor received his doctorate in mathematics at the Uni-
versity of Berlin in 1867. He is known for his work in set
theory, and is credited with founding set theory as a distinc-
tive research discipline. He was the �rst to prove that there
are in�nite sets of di�erent sizes. His theories, and especially
his theory of in�nities, caused much debate among mathe-
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maticians at the time, and his work was controversial.

Figure C.1: Georg Cantor

Cantor’s reli-
gious beliefs and
his mathematical
work were inextri-
cably tied; he even
claimed that the the-
ory of trans�nite
numbers had been
communicated to
him directly by God.
In later life, Cantor
su�ered from men-
tal illness. Begin-
ning in 1894, and
more frequently to-
wards his later years,
Cantor was hospital-
ized. �e heavy crit-
icism of his work, in-
cluding a falling out
with the mathemati-
cian Leopold Kronecker, led to depression and a lack of in-
terest in mathematics. During depressive episodes, Cantor
would turn to philosophy and literature, and even published
a theory that Francis Bacon was the author of Shakespeare’s
plays.
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Cantor died on January 6, 1918, in a sanatorium in Halle.

Further Reading For full biographies of Cantor, see Dauben
(1990) and Gra�an-Guinness (1971). Cantor’s radical views
are also described in the BBC Radio 4 program A Brief History
of Mathematics (du Sautoy, 2014). If you’d like to hear about
Cantor’s theories in rap form, see Rose (2012).

C.2 Alonzo Church

Figure C.2: Alonzo Church

Alonzo Church was
born in Washington,
DC on June 14, 1903.
In early childhood,
an air gun incident
le� Church blind in
one eye. He �nished
preparatory school
in Connecticut in
1920 and began his
university education
at Princeton that
same year. He com-
pleted his doctoral
studies in 1927. Af-
ter a couple years
abroad, Church re-
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turned to Princeton. Church was known exceedingly polite
and careful. His blackboard writing was immaculate, and he
would preserve important papers by carefully covering them
in Duco cement (a clear glue). Outside of his academic pur-
suits, he enjoyed reading science �ction magazines and was
not afraid to write to the editors if he spo�ed any inaccuracies
in the writing.

Church’s academic achievements were great. Together
with his students Stephen Kleene and Barkley Rosser, he de-
veloped a theory of e�ective calculability, the lambda calculus,
independently of Alan Turing’s development of the Turing
machine. �e two de�nitions of computability are equivalent,
and give rise to what is now known as the Church-Turing
�esis, that a function of the natural numbers is e�ectively
computable if and only if it is computable via Turing machine
(or lambda calculus). He also proved what is now known as
Church’s �eorem: �e decision problem for the validity of
�rst-order formulas is unsolvable.

Church continued his work into old age. In 1967 he le�
Princeton for UCLA, where he was professor until his retire-
ment in 1990. Church passed away on August 1, 1995 at the
age of 92.

Further Reading For a brief biography of Church, see En-
derton (2019). Church’s original writings on the lambda cal-
culus and the Entscheidungsproblem (Church’s �esis) are
Church (1936a,b). Aspray (1984) records an interview with
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Church about the Princeton mathematics community in the
1930s. Church wrote a series of book reviews of the Journal
of Symbolic Logic from 1936 until 1979. �ey are all archived
on John MacFarlane’s website (MacFarlane, 2015).

C.3 Gerhard Gentzen

Figure C.3: Gerhard Gentzen

Gerhard Gentzen
is known primar-
ily as the creator
of structural proof
theory, and specif-
ically the creation
of the natural de-
duction and sequent
calculus proof sys-
tems. He was born
on November 24,
1909 in Greifswald,
Germany. Gerhard was homeschooled for three years before
a�ending preparatory school, where he was behind most of
his classmates in terms of education. Despite this, he was a
brilliant student and showed a strong aptitude for mathemat-
ics. His interests were varied, and he, for instance, also write
poems for his mother and plays for the school theatre.

Gentzen began his university studies at the University
of Greifswald, but moved around to Gö�ingen, Munich, and
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Berlin. He received his doctorate in 1933 from the University
of Gö�ingen under Hermann Weyl. (Paul Bernays supervised
most of his work, but was dismissed from the university by the
Nazis.) In 1934, Gentzen began work as an assistant to David
Hilbert. �at same year he developed the sequent calculus and
natural deduction proof systems, in his papers Untersuchungen
über das logische Schließen I–II [Investigations Into Logical
Deduction I–II]. He proved the consistency of the Peano axioms
in 1936.

Gentzen’s relationship with the Nazis is complicated. At
the same time his mentor Bernays was forced to leave Ger-
many, Gentzen joined the university branch of the SA, the
Nazi paramilitary organization. Like many Germans, he was
a member of the Nazi party. During the war, he served as a
telecommunications o�cer for the air intelligence unit. How-
ever, in 1942 he was released from duty due to a nervous
breakdown. It is unclear whether or not Gentzen’s loyalties
lay with the Nazi party, or whether he joined the party in
order to ensure academic success.

In 1943, Gentzen was o�ered an academic position at the
Mathematical Institute of the German University of Prague,
which he accepted. However, in 1945 the citizens of Prague
revolted against German occupation. Soviet forces arrived
in the city and arrested all the professors at the university.
Because of his membership in Nazi organizations, Gentzen
was taken to a forced labour camp. He died of malnutrition
while in his cell on August 4, 1945 at the age of 35.
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Further Reading For a full biography of Gentzen, see
Menzler-Tro� (2007). An interesting read about mathemati-
cians under Nazi rule, which gives a brief note about Gentzen’s
life, is given by Segal (2014). Gentzen’s papers on logical de-
duction are available in the original german (Gentzen, 1935a,b).
English translations of Gentzen’s papers have been collected
in a single volume by Szabo (1969), which also includes a
biographical sketch.

C.4 Kurt Gödel

Kurt Gödel (ger-dle) was born on April 28, 1906 in Brünn in
the Austro-Hungarian empire (now Brno in the Czech Repub-
lic). Due to his inquisitive and bright nature, young Kurtele
was o�en called “Der kleine Herr Warum” (Li�le Mr. Why)
by his family. He excelled in academics from primary school
onward, where he got less than the highest grade only in
mathematics. Gödel was o�en absent from school due to poor
health and was exempt from physical education. He was diag-
nosed with rheumatic fever during his childhood. �roughout
his life, he believed this permanently a�ected his heart despite
medical assessment saying otherwise.

Gödel began studying at the University of Vienna in 1924
and completed his doctoral studies in 1929. He �rst intended
to study physics, but his interests soon moved to mathematics
and especially logic, in part due to the in�uence of the philoso-
pher Rudolf Carnap. His dissertation, wri�en under the su-
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pervision of Hans Hahn, proved the completeness theorem of
�rst-order predicate logic with identity (Gödel, 1929). Only a
year later, he obtained his most famous results—the �rst and
second incompleteness theorems (published in Gödel 1931).
During his time in Vienna, Gödel was heavily involved with
the Vienna Circle, a group of scienti�cally-minded philoso-
phers that included Carnap, whose work was especially in�u-
enced by Gödel’s results.

In 1938, Gödel married Adele Nimbursky. His parents
were not pleased: not only was she six years older than him
and already divorced, but she worked as a dancer in a night-
club. Social pressures did not a�ect Gödel, however, and they
remained happily married until his death.

A�er Nazi Germany annexed Austria in 1938, Gödel and
Adele emigrated to the United States, where he took up a
position at the Institute for Advanced Study in Princeton, New
Jersey. Despite his introversion and eccentric nature, Gödel’s
time at Princeton was collaborative and fruitful. He published
essays in set theory, philosophy and physics. Notably, he
struck up a particularly strong friendship with his colleague
at the IAS, Albert Einstein.

In his later years, Gödel’s mental health deteriorated. His
wife’s hospitalization in 1977 meant she was no longer able to
cook his meals for him. Having su�ered from mental health
issues throughout his life, he succumbed to paranoia. Deathly
afraid of being poisoned, Gödel refused to eat. He died of
starvation on January 14, 1978, in Princeton.
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Figure C.4: Kurt Gödel

Further Reading
For a complete bi-
ography of Gödel’s
life is available,
see John Dawson
(1997). For further
biographical pieces,
as well as essays
about Gödel’s con-
tributions to logic
and philosophy, see
Wang (1990), Baaz
et al. (2011), Takeuti
et al. (2003), and Sig-
mund et al. (2007).

Gödel’s PhD the-
sis is available in
the original German
(Gödel, 1929). �e
original text of the
incompleteness theorems is (Gödel, 1931). All of Gödel’s
published and unpublished writings, as well as a selection
of correspondence, are available in English in his Collected
Papers Feferman et al. (1986, 1990).

For a detailed treatment of Gödel’s incompleteness theo-
rems, see Smith (2013). For an informal, philosophical discus-
sion of Gödel’s theorems, see Mark Linsenmayer’s podcast
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(Linsenmayer, 2014).

C.5 Emmy Noether

Figure C.5: Emmy Noether

Emmy Noether
(ner-ter) was born
in Erlangen, Ger-
many, on March 23,
1882, to an upper-
middle class schol-
arly family. Hailed
as the “mother
of modern alge-
bra,” Noether made
groundbreaking con-
tributions to both
mathematics and
physics, despite sig-
ni�cant barriers to
women’s education.
In Germany at the
time, young girls
were meant to be ed-
ucated in arts and
were not allowed to a�end college preparatory schools. How-
ever, a�er auditing classes at the Universities of Gö�ingen
and Erlangen (where her father was professor of mathemat-
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ics), Noether was eventually able to enroll as a student at
Erlangen in 1904, when their policy was updated to allow
female students. She received her doctorate in mathematics
in 1907.

Despite her quali�cations, Noether experienced much re-
sistance during her career. From 1908–1915, she taught at
Erlangen without pay. During this time, she caught the at-
tention of David Hilbert, one of the world’s foremost mathe-
maticians of the time, who invited her to Gö�ingen. However,
women were prohibited from obtaining professorships, and
she was only able to lecture under Hilbert’s name, again with-
out pay. During this time she proved what is now known as
Noether’s theorem, which is still used in theoretical physics
today. Noether was �nally granted the right to teach in 1919.
Hilbert’s response to continued resistance of his university
colleagues reportedly was: “Gentlemen, the faculty senate is
not a bathhouse.”

In the later 1920s, she concentrated on work in abstract
algebra, and her contributions revolutionized the �eld. In her
proofs she o�en made use of the so-called ascending chain
condition, which states that there is no in�nite strictly in-
creasing chain of certain sets. For instance, certain algebraic
structures now known as Noetherian rings have the property
that there are no in�nite sequences of ideals �1 ( �2 ( . . . .
�e condition can be generalized to any partial order (in al-
gebra, it concerns the special case of ideals ordered by the
subset relation), and we can also consider the dual descending
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chain condition, where every strictly decreasing sequence in a
partial order eventually ends. If a partial order satis�es the de-
scending chain condition, it is possible to use induction along
this order in a similar way in which we can use induction
along the < order onN. Such orders are called well-founded or
Noetherian, and the corresponding proof principle Noetherian
induction.

Noether was Jewish, and when the Nazis came to power in
1933, she was dismissed from her position. Luckily, Noether
was able to emigrate to the United States for a temporary
position at Bryn Mawr, Pennsylvania. During her time there
she also lectured at Princeton, although she found the univer-
sity to be unwelcoming to women (Dick, 1981, 81). In 1935,
Noether underwent an operation to remove a uterine tumour.
She died from an infection as a result of the surgery, and was
buried at Bryn Mawr.

Further Reading For a biography of Noether, see Dick
(1981). �e Perimeter Institute for �eoretical Physics has
their lectures on Noether’s life and in�uence available online
(Institute, 2015). If you’re tired of reading, Stu� You Missed
in History Class has a podcast on Noether’s life and in�uence
(Frey and Wilson, 2015). �e collected works of Noether are
available in the original German (Jacobson, 1983).

C.6 Rózsa Péter
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Figure C.6: Rózsa Péter

Rózsa Péter was
born Rósza Politzer,
in Budapest, Hun-
gary, on February
17, 1905. She is best
known for her work
on recursive func-
tions, which was es-
sential for the cre-
ation of the �eld of
recursion theory.

Péter was raised
during harsh po-
litical times—WWI
raged when she was
a teenager—but was
able to a�end the af-
�uent Maria Terezia
Girls’ School in Budapest, from where she graduated in 1922.
She then studied at Pázmány Péter University (later renamed
Loránd Eötvös University) in Budapest. She began studying
chemistry at the insistence of her father, but later switched to
mathematics, and graduated in 1927. Although she had the
credentials to teach high school mathematics, the economic
situation at the time was dire as the Great Depression a�ected
the world economy. During this time, Péter took odd jobs as
a tutor and private teacher of mathematics. She eventually
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returned to university to take up graduate studies in mathe-
matics. She had originally planned to work in number theory,
but a�er �nding out that her results had already been proven,
she almost gave up on mathematics altogether. She was en-
couraged to work on Gödel’s incompleteness theorems, and
unknowingly proved several of his results in di�erent ways.
�is restored her con�dence, and Péter went on to write her
�rst papers on recursion theory, inspired by David Hilbert’s
foundational program. She received her PhD in 1935, and in
1937 she became an editor for the Journal of Symbolic Logic.

Péter’s early papers are widely credited as founding con-
tributions to the �eld of recursive function theory. In Péter
(1935a), she investigated the relationship between di�erent
kinds of recursion. In Péter (1935b), she showed that a certain
recursively de�ned function is not primitive recursive. �is
simpli�ed an earlier result due to Wilhelm Ackermann. Péter’s
simpli�ed function is what’s now o�en called the Ackermann
function—and sometimes, more properly, the Ackermann-
Péter function. She wrote the �rst book on recursive function
theory (Péter, 1951).

Despite the importance and in�uence of her work, Péter
did not obtain a full-time teaching position until 1945. During
the Nazi occupation of Hungary during World War II, Péter
was not allowed to teach due to anti-Semitic laws. In 1944 the
government created a Jewish ghe�o in Budapest; the ghe�o
was cut o� from the rest of the city and a�ended by armed
guards. Péter was forced to live in the ghe�o until 1945 when
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it was liberated. She then went on to teach at the Budapest
Teachers Training College, and from 1955 onward at Eötvös
Loránd University. She was the �rst female Hungarian mathe-
matician to become an Academic Doctor of Mathematics, and
the �rst woman to be elected to the Hungarian Academy of
Sciences.

Péter was known as a passionate teacher of mathematics,
who preferred to explore the nature and beauty of mathemat-
ical problems with her students rather than to merely lecture.
As a result, she was a�ectionately called “Aunt Rosa” by her
students. Péter died in 1977 at the age of 71.

Further Reading For more biographical reading, see (O’Connor
and Robertson, 2014) and (Andrásfai, 1986). Tamassy (1994)
conducted a brief interview with Péter. For a fun read about
mathematics, see Péter’s book Playing With In�nity (Péter,
2010).

C.7 Julia Robinson

Julia Bowman Robinson was an American mathematician. She
is known mainly for her work on decision problems, and most
famously for her contributions to the solution of Hilbert’s
tenth problem. Robinson was born in St. Louis, Missouri,
on December 8, 1919. Robinson recalls being intrigued by
numbers already as a child (Reid, 1986, 4). At age nine she
contracted scarlet fever and su�ered from several recurrent
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bouts of rheumatic fever. �is forced her to spend much of her
time in bed, pu�ing her behind in her education. Although
she was able to catch up with the help of private tutors, the
physical e�ects of her illness had a lasting impact on her life.

Figure C.7: Julia Robinson

Despite her
childhood struggles,
Robinson graduated
high school with sev-
eral awards in math-
ematics and the sci-
ences. She started
her university career
at San Diego State
College, and trans-
ferred to the Uni-
versity of California,
Berkeley, as a senior.
�ere she was in�u-
enced by the math-
ematician Raphael
Robinson. �ey be-
came good friends,
and married in 1941.
As a spouse of a faculty member, Robinson was barred from
teaching in the mathematics department at Berkeley. Al-
though she continued to audit mathematics classes, she hoped
to leave university and start a family. Not long a�er her wed-
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ding, however, Robinson contracted pneumonia. She was told
that there was substantial scar tissue build up on her heart
due to the rheumatic fever she su�ered as a child. Due to the
severity of the scar tissue, the doctor predicted that she would
not live past forty and she was advised not to have children
(Reid, 1986, 13).

Robinson was depressed for a long time, but eventually
decided to continue studying mathematics. She returned to
Berkeley and completed her PhD in 1948 under the super-
vision of Alfred Tarski. �e �rst-order theory of the real
numbers had been shown to be decidable by Tarski, and from
Gödel’s work it followed that the �rst-order theory of the
natural numbers is undecidable. It was a major open problem
whether the �rst-order theory of the rationals is decidable or
not. In her thesis (1949), Robinson proved that it was not.

Interested in decision problems, Robinson next a�empted
to �nd a solution to Hilbert’s tenth problem. �is problem
was one of a famous list of 23 mathematical problems posed
by David Hilbert in 1900. �e tenth problem asks whether
there is an algorithm that will answer, in a �nite amount
of time, whether or not a polynomial equation with inte-
ger coe�cients, such as 3G2 − 2~ + 3 = 0, has a solution
in the integers. Such questions are known as Diophantine
problems. A�er some initial successes, Robinson joined forces
with Martin Davis and Hilary Putnam, who were also working
on the problem. �ey succeeded in showing that exponen-
tial Diophantine problems (where the unknowns may also
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appear as exponents) are undecidable, and showed that a
certain conjecture (later called “J.R.”) implies that Hilbert’s
tenth problem is undecidable (Davis et al., 1961). Robinson
continued to work on the problem throughout the 1960s. In
1970, the young Russian mathematician Yuri Matijasevich
�nally proved the J.R. hypothesis. �e combined result is now
called the Matijasevich–Robinson–Davis–Putnam theorem,
or MDRP theorem for short. Matijasevich and Robinson be-
came friends and collaborated on several papers. In a le�er to
Matijasevich, Robinson once wrote that “actually I am very
pleased that working together (thousands of miles apart) we
are obviously making more progress than either one of us
could alone” (Matijasevich, 1992, 45).

Robinson was the �rst female president of the American
Mathematical Society, and the �rst woman to be elected to
the National Academy of Science. She died on July 30, 1985
at the age of 65 a�er being diagnosed with leukemia.

Further Reading Robinson’s mathematical papers are
available in her Collected Works (Robinson, 1996), which
also includes a reprint of her National Academy of Sciences
biographical memoir (Feferman, 1994). Robinson’s older sister
Constance Reid published an “Autobiography of Julia,” based
on interviews (Reid, 1986), as well as a full memoir (Reid,
1996). A short documentary about Robinson and Hilbert’s
tenth problem was directed by George Csicsery (Csicsery,
2016). For a brief memoir about Yuri Matijasevich’s collab-
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orations with Robinson, and her in�uence on his work, see
(Matijasevich, 1992).

C.8 Bertrand Russell

Figure C.8: Bertrand Russell

Bertrand Russell is
hailed as one of the
founders of mod-
ern analytic philoso-
phy. Born May 18,
1872, Russell was
not only known for
his work in philos-
ophy and logic, but
wrote many popular
books in various sub-
ject areas. He was
also an ardent polit-
ical activist through-
out his life.

Russell was born
in Trellech, Mon-
mouthshire, Wales.
His parents were
members of the
British nobility. �ey were free-thinkers, and even made
friends with the radicals in Boston at the time. Unfortunately,
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Russell’s parents died when he was young, and Russell was
sent to live with his grandparents. �ere, he was given a reli-
gious upbringing (something his parents had wanted to avoid
at all costs). His grandmother was very strict in all ma�ers of
morality. During adolescence he was mostly homeschooled
by private tutors.

Russell’s in�uence in analytic philosophy, and especially
logic, is tremendous. He studied mathematics and philosophy
at Trinity College, Cambridge, where he was in�uenced by
the mathematician and philosopher Alfred North Whitehead.
In 1910, Russell and Whitehead published the �rst volume
of Principia Mathematica, where they championed the view
that mathematics is reducible to logic. He went on to publish
hundreds of books, essays and political pamphlets. In 1950,
he won the Nobel Prize for literature.

Russell’s was deeply entrenched in politics and social ac-
tivism. During World War I he was arrested and sent to prison
for six months due to paci�st activities and protest. While
in prison, he was able to write and read, and claims to have
found the experience “quite agreeable.” He remained a paci�st
throughout his life, and was again incarcerated for a�ending
a nuclear disarmament rally in 1961. He also survived a plane
crash in 1948, where the only survivors were those si�ing in
the smoking section. As such, Russell claimed that he owed
his life to smoking. Russell was married four times, but had a
reputation for carrying on extra-marital a�airs. He died on
February 2, 1970 at the age of 97 in Penrhyndeudraeth, Wales.
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Further Reading Russell wrote an autobiography in three
parts, spanning his life from 1872–1967 (Russell, 1967, 1968,
1969). �e Bertrand Russell Research Centre at McMaster
University is home of the Bertrand Russell archives. See their
website at Duncan (2015), for information on the volumes
of his collected works (including searchable indexes), and
archival projects. Russell’s paper On Denoting (Russell, 1905)
is a classic of 20th century analytic philosophy.

�e Stanford Encyclopedia of Philosophy entry on Russell
(Irvine, 2015) has sound clips of Russell speaking on Desire
and Political theory. Many video interviews with Russell are
available online. To see him talk about smoking and being
involved in a plane crash, e.g., see Russell (n.d.). Some of
Russell’s works, including his Introduction to Mathematical
Philosophy are available as free audiobooks on LibriVox (n.d.).

C.9 Alfred Tarski

Alfred Tarski was born on January 14, 1901 in Warsaw, Poland
(then part of the Russian Empire). Described as “Napoleonic,”
Tarski was boisterous, talkative, and intense. His energy was
o�en re�ected in his lectures—he once set �re to a wastebas-
ket while disposing of a cigare�e during a lecture, and was
forbidden from lecturing in that building again.

Tarski had a thirst for knowledge from a young age. Al-
though later in life he would tell students that he studied logic
because it was the only class in which he got a B, his high
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school records show that he got A’s across the board—even
in logic. He studied at the University of Warsaw from 1918 to
1924. Tarski �rst intended to study biology, but became inter-
ested in mathematics, philosophy, and logic, as the university
was the center of the Warsaw School of Logic and Philosophy.
Tarski earned his doctorate in 1924 under the supervision of
Stanisław Leśniewski.

Figure C.9: Alfred Tarski

Before emigrat-
ing to the United
States in 1939,
Tarski completed
some of his most
important work
while working as
a secondary school
teacher in Warsaw.
His work on logi-
cal consequence and
logical truth were
wri�en during this
time. In 1939, Tarski
was visiting the
United States for a
lecture tour. During
his visit, Germany
invaded Poland, and
because of his Jewish heritage, Tarski could not return. His
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wife and children remained in Poland until the end of the war,
but were then able to emigrate to the United States as well.
Tarski taught at Harvard, the College of the City of New York,
and the Institute for Advanced Study at Princeton, and �nally
the University of California, Berkeley. �ere he founded the
multidisciplinary program in Logic and the Methodology of
Science. Tarski died on October 26, 1983 at the age of 82.

Further Reading For more on Tarski’s life, see the biog-
raphy Alfred Tarski: Life and Logic (Feferman and Feferman,
2004). Tarski’s seminal works on logical consequence and
truth are available in English in (Corcoran, 1983). All of
Tarski’s original works have been collected into a four volume
series, (Tarski, 1981).

C.10 Alan Turing

Alan Turing was born in Mailda Vale, London, on June 23,
1912. He is considered the father of theoretical computer
science. Turing’s interest in the physical sciences and mathe-
matics started at a young age. However, as a boy his interests
were not represented well in his schools, where emphasis was
placed on literature and classics. Consequently, he did poorly
in school and was reprimanded by many of his teachers.

Turing a�ended King’s College, Cambridge as an under-
graduate, where he studied mathematics. In 1936 Turing de-
veloped (what is now called) the Turing machine as an a�empt
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to precisely de�ne the notion of a computable function and
to prove the undecidability of the decision problem. He was
beaten to the result by Alonzo Church, who proved the re-
sult via his own lambda calculus. Turing’s paper was still
published with reference to Church’s result. Church invited
Turing to Princeton, where he spent 1936–1938, and obtained
a doctorate under Church.

Figure C.10: Alan Turing

Despite his in-
terest in logic, Tur-
ing’s earlier inter-
ests in physical
sciences remained
prevalent. His prac-
tical skills were put
to work during his
service with the
British cryptana-
lytic department at
Bletchley Park dur-
ing World War II.
Turing was a cen-
tral �gure in crack-
ing the cypher used
by German Naval
communications—
the Enigma code. Turing’s expertise in statistics and cryptog-
raphy, together with the introduction of electronic machinery,
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gave the team the ability to crack the code by creating a
de-crypting machine called a “bombe.” His ideas also helped
in the creation of the world’s �rst programmable electronic
computer, the Colossus, also used at Bletchley park to break
the German Lorenz cypher.

Turing was gay. Nevertheless, in 1942 he proposed to Joan
Clarke, one of his teammates at Bletchley Park, but later broke
o� the engagement and confessed to her that he was homosex-
ual. He had several lovers throughout his lifetime, although
homosexual acts were then criminal o�ences in the UK. In
1952, Turing’s house was burgled by a friend of his lover at
the time, and when �ling a police report, Turing admi�ed to
having a homosexual relationship, under the impression that
the government was on their way to legalizing homosexual
acts. �is was not true, and he was charged with gross inde-
cency. Instead of going to prison, Turing opted for a hormone
treatment that reduced libido. Turing was found dead on June
8, 1954, of a cyanide overdose—most likely suicide. He was
given a royal pardon by �een Elizabeth II in 2013.

Further Reading For a comprehensive biography of Alan
Turing, see Hodges (2014). Turing’s life and work inspired
a play, Breaking the Code, which was produced in 1996 for
TV starring Derek Jacobi as Turing. �e Imitation Game, an
Academy Award nominated �lm starring Bendict Cumber-
batch and Kiera Knightley, is also loosely based on Alan Tur-
ing’s life and time at Bletchley Park (Tyldum, 2014).
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Radiolab (2012) has several podcasts on Turing’s life and
work. BBC Horizon’s documentary �e Strange Life and Death
of Dr. Turing is available to watch online (Sykes, 1992). (�ee-
len, 2012) is a short video of a working LEGO Turing Machine—
made to honour Turing’s centenary in 2012.

Turing’s original paper on Turing machines and the deci-
sion problem is Turing (1937).

C.11 Ernst Zermelo

Ernst Zermelo was born on July 27, 1871 in Berlin, Germany.
He had �ve sisters, though his family su�ered from poor
health and only three survived to adulthood. His parents also
passed away when he was young, leaving him and his siblings
orphans when he was seventeen. Zermelo had a deep interest
in the arts, and especially in poetry. He was known for being
sharp, wi�y, and critical. His most celebrated mathematical
achievements include the introduction of the axiom of choice
(in 1904), and his axiomatization of set theory (in 1908).

Zermelo’s interests at university were varied. He took
courses in physics, mathematics, and philosophy. Under the
supervision of Hermann Schwarz, Zermelo completed his
dissertation Investigations in the Calculus of Variations in 1894
at the University of Berlin. In 1897, he decided to pursue more
studies at the University of Gö�igen, where he was heavily
in�uenced by the foundational work of David Hilbert. In 1899
he became eligible for professorship, but did not get one until
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eleven years later—possibly due to his strange demeanour and
“nervous haste.”

Figure C.11: Ernst Zermelo

Zermelo �nally
received a paid pro-
fessorship at the Uni-
versity of Zurich in
1910, but was forced
to retire in 1916 due
to tuberculosis. Af-
ter his recovery, he
was given an hon-
ourary professor-
ship at the Univer-
sity of Freiburg in
1921. During this
time he worked on
foundational math-
ematics. He be-
came irritated with
the works of �o-
ralf Skolem and Kurt
Gödel, and publicly criticized their approaches in his papers.
He was dismissed from his position at Freiburg in 1935, due to
his unpopularity and his opposition to Hitler’s rise to power
in Germany.

�e later years of Zermelo’s life were marked by isolation.
A�er his dismissal in 1935, he abandoned mathematics. He
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moved to the country where he lived modestly. He married
in 1944, and became completely dependent on his wife as he
was going blind. Zermelo lost his sight completely by 1951.
He passed away in Günterstal, Germany, on May 21, 1953.

Further Reading For a full biography of Zermelo, see
Ebbinghaus (2015). Zermelo’s seminal 1904 and 1908 papers
are available to read in the original German (Zermelo, 1904,
1908). Zermelo’s collected works, including his writing on
physics, are available in English translation in (Ebbinghaus
et al., 2010; Ebbinghaus and Kanamori, 2013).
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courtesy of the Universitätsarchiv, Martin-Luther Universität
Halle–Wi�enberg. UAHW Rep. 40-VI, Nr. 3 Bild 102.

Alonzo Church, p. 529: Portrait of Alonzo Church, un-
dated, photographer unknown. Alonzo Church Papers; 1924–
1995, (C0948) Box 60, Folder 3. Manuscripts Division, De-
partment of Rare Books and Special Collections, Princeton
University Library. © Princeton University. �e Open Logic
Project has obtained permission to use this image for inclu-
sion in non-commercial OLP-derived materials. Permission
from Princeton University is required for any other use.

Gerhard Gentzen, p. 531: Portrait of Gerhard Gentzen
playing ping-pong courtesy of Ekhart Mentzler-Tro�.
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Press.

Zermelo, Ernst. 1904. Beweis, daß jede Menge wohlgeordnet
werden kann. Mathematische Annalen 59: 514–516. English
translation in (Ebbinghaus et al., 2010, pp. 115–119).

Zermelo, Ernst. 1908. Untersuchungen über die Grundlagen
der Mengenlehre I. Mathematische Annalen 65(2): 261–281.
English translation in (Ebbinghaus et al., 2010, pp. 189-229).

568

https://www.youtube.com/watch?v=FTSAiF9AHN4
https://www.youtube.com/watch?v=FTSAiF9AHN4

	Propositional Logic
	Syntax and Semantics
	Introduction
	Propositional Formulas
	Preliminaries
	Valuations and Satisfaction
	Semantic Notions
	Normal forms
	Expressive adequacy
	Failures of expressive adequacy
	Problems

	Natural Deduction
	Introduction
	Natural Deduction
	Rules and Derivations
	Propositional Rules
	Derivations
	Examples of Derivations
	Proof-Theoretic Notions
	Derivability and Consistency
	Derivability and the Propositional Connectives
	Soundness
	Problems

	The Completeness Theorem
	Introduction
	Outline of the Proof
	Complete Consistent Sets of Formulas
	Lindenbaum's Lemma
	Construction of a Model
	The Completeness Theorem
	The Compactness Theorem
	A Direct Proof of the Compactness Theorem
	Problems


	First-order Logic
	Syntax and Semantics
	Introduction
	First-Order Languages
	Terms and Formulas
	Unique Readability
	Main operator of a Formula
	Subformulas
	Free Variables and Sentences
	Substitution
	Structures for First-order Languages
	Covered Structures for First-order Languages
	Satisfaction of a Formula in a Structure
	Variable Assignments
	Extensionality
	Semantic Notions
	Problems

	Theories and Their Models
	Introduction
	Expressing Properties of Structures
	Examples of First-Order Theories
	Expressing Relations in a Structure
	The Theory of Sets
	Expressing the Size of Structures
	Problems

	Natural Deduction
	Introduction
	Quantifier Rules
	Derivations with Quantifiers
	Proof-Theoretic Notions
	Derivability and Consistency
	Derivability and the Propositional Connectives
	Derivability and the Quantifiers
	Soundness
	Derivations with Identity predicate
	Soundness with Identity predicate
	Problems

	The Completeness Theorem
	Introduction
	Outline of the Proof
	Complete Consistent Sets of Sentences
	Henkin Expansion
	Lindenbaum's Lemma
	Construction of a Model
	Identity
	The Completeness Theorem
	The Compactness Theorem
	A Direct Proof of the Compactness Theorem
	The Löwenheim-Skolem Theorem
	Problems

	Basics of Model Theory
	Reducts and Expansions
	Substructures
	Overspill
	Isomorphic Structures
	The Theory of a Structure
	Models of Arithmetic
	Standard Models of Arithmetic
	Non-Standard Models
	Problems


	Second-order Logic
	Syntax and Semantics
	Introduction
	Terms and Formulas
	Satisfaction
	Semantic Notions
	Expressive Power
	Describing Infinite and Countable Domains
	Problems

	Metatheory of Second-order Logic
	Introduction
	Second-order Arithmetic
	Second-order Logic is not Axiomatizable
	Second-order Logic is not Compact
	The Löwenheim-Skolem Theorem Fails for Second-order Logic
	Problems


	Intuitionistic Logic
	Introduction
	Constructive Reasoning
	Syntax of Intuitionistic Logic
	The Brouwer-Heyting-Kolmogorov Interpretation
	Natural Deduction
	Problems

	Semantics
	Introduction
	Relational models
	Semantic Notions
	Problems

	Soundness and Completeness
	Soundness of Natural Deduction
	Lindenbaum's Lemma
	The Canonical Model
	The Truth Lemma
	The Completeness Theorem
	Problems


	Computability and Incompleteness
	Turing Machine Computations
	Introduction
	Representing Turing Machines
	Turing Machines
	Configurations and Computations
	Unary Representation of Numbers
	Halting States
	Combining Turing Machines
	Variants of Turing Machines
	The Church-Turing Thesis
	Problems

	Undecidability
	Introduction
	Enumerating Turing Machines
	The Halting Problem
	The Decision Problem
	Representing Turing Machines
	Verifying the Representation
	The Decision Problem is Unsolvable
	Problems

	Recursive Functions
	Introduction
	Primitive Recursion
	Composition
	Primitive Recursion Functions
	Primitive Recursion Notations
	Primitive Recursive Functions are Computable
	Examples of Primitive Recursive Functions
	Primitive Recursive Relations
	Bounded Minimization
	Primes
	Sequences
	Trees
	Other Recursions
	Non-Primitive Recursive Functions
	Partial Recursive Functions
	General Recursive Functions
	Problems

	Arithmetization of Syntax
	Introduction
	Coding Symbols
	Coding Terms
	Coding Formulas
	Substitution
	Derivations in Natural Deduction
	Problems

	Representability in Q
	Introduction
	Functions Representable in Q are Computable
	The Beta Function Lemma
	Simulating Primitive Recursion
	Basic Functions are Representable in Q
	Composition is Representable in Q
	Regular Minimization is Representable in Q
	Computable Functions are Representable in Q
	Representing Relations
	Undecidability
	Problems

	Incompleteness and Provability
	Introduction
	The Fixed-Point Lemma
	The First Incompleteness Theorem
	Rosser's Theorem
	Comparison with Gödel's Original Paper
	Problems


	Appendices
	Proofs
	Introduction
	Starting a Proof
	Using Definitions
	Inference Patterns
	An Example
	Another Example
	Proof by Contradiction
	Reading Proofs
	I Can't Do It!
	Other Resources
	Problems

	Induction
	Introduction
	Induction on N
	Strong Induction
	Inductive Definitions
	Structural Induction
	Relations and Functions
	Problems

	Biographies
	Georg Cantor
	Alonzo Church
	Gerhard Gentzen
	Kurt Gödel
	Emmy Noether
	Rózsa Péter
	Julia Robinson
	Bertrand Russell
	Alfred Tarski
	Alan Turing
	Ernst Zermelo

	Photo Credits
	Bibliography


