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7.11 �e Löwenheim-Skolem �eorem . . . . . . . . . . . . . . . . . . . . 102
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8 Basics of Model �eory 105
8.1 Reducts and Expansions . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Substructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.3 Overspill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4 Isomorphic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.5 �e �eory of a Structure . . . . . . . . . . . . . . . . . . . . . . . . 108
8.6 Models of Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.7 Standard Models of Arithmetic . . . . . . . . . . . . . . . . . . . . . 109
8.8 Non-Standard Models . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

III Second-order Logic 115

9 Syntax and Semantics 115
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.2 Terms and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.3 Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.4 Semantic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.5 Expressive Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.6 Describing In�nite and Countable Domains . . . . . . . . . . . . . . 119
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10 Metatheory of Second-order Logic 123
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.2 Second-order Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.3 Second-order Logic is not Axiomatizable . . . . . . . . . . . . . . . . 125
10.4 Second-order Logic is not Compact . . . . . . . . . . . . . . . . . . . 125
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Part I

Propositional Logic

Chapter 1

Syntax and Semantics

1.1 Introduction

Propositional logic deals with formulas that are built from propositional variables
using the propositional connectives ¬, ∧, ∨,→, and↔. Intuitively, a propositional
variable ? stands for a sentence or proposition that is true or false. Whenever the
“truth value” of the propositional variable in a formula is determined, so is the truth
value of any formulas formed from them using propositional connectives. We say
that propositional logic is truth functional, because its semantics is given by functions
of truth values. In particular, in propositional logic we leave out of consideration
any further determination of truth and falsity, e.g., whether something is necessarily
true rather than just contingently true, or whether something is known to be true, or
whether something is true now rather than was true or will be true. We only consider
two truth values true (T) and false (F), and so exclude from discussion the possibility
that a statement may be neither true nor false, or only half true. We also concentrate
only on connectives where the truth value of a formula built from them is completely
determined by the truth values of its parts (and not, say, on its meaning). In particular,
whether the truth value of conditionals in English is truth functional in this sense is
contentious. �e material conditional→ is; other logics deal with conditionals that
are not truth functional.

In order to develop the theory and metatheory of truth-functional propositional
logic, we must �rst de�ne the syntax and semantics of its expressions. We will describe
one way of constructing formulas from propositional variables using the connectives.
Alternative de�nitions are possible. Other systems will chose di�erent symbols, will
select di�erent sets of connectives as primitive, will use parentheses di�erently (or
even not at all, as in the case of so-called Polish notation). What all approaches have
in common, though, is that the formation rules de�ne the set of formulas inductively.
If done properly, every expression can result essentially in only one way according
to the formation rules. �e inductive de�nition resulting in expressions that are
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1. Syntax and Semantics

uniquely readable means we can give meanings to these expressions using the same
method—inductive de�nition.

Giving the meaning of expressions is the domain of semantics. �e central concept
in semantics for propositonal logic is that of satisfaction in a valuation. A valuation E
assigns truth values T, F to the propositional variables. Any valuation determines a
truth value E (i) for any formulai . A formula is satis�ed in a valuation E i� E (i) = T—
we write this as E � i . �is relation can also be de�ned by induction on the structure
of i , using the truth functions for the logical connectives to de�ne, say, satisfaction
of i ∧k in terms of satisfaction (or not) of i andk .

On the basis of the satisfaction relation E � i for sentences we can then de�ne
the basic semantic notions of tautology, entailment, and satis�ability. A formula is
a tautology, � i , if every valuation satis�es it, i.e., E (i) = T for any E . It is entailed
by a set of formulas, Γ � i , if every valuation that satis�es all the formulas in Γ also
satis�es i . And a set of formulas is satis�able if some valuation satis�es all formulas
in it at the same time. Because formulas are inductively de�ned, and satisfaction is in
turn de�ned by induction on the structure of formulas, we can use induction to prove
properties of our semantics and to relate the semantic notions de�ned.

1.2 Propositional Formulas

Formulas of propositional logic are built up from propositional variables and the
propositional constant ⊥ using logical connectives.

1. A countably in�nite set At0 of propositional variables ?0, ?1, . . .

2. �e propositional constant for falsity ⊥.

3. �e logical connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction), →
(conditional)

4. Punctuation marks: (, ), and the comma.

We denote this language of propositional logic by L0.
In addition to the primitive connectives introduced above, we also use the follow-

ing de�ned symbols:↔ (biconditional), > (truth)
A de�ned symbol is not o�cially part of the language, but is introduced as an

informal abbreviation: it allows us to abbreviate formulas which would, if we only
used primitive symbols, get quite long. �is is obviously an advantage. �e bigger
advantage, however, is that proofs become shorter. If a symbol is primitive, it has to
be treated separately in proofs. �e more primitive symbols, therefore, the longer our
proofs.

You may be familiar with di�erent terminology and symbols than the ones we
use above. Logic texts (and teachers) commonly use either ∼, ¬, and ! for “negation”,
∧, ·, and & for “conjunction”. Commonly used symbols for the “conditional” or
“implication” are →, ⇒, and ⊃. Symbols for “biconditional,” “bi-implication,” or
“(material) equivalence” are↔,⇔, and ≡. �e ⊥ symbol is variously called “falsity,”
“falsum,” “absurdity,” or “bo�om.” �e > symbol is variously called “truth,” “verum,”
or “top.”

De�nition 1.1 (Formula). �e set Frm(L0) of formulas of propositional logic is
de�ned inductively as follows:

2



1.3. Preliminaries

1. ⊥ is an atomic formula.

2. Every propositional variable ?8 is an atomic formula.

3. If i is a formula, then ¬i is formula.

4. If i andk are formulas, then (i ∧k ) is a formula.

5. If i andk are formulas, then (i ∨k ) is a formula.

6. If i andk are formulas, then (i→k ) is a formula.

7. Nothing else is a formula.

�e de�nition of formulas is an inductive de�nition. Essentially, we construct the
set of formulas in in�nitely many stages. In the initial stage, we pronounce all atomic
formulas to be formulas; this corresponds to the �rst few cases of the de�nition, i.e.,
the cases for ⊥, ?8 . “Atomic formula” thus means any formula of this form.

�e other cases of the de�nition give rules for constructing new formulas out
of formulas already constructed. At the second stage, we can use them to construct
formulas out of atomic formulas. At the third stage, we construct new formulas from
the atomic formulas and those obtained in the second stage, and so on. A formula is
anything that is eventually constructed at such a stage, and nothing else.

De�nition 1.2. Formulas constructed using the de�ned operators are to be under-
stood as follows:

1. > abbreviates ¬⊥.

2. i↔k abbreviates (i→k ) ∧ (k → i).

De�nition 1.3 (Syntactic identity). �e symbol ≡ expresses syntactic identity be-
tween strings of symbols, i.e., i ≡ k i� i and k are strings of symbols of the same
length and which contain the same symbol in each place.

�e ≡ symbol may be �anked by strings obtained by concatenation, e.g., i ≡
(k ∨ j) means: the string of symbols i is the same string as the one obtained by
concatenating an opening parenthesis, the stringk , the ∨ symbol, the string j , and
a closing parenthesis, in this order. If this is the case, then we know that the �rst
symbol of i is an opening parenthesis, i contains k as a substring (starting at the
second symbol), that substring is followed by ∨, etc.

1.3 Preliminaries

�eorem 1.4 (Principle of induction on formulas). If some property % holds for
all the atomic formulas and is such that

1. it holds for ¬i whenever it holds for i ;

2. it holds for (i ∧k ) whenever it holds for i andk ;

3. it holds for (i ∨k ) whenever it holds for i andk ;

4. it holds for (i→k ) whenever it holds for i andk ;

3



1. Syntax and Semantics

then % holds for all formulas.

Proof. Let ( be the collection of all formulas with property % . Clearly ( ⊆ Frm(L0).
( satis�es all the conditions of De�nition 1.1: it contains all atomic formulas and is
closed under the logical operators. Frm(L0) is the smallest such class, so Frm(L0) ⊆ ( .
So Frm(L0) = ( , and every formula has property % . �

Proposition 1.5. Any formula in Frm(L0) is balanced, in that it has as many le�
parentheses as right ones.

Proposition 1.6. No proper initial segment of a formula is a formula.

Proposition 1.7 (Unique Readability). Any formula i in Frm(L0) has exactly one
parsing as one of the following

1. ⊥.

2. ?= for some ?= ∈ At0.

3. ¬k for some formulak .

4. (k ∧ j) for some formulask and j .

5. (k ∨ j) for some formulask and j .

6. (k → j) for some formulask and j .

Moreover, this parsing is unique.

Proof. By induction on i . For instance, suppose that i has two distinct readings as
(k → j) and (k ′→ j ′). �en k and k ′ must be the same (or else one would be a
proper initial segment of the other and that’s not possible by Proposition 1.6); so if
the two readings of i are distinct it must be because j and j ′ are distinct readings of
the same sequence of symbols, which is impossible by the inductive hypothesis. �

It may be worth pointing out that the unique readability is not something we
get for free for any inductively de�ned system. For example, if in the de�nition
of Frm(L0) we hadn’t used parantheses the “formula” i ∧ k ∨ j would have two
di�erent parsings corresponding to (i ∧k ) ∨ j and i ∧ (k ∨ j).

It is o�en useful to talk about the formulas that “make up” a given formula. We
call these its subformulas. Any formula counts as a subformula of itself; a subformula
of i other than i itself is a proper subformula.

De�nition 1.8 (Immediate Subformula). If i is a formula, the immediate subfor-
mulas of i are de�ned inductively as follows:

1. Atomic formulas have no immediate subformulas.

2. i ≡ ¬k : �e only immediate subformula of i isk .

3. i ≡ (k ∗ j): �e immediate subformulas of i arek and j (∗ is any one of the
two-place connectives).

De�nition 1.9 (Proper Subformula). If i is a formula, the proper subformulas of
i are recursively as follows:
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1.4. Valuations and Satisfaction

1. Atomic formulas have no proper subformulas.

2. i ≡ ¬k : �e proper subformulas of i are k together with all proper subfor-
mulas ofk .

3. i ≡ (k ∗ j): �e proper subformulas of i are k , j , together with all proper
subformulas ofk and those of j .

De�nition 1.10 (Subformula). �e subformulas of i are i itself together with all
its proper subformulas.

�e main connective of a formula is the outermost connective of the formula. We
can now de�ne what the scope of a connective is.

De�nition 1.11 (Scope). �e scope of a connective in a formula is the subformula
for which the connective is the main connective.

De�nition 1.12 (Uniform Substitution). Ifi andk are formulas, and ?8 is a propo-
sitional variable, then i [k/?8 ] denotes the result of replacing each occurrence of ?8
by an occurrence ofk in i ; similarly, the simultaneous substitution of ?1, . . . , ?= by
formulask1, . . . ,k= is denoted by i [k1/?1, . . . ,k=/?=].

1.4 Valuations and Satisfaction

De�nition 1.13 (Valuations). Let {T, F} be the set of the two truth values, “true”
and “false.” A valuation for L0 is a function E assigning either T or F to the proposi-
tional variables of the language, i.e., E : At0 → {T, F}.

De�nition 1.14. Given a valuation E , de�ne the evaluation function E : Frm(L0) →
{T, F} inductively by:

E (⊥) = F;
E (?=) = E (?=);

E (¬i) =
{

T if E (i) = F;
F otherwise.

E (i ∧k ) =
{

T if E (i) = T and E (k ) = T;
F if E (i) = F or E (k ) = F.

E (i ∨k ) =
{

T if E (i) = T or E (k ) = T;
F if E (i) = F and E (k ) = F.

E (i→k ) =
{

T if E (i) = F or E (k ) = T;
F if E (i) = T and E (k ) = F.

�e clauses correspond to the following truth tables:
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1. Syntax and Semantics

i ¬i
T F
F T

i k i ∧k
T T T
T F F
F T F
F F F

i k i ∨k
T T T
T F T
F T T
F F F

i k i→k

T T T
T F F
F T T
F F T

�eorem 1.15 (Local Determination). Suppose that E1 and E2 are valuations that
agree on the propositional le�ers occurring in i , i.e., E1 (?=) = E2 (?=) whenever ?= occurs
in some formula i . �en E1 and E2 also agree on i , i.e., E1 (i) = E2 (i).

Proof. By induction on i . �

De�nition 1.16 (Satisfaction). Using the evaluation function, we can de�ne the
notion of satisfaction of a formula i by a valuation E , E � i , inductively as follows.
(We write E 2 i to mean “not E � i .”)

1. i ≡ ⊥: E 2 i .

2. i ≡ ?8 : E � i i� E (?8 ) = T.

3. i ≡ ¬k : E � i i� E 2 k .

4. i ≡ (k ∧ j): E � i i� E � k and E � j .

5. i ≡ (k ∨ j): E � i i� E � i or E � k (or both).

6. i ≡ (k → j): E � i i� E 2 k or E � j (or both).

If Γ is a set of formulas, E � Γ i� E � i for every i ∈ Γ.

Proposition 1.17. E � i i� E (i) = T.

Proof. By induction on i . �

1.5 Semantic Notions

We de�ne the following semantic notions:

De�nition 1.18. 1. A formulai is satis�able if for some E , E � i ; it is unsatis�able
if for no E , E � i ;

2. A formula i is a tautology if E � i for all valuations E ;

3. A formula i is contingent if it is satis�able but not a tautology;

4. If Γ is a set of formulas, Γ � i (“Γ entails i”) if and only if E � i for every
valuation E for which E � Γ.

6



1.5. Semantic Notions

5. If Γ is a set of formulas, Γ is satis�able if there is a valuation E for which E � Γ,
and Γ is unsatis�able otherwise.

Proposition 1.19. 1. i is a tautology if and only if ∅ � i ;

2. If Γ � i and Γ � i→k then Γ � k ;

3. If Γ is satis�able then every �nite subset of Γ is also satis�able;

4. Monotony: if Γ ⊆ Δ and Γ � i then also Δ � i ;

5. Transitivity: if Γ � i and Δ ∪ {i} � k then Γ ∪ Δ � k .

Proof. Exercise. �

Proposition 1.20. Γ � i if and only if Γ ∪ {¬i} is unsatis�able.

Proof. Exercise. �

�eorem 1.21 (Semantic Deduction �eorem). Γ � i→k if and only if Γ∪{i} �
k .

Proof. Exercise. �

We write i � k for Γ � k when Γ = {i} is a singleton and say that two formulas
are semantically equivalent, i ≈ k , when i � k andk � i , i.e., when E (i) = E (k ) for
all valuations E .

�e following equivalences, known as the De Morgan laws, seem to indicate that
the connectives ∧ and ∨ behave in a similar, dual, way.

(i ∧k ) ≈ ¬(¬i ∨ ¬k )
(i ∨k ) ≈ ¬(¬i ∧ ¬k )

�is symmetry, or duality, between conjunction and disjunction can be made precise,
but �rst we de�ne the dual of a formula.

De�nition 1.22. �e mapping that maps a formula with no occurrences of→ nor
↔ to its dual is de�ned by the following clauses:

• i3 ≡ i when i is atomic,

• (¬i)3 ≡ ¬i3 ,

• (i ∧k )3 ≡ i3 ∨k3 ,

• (i ∨k )3 ≡ i3 ∧k3 .

Observe that the dual of the dual of a formula is the formula itself, i.e., that
(i3 )3 ≡ i .

Proposition 1.23. i ≈ k i� i3 ≈ k3 whenever the dual is de�ned.

Proof. Exercise. �
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1. Syntax and Semantics

1.6 Normal forms

In this section, we prove two normal form theorems for propositional logic. �ese
guarantee that, for any formula, there is a semantically equivalent formula in some
canonical normal form. Moreover, we shall give methods for �nding these normal-
form equivalents.

Say that a formula is in disjunctive normal form if it meets all of the following
conditions:

• No connectives occur in the formula other than negations, conjunctions and
disjunctions;

• Every occurrence of negation has minimal scope (i.e. any ‘¬’ is immediately
followed by an atomic formula);

• No disjunction occurs within the scope of any conjunction.

Here are are some formulas in disjunctive normal form:

?0
(?0 ∧ ?1) ∨ (?0 ∧ ¬?1)

(?0 ∧ ?1) ∨ (?0 ∧ ?1 ∧ ?2 ∧ ¬?3 ∧ ¬U)
?0 ∨ (?2 ∧ ¬?7 ∧ ?9 ∧ ?3) ∨ ¬?1

Note that we have allowed ourselves to employ the relaxed bracketing-conventions
that allow conjunctions and disjunctions to be of arbitrary length. �ese conventions
make it easier to see when a formula is in disjunctive normal form.

To further illustrate the idea of disjunctive normal form, we shall introduce some
more notation. We write ‘(¬)?8 ’ to indicate that ?8 is an atomic formula which may
or may not be prefaced with an occurrence of negation. �en a formula in disjunctive
normal form has the following shape:(
(¬)?81 ∧ . . . ∧ (¬)?8 9

)
∨

(
(¬)?8 9+1 ∧ . . . ∧ (¬)?8:

)
∨ . . . ∨

(
(¬)?8; ∧ . . . ∧ (¬)?8=

)
We now know what it is for a formula to be in disjunctive normal form. �e result
that we are aiming at is the following.

Proposition 1.24. For any formula, there is a semantically equivalent formula in
disjunctive normal form.

Henceforth, we shall abbreviate ‘Disjunctive Normal Form’ by ‘DNF’.
�e proof of the DNF �eorem employs truth tables. We shall �rst illustrate the

technique for �nding an equivalent formula in DNF, and then turn this illustration
into a rigorous proof.

Let’s suppose we have some formula, i , which contains three atomic formulas,
‘?0’, ‘?1’ and ‘?2’. �e very �rst thing to do is �ll out a complete truth table for i .
Maybe we end up with this:

8



1.6. Normal forms

i ?0 ?1 ?2

T T T T
F T T F
T T F T
F T F F
F F T T
F F T F
T F F T
T F F F

As it happens, i is true on four lines of its truth table, namely lines 1, 3, 7 and
8. Corresponding to each of those lines, we shall write down four formulas, whose
only connectives are negations and conjunctions, where every negation has minimal
scope:

• ?0 ∧ ?1 ∧ ?2 which is true on line 1 (and only then)

• ?0 ∧ ¬?1 ∧ ?2 which is true on line 3 (and only then)

• ¬?0 ∧ ¬?1 ∧ ?2 which is true on line 7 (and only then)

• ¬?0 ∧ ¬?1 ∧ ¬?2 which is true on line 8 (and only then)

But if we now disjoin all of these conjunctions, like so:

(?0 ∧ ?1 ∧ ?2) ∨ (?0 ∧ ¬?1 ∧ ?2) ∨ (¬?0 ∧ ¬?1 ∧ ?2) ∨ (¬?0 ∧ ¬?1 ∧ ¬?2)

we have a formula in DNF which is true on exactly those lines where one of the
disjuncts is true, i.e. it is true on (and only on) lines 1, 3, 7, and 8. So this formula has
exactly the same truth table as i . So we have a formula in DNF that is semantically
equivalent to i . Which is exactly what we wanted.

Now, this strategy did not depend on the speci�cs of i ; it is perfectly general.
Consequently, we can use it to obtain a simple proof of the DNF �eorem.

Proof of DNF �eorem. Pick any arbitrary formula, i , and let ?0, . . . , ?= be the atomic
formulas that occur in i . To obtain a formula in DNF that is semantically equivalent
to i , we consider i ’s truth table. �ere are two cases to consider:

1. i is false on every line of its truth table. �en, i is a contradiction. In that case,
the contradiction (?0 ∧ ¬?0) ≈ i , and (?0 ∧ ¬?0) is in DNF.

2. i is true on at least one line of its truth table. For each line 8 of the truth table,
letk8 be a conjunction of the form

((¬)?0 ∧ . . . ∧ (¬)?=)

where the following rules determine whether or not to include a negation in
front of the atomic formulas:

?< is a conjunct ofk8 i� ?< is true on line 8
¬?< is a conjunct ofk8 i� ?< is false on line 8

Given these rules, a trivial proof by induction shows thatk8 is true on (and only
on) line 8 of the truth table which considers all possible valuations of ?0, . . . , ?=
(i.e. i ’s truth table).
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Next, let 81, 82, . . . , 8< be the numbers of the lines of the truth table where i is
true. Now let j be the formula:

k81 ∨k82 ∨ . . . ∨k8<

Since i is true on at least one line of its truth table, j is indeed well-de�ned;
and in the limiting case where i is true on exactly one line of its truth table, j
is justk8: , for some 8: .
By construction, j is in DNF. Moreover, by construction, for each line 8 of the
truth table: i is true on line 8 of the truth table i� one of j ’s disjuncts (namely,
k8 ) is true on, and only on, line 8 . (Again, this is shown by a trivial proof by
induction.) Hence i and j have the same truth table, and so are semantically
equivalent.

�ese two cases are exhaustive and, either way, we have a formula in DNF that is
semantically equivalent to i . �

So far we have discussed disjunctive normal form. Given the duality of disjunction
and conjunction, it may not come as a surprise to hear that there is also such a thing
as conjunctive normal form (CNF).

�e de�nition of CNF is exactly analogous to the de�nition of DNF: A formula is
in CNF i� it meets all of the following conditions:

• No connectives occur in the formula other than negations, conjunctions and
disjunctions;

• Every occurrence of negation has minimal scope;

• No conjunction occurs within the scope of any disjunction.

Generally, then, a formula in CNF looks like this:(
(¬)?81 ∨ . . . ∨ (¬)?8 9

)
∧

(
(¬)?8 9+1 ∨ . . . ∨ (¬)?8:

)
∧ . . . ∧

(
(¬)?8; ∨ . . . ∨ (¬)?8=

)
It should be immediate clear that if a formula is in DNF, then its dual is in CNF;

and vice versa. Armed with this insight, we can immediately prove another normal
form theorem:

Proposition 1.25. For any formula, there is a semantically equivalent formula in
conjunctive normal form.

Proof. Let i be any formula. Let k be a DNF formula semantically equivalent to
i3 by using Proposition 1.24. Now, k3 is on CNF by the observation above. Using
Proposition 1.23, we have (i3 )3 ≈ k3 , i.e., the CNF formula k3 is semantically
equivalent to i . �

�is slick proof is a further illustration of the power of duality. However, it
might suggest that the DNF �eorem enjoys some kind of ‘precedence’ over the CNF
�eorem. �at would be misleading. We can easily prove the CNF �eorem directly,
using the same proof techniques that we used to prove the DNF �eorem (whereupon
the DNF �eorem could be proved as a consequence of the CNF �eorem and duality).
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1.7. Expressive adequacy

1.7 Expressive adequacy

We shall now demonstrate the expressive power of propositional logic.
�e only primitive connectives we have de�ned are one-place (i.e. ‘¬’) and two-

place (i.e. ‘∧’, ‘∨’, ‘→’ and ‘↔’). But nothing stops us from introducing three-, four-,
or �ve-place connectives; or, more generally, =-place connectives, for any number =
we like. We might, for example, de�ne a three-place connective, ‘♥’, into existence,
by stipulating that it is to have the following characteristic truth table:

i k j ♥(i,k, j)
T T T F
T T F T
T F T T
T F F F
F T T F
F T F T
F F T F
F F F F

Probably this new connective would not correspond with any natural English ex-
pression (in the way that ‘∧’ corresponds with ‘and’). But a question arises: if we
wanted to employ a connective with this characteristic truth table, must we add a
new connective? Or can we get by with the connectives we already have?

Let us make this question more precise. Say that some connectives are jointly
expressively adequate i�, for any possible truth function, there is a scheme containing
only those connectives which expresses that truth function. Since we can represent
truth functions using characteristic truth tables, we could equivalently say the fol-
lowing: some connectives are jointly expressively adequate i�, for any possible truth
table, there is a scheme containing only those connectives with that truth table.

We say ‘scheme’ rather than ‘formula’, because we are not concerned with some-
thing as speci�c as a formula. To see why, consider the characteristic truth table for
conjunction; this schematically encodes the information that a conjunction (i ∧k )
is true i� both i and k are true (whatever i and k might be). When we discuss
expressive adequacy, we are considering something at the same level of generality.

�e general point is, when we are armed with some jointly expressively adequate
connectives, no truth function lies beyond our grasp.

�eorem 1.26. �e following pairs of connectives are jointly expressively adequate:

• ‘¬’ and ‘∨’

• ‘¬’ and ‘∧’

• ‘¬’ and ‘→’

Proof. Given any truth table, we can use the method of proving the DNF �eorem (or
the CNF �eorem) via truth tables, to write down a scheme which has the same truth
table. For example, employing the truth table method for proving the DNF �eorem,
I can tell you that the following scheme has the same characteristic truth table as
♥(i,k, j), above:

(i ∧k ∧ ¬j) ∨ (i ∧ ¬k ∧ j) ∨ (¬i ∧k ∧ ¬j)

11



1. Syntax and Semantics

It follows that the connectives ¬’, ‘∨’ and ‘∧’ are jointly expressively adequate.
We now show that there is an equivalent scheme which contains only ‘¬’ and ‘∨’.

To show do this, we simply consider the following equivalence:

(i ∧k ) ≈ ¬(¬i ∨ ¬k )

(�e details are le� as an exercise).
For the joint expressive adequacy of ‘¬’ and ‘∧’ we note that:

(i ∨k ) ≈ ¬(¬i ∧ ¬k )

To get the last result we note that:

(i ∨k ) ≈ (¬i→k )
(i ∧k ) ≈ ¬(i→¬k ) �

In short, there is never any need to add new connectives. Indeed, there is already
some redundancy among the connectives we have: we could have made do with just
two connectives, if we had been feeling really austere.

In fact, some two-place connectives are individually expressively adequate. �ese
connectives are among the standard ones, since they are rather cumbersome to use.
But their existence shows that, if we had wanted to, we could have de�ned a truth-
functional language that was expressively adequate, which contained only a single
primitive connective.

�e �rst such connective we shall consider is ‘↑’, which has the following charac-
teristic truth table.

i k i ↑ k
T T F
T F T
F T T
F F T

�is is o�en called ‘the She�er stroke’, a�er Harry She�er, who used it to show how
to reduce the number of logical connectives in Russell and Whitehead’s Principia
Mathematica. It is quite common, as well, to call it ‘nand’, since its characteristic truth
table is the negation of the truth table for ‘∧’.

Proposition 1.27. ‘↑’ is expressively adequate all by itself.

Proof. �eorem 1.26 tells us that ‘¬’ and ‘∨’ are jointly expressively adequate. So it
su�ces to show that, given any scheme which contains only those two connectives,
we can rewrite it as a semantically equivalent scheme which contains only ‘↑’. As in
the proof of the subsidiary cases of �eorem 1.26, then, we simply apply the following
equivalences:

¬i ≈ (i ↑ i)
(i ∨k ) ≈ ((i ↑ i) ↑ (k ↑ k )) �

Similarly, we can consider the connective ‘↓’:

12
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i k i ↓ k
T T F
T F F
F T F
F F T

�is is sometimes called the ‘Peirce arrow’ (Peirce himself called it ‘ampheck’). More
o�en, though, it is called ‘nor’, since its characteristic truth table is the negation of
‘∨’.

Proposition 1.28. ‘↓’ is expressively adequate all by itself.

Proof. As in Proposition 1.27, although invoking the dual equivalences:

¬i ≈ (i ↓ i)
(i ∧k ) ≈ ((i ↓ i) ↓ (k ↓ k )) �

1.8 Failures of expressive adequacy

In fact, the only two-place connectives which are individually expressively adequate
are ‘↑’ and ‘↓’. But how would we show this? More generally, how can we show that
some connectives are not jointly expressively adequate?

�e obvious thing to do is to try to �nd some truth table which we cannot express,
using just the given connectives. But there is a bit of an art to this. Moreover, in the
end, we shall have to rely upon induction; for we shall need to show that no scheme –
no ma�er how long – is capable of expressing the target truth table.

To make this concrete, let’s consider the question of whether ‘∨’ is expressively
adequate all by itself. A�er a li�le re�ection, it should be clear that it is not. In
particular, it should be clear that any scheme which only contains disjunctions cannot
have the same truth table as negation, i.e.:

i ¬i
T F
F T

�e intuitive reason, why this should be so, is simple: the top line of the desired
truth table needs to have the value False; but the top line of any truth table for a
scheme which only contains disjunctions will always be True. But so far, this is just
hand-waving. To make it rigorous, we need to reach for induction. Here, then, is our
rigorous proof.

Proposition 1.29. ‘∨’ is not expressively adequate by itself.

Proof. Let i by any scheme containing no connective other than disjunctions. Sup-
pose, for induction on length, that every shorter scheme containing only disjunctions
is true whenever all its atomic constituents are true. �ere are two cases to consider:

• i is atomic. �en there is nothing to prove.

• i is (k ∨ j), for some schemes k and j containing only disjunctions. �en,
sincek and j are both shorter than i , by the induction hypothesis they are both
true when all their atomic constituents are true. Now the atomic constituents
of i are just the constituents of bothk and j , and i is true wheneverk and j .
So i is true when all of its atomic constituents are true.

13



1. Syntax and Semantics

It now follows, by induction on length, that any scheme containing no connective
other than disjunctions is true whenever all of its atomic constituents are true. Con-
sequently, no scheme containing only disjunctions has the same truth table as that of
negation. Hence ‘∨’ is not expressively adequate by itself. �

In fact, we can generalise Proposition 1.29:

�eorem 1.30. �e only two-place connectives that are expressively adequate by them-
selves are ‘↑’ and ‘↓’.

Proof. �ere are sixteen distinct two-place connectives. We shall run through them
all, considering whether or not they are individually expressively adequate, in four
groups.

Group 1: the top line of the truth table is True. Consider those connectives where
the top line of the truth table is True. �ere are eight of these, including ‘∧’, ‘∨’, ‘→’
and ‘↔’, but also the following:

i k i ◦1 k i ◦2 k i ◦3 k i ◦4 k
T T T T T T
T F T T T F
F T T F F T
F F T T F F

(obviously the names for these connectives were chosen arbitrarily). But, exactly as
in Proposition Proposition 1.29, none of these connectives can express the truth table
for negation. So there is a connective whose truth table they cannot express. So none
of them is individually expressively adequate.

Group 2: the bo�om line of the truth table is False. Having eliminated eight con-
nectives, eight remain. Of these, four are false on the bo�om line of their truth table,
namely:

i k i ◦5 k i ◦6 k i ◦7 k i ◦8 k
T T F F F F
T F T T F F
F T T F T F
F F F F F F

As above, though, none of these connectives can express the truth table for negation.
To show this we prove that any scheme whose only connective is one of these (perhaps
several times) is false whenever all of its atomic constituents are false. We can show
this by induction, exactly as in Proposition Proposition 1.29 (I leave the details as an
exercise).

Group 3: connectives with redundant positions. Consider two of the remaining four
connectives:

i k i ◦9 k i ◦10 k
T T F F
T F F T
F T T F
F F T T
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�ese connectives have redundant positions, in the sense that the truth value of
the overarching scheme only depends upon the truth value of one of the atomic
constituents. More precisely:

i ◦9 k ≈ ¬i
i ◦10 k ≈ ¬k

Consequently, there are many truth functions that they cannot express. In particular,
they cannot express either the tautologous truth function (given by ‘◦1’), or the
contradictory truth function (given by ‘◦8’). To show this, it su�ces to prove that
any scheme whose only connective is either ‘◦9’ or ‘◦10’ (perhaps several times) is
contingent, i.e. it is true on at least one line and false on at least one other line. We
leave the details of this proof as an exercise.

Group 4. Only two connectives now remain, namely ‘↑’ and ‘↓’, and Propositions
Proposition 1.27 and Proposition 1.28 show that both are individually expressively
adequate. �

Problems

Problem 1.1. Prove Proposition 1.5

Problem 1.2. Prove Proposition 1.6

Problem 1.3. For each of the �ve formulas below determine whether the formula
can be expressed as a substitution i [k/?8 ] where i is (i) ?0; (ii) (¬?0 ∧ ?1); and (iii)
((¬?0→ ?1) ∧ ?2). In each case specify the relevant substitution.

1. ?1

2. (¬?0 ∧ ?0)

3. ((?0 ∨ ?1) ∧ ?2)

4. ¬((?0→ ?1) ∧ ?2)

5. ((¬(?0→ ?1) → (?0 ∨ ?1)) ∧ ¬(?0 ∧ ?1))

Problem 1.4. Give a mathematically rigorous de�nition of i [k/?] by induction.

Problem 1.5. Consider adding to L0 a ternary connective ♦ with evaluation given
by

E (♦(i,k, j)) =
{
E (k ) if E (i) = T;
E (j) if E (i) = F.

Write down the truth table for this connective.

Problem 1.6. Prove Proposition 1.17

Problem 1.7. For each of the following four formulas determine whether it is satis-
�able, a tautology and/or contingent.

1. (?0→ (¬?1→¬?0)).
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2. ((?0 ∧ ¬?1) → (¬?0 ∧ ?2)) ↔ ((?2→ ?0) → (?0→ ?1)).

3. (?0↔ ?1) → (?2↔¬?1).

4. ((?0↔ (¬?1 ∧ ?2)) ∨ (?2→ (?0↔ ?1))).

Problem 1.8. Prove Proposition 1.19

Problem 1.9. Prove Proposition 1.20

Problem 1.10. Prove �eorem 1.21

Problem 1.11. Prove Proposition 1.23 by introducing an auxiliary mapping i= just
as i3 except for atomic formulas where i= is de�ned to be ¬i and proving that
i= ≈ ¬i .

Problem 1.12. Consider the following formulas:

• (?0→¬?1)

• ¬(?0↔ ?1)

• (¬?0 ∨ ¬(?0 ∧ ?1))

• (¬(?0→ ?1) ∧ (?0→ ?2))

• (¬(?0 ∨ ?1) ↔ ((¬?2 ∧ ¬?0) → ¬?1))

• ((¬(?0 ∧ ¬?1) → ?2) ∧ ¬(?0 ∧ ?3))

For each formula:

• write down formulas in DNF that are semantically equivalent to these formulas.

• write down formulas in CNF that are semantically equivalent to these formulas.

Problem 1.13. Let ♦ be the ternary connective introduced in an earlier problem.
Prove the connectives ⊥, > and ♦ are jointly expressively adequate.

Problem 1.14. Where ‘◦7’ has the characteristic truth table de�ned in the proof of
�eorem 1.30, show that the following are jointly expressively adequate:

1. ‘◦7’ and ‘¬’.

2. ‘◦7’ and ‘→’.

3. ‘◦7’ and ‘↔’.

Problem 1.15. Show that the connectives ‘◦7’, ‘∧’ and ‘∨’ are not jointly expressively
adequate.

Problem 1.16. Complete the proof of �eorem 1.26.
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Chapter 2

Natural Deduction

2.1 Introduction

Logics commonly have both a semantics and a derivation system. �e semantics
concerns concepts such as truth, satis�ability, validity, and entailment. �e purpose of
derivation systems is to provide a purely syntactic method of establishing entailment
and validity. �ey are purely syntactic in the sense that a derivation in such a system
is a �nite syntactic object, usually a sequence (or other �nite arrangement) of formulas
or formulas. Good derivation systems have the property that any given sequence or
arrangement of formulas or formulas can be veri�ed mechanically to be “correct.”

�e simplest (and historically �rst) derivation systems for �rst-order logic were
axiomatic. A sequence of formulas counts as a derivation in such a system if each
individual formula in it is either among a �xed set of “axioms” or follows from
formulas coming before it in the sequence by one of a �xed number of “inference
rules”—and it can be mechanically veri�ed if a formula is an axiom and whether
it follows correctly from other formulas by one of the inference rules. Axiomatic
proof systems are easy to describe—and also easy to handle meta-theoretically—but
derivations in them are hard to read and understand, and are also hard to produce.

Other derivation systems have been developed with the aim of making it easier
to construct derivations or easier to understand derivations once they are complete.
Examples are natural deduction, truth trees, also known as tableaux proofs, and
the sequent calculus. Some derivation systems are designed especially with mecha-
nization in mind, e.g., the resolution method is easy to implement in so�ware (but
its derivations are essentially impossible to understand). Most of these other proof
systems represent derivations as trees of formulas rather than sequences. �is makes
it easier to see which parts of a derivation depend on which other parts.

So for a given logic, such as �rst-order logic, the di�erent derivation systems
will give di�erent explications of what it is for a formula to be a theorem and what
it means for a formula to be derivable from some others. However that is done (via
axiomatic derivations, natural deductions, sequent derivations, truth trees, resolution
refutations), we want these relations to match the semantic notions of validity and
entailment. Let’s write ` i for “i is a theorem” and “Γ ` i” for “i is derivable from Γ.”
However ` is de�ned, we want it to match up with �, that is:

1. ` i if and only if � i

2. Γ ` i if and only if Γ � i

17



2. Natural Deduction

�e “only if” direction of the above is called soundness. A derivation system is sound
if derivability guarantees entailment (or validity). Every decent derivation system
has to be sound; unsound derivation systems are not useful at all. A�er all, the entire
purpose of a derivation is to provide a syntactic guarantee of validity or entailment.
We’ll prove soundness for the derivation systems we present.

�e converse “if” direction is also important: it is called completeness. A complete
derivation system is strong enough to show that i is a theorem whenever i is valid,
and that Γ ` i whenever Γ � i . Completeness is harder to establish, and some logics
have no complete derivation systems. First-order logic does. Kurt Gödel was the �rst
one to prove completeness for a derivation system of �rst-order logic in his 1929
dissertation.

Another concept that is connected to derivation systems is that of consistency. A
set of formulas is called inconsistent if anything whatsoever can be derived from it,
and consistent otherwise. Inconsistency is the syntactic counterpart to unsatis�ablity:
like unsatis�able sets, inconsistent sets of formulas do not make good theories, they
are defective in a fundamental way. Consistent sets of formulas may not be true
or useful, but at least they pass that minimal threshold of logical usefulness. For
di�erent derivation systems the speci�c de�nition of consistency of sets of formulas
might di�er, but like `, we want consistency to coincide with its semantic counterpart,
satis�ability. We want it to always be the case that Γ is consistent if and only if it is
satis�able. Here, the “if” direction amounts to completeness (consistency guarantees
satis�ability), and the “only if” direction amounts to soundness (satis�ability guaran-
tees consistency). In fact, for classical �rst-order logic, the two versions of soundness
and completeness are equivalent.

2.2 Natural Deduction

Natural deduction is a derivation system intended to mirror actual reasoning (es-
pecially the kind of regimented reasoning employed by mathematicians). Actual
reasoning proceeds by a number of “natural” pa�erns. For instance, proof by cases
allows us to establish a conclusion on the basis of a disjunctive premise, by estab-
lishing that the conclusion follows from either of the disjuncts. Indirect proof allows
us to establish a conclusion by showing that its negation leads to a contradiction.
Conditional proof establishes a conditional claim “if . . . then . . . ” by showing that the
consequent follows from the antecedent. Natural deduction is a formalization of some
of these natural inferences. Each of the logical connectives and quanti�ers comes
with two rules, an introduction and an elimination rule, and they each correspond
to one such natural inference pa�ern. For instance,→I corresponds to conditional
proof, and ∨E to proof by cases. A particularly simple rule is ∧E which allows the
inference from i ∧k to i (ork ).

One feature that distinguishes natural deduction from other derivation systems is
its use of assumptions. A derivation in natural deduction is a tree of formulas. A single
formula stands at the root of the tree of formulas, and the “leaves” of the tree are for-
mulas from which the conclusion is derived. In natural deduction, some leaf formulas
play a role inside the derivation but are “used up” by the time the derivation reaches
the conclusion. �is corresponds to the practice, in actual reasoning, of introducing
hypotheses which only remain in e�ect for a short while. For instance, in a proof by
cases, we assume the truth of each of the disjuncts; in conditional proof, we assume
the truth of the antecedent; in indirect proof, we assume the truth of the negation of
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the conclusion. �is way of introducing hypothetical assumptions and then doing
away with them in the service of establishing an intermediate step is a hallmark of
natural deduction. �e formulas at the leaves of a natural deduction derivation are
called assumptions, and some of the rules of inference may “discharge” them. For
instance, if we have a derivation ofk from some assumptions which include i , then
the→I rule allows us to infer i →k and discharge any assumption of the form i .
(To keep track of which assumptions are discharged at which inferences, we label the
inference and the assumptions it discharges with a number.) �e assumptions that
remain undischarged at the end of the derivation are together su�cient for the truth
of the conclusion, and so a derivation establishes that its undischarged assumptions
entail its conclusion.

�e relation Γ ` i based on natural deduction holds i� there is a derivation in
which i is the last formula in the tree, and every leaf which is undischarged is in Γ.
i is a theorem in natural deduction i� there is a derivation in which i is the last
formula and all assumptions are discharged. For instance, here is a derivation that
shows that ` (i ∧k ) → i :

[i ∧k ]1
∧Ei →I1(i ∧k ) → i

�e label 1 indicates that the assumption i ∧k is discharged at the→I inference.
A set Γ is inconsistent i� Γ ` ⊥ in natural deduction. �e rule ⊥E makes it so that

from an inconsistent set, any formula can be derived.
Natural deduction systems were developed by Gerhard Gentzen and Stanisław

Jaśkowski in the 1930s, and later developed by Dag Prawitz and Frederic Fitch. Because
its inferences mirror natural methods of proof, it is favored by philosophers. �e
versions developed by Fitch are o�en used in introductory logic textbooks. In the
philosophy of logic, the rules of natural deduction have sometimes been taken to give
the meanings of the logical operators (“proof-theoretic semantics”).

2.3 Rules and Derivations

Natural deduction systems are meant to closely parallel the informal reasoning used in
mathematical proof (hence it is somewhat “natural”). Natural deduction proofs begin
with assumptions. Inference rules are then applied. Assumptions are “discharged” by
the ¬I,→I, and ∨E inference rules, and the label of the discharged assumption is
placed beside the inference for clarity.

De�nition 2.1 (Assumption). An assumption is any formula in the topmost posi-
tion of any branch.

Derivations in natural deduction are certain trees of formulas, where the topmost
formulas are assumptions, and if a formula stands below one, two, or three other
sequents, it must follow correctly by a rule of inference. �e formulas at the top
of the inference are called the premises and the formula below the conclusion of
the inference. �e rules come in pairs, an introduction and an elimination rule for
each logical operator. �ey introduce a logical operator in the conclusion or remove
a logical operator from a premise of the rule. Some of the rules allow an assumption
of a certain type to be discharged. To indicate which assumption is discharged by
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which inference, we also assign labels to both the assumption and the inference. �is
is indicated by writing the assumption as “[i]= .”

It is customary to consider rules for all the logical operators ∧, ∨,→, ¬, and ⊥,
even if some of those are consider as de�ned.

2.4 Propositional Rules

Rules for ∧

i k
∧I

i ∧k

i ∧k
∧Ei

i ∧k
∧E

k

Rules for ∨

i
∨I

i ∨k
k

∨I
i ∨k i ∨k

[i]=

j

[k ]=

j ∨E=j

Rules for→

[i]=

k →I=
i→k

i→k i
→E

k

Rules for ¬

[i]=

⊥ ¬I=¬i

¬i i
¬E⊥
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Rules for ⊥

⊥ ⊥Ei

[¬i]=

⊥ RAA=i

Note that ¬I and RAA are very similar: �e di�erence is that ¬I derives a negated
formula ¬i but RAA a positive formula i .

Whenever a rule indicates that some assumption may be discharged, we take this
to be a permission, but not a requirement. E.g., in the→I rule, we may discharge any
number of assumptions of the form i in the derivation of the premisek , including
zero.

2.5 Derivations

We’ve said what an assumption is, and we’ve given the rules of inference. Derivations
in natural deduction are inductively generated from these: each derivation either is
an assumption on its own, or consists of one, two, or three derivations followed by a
correct inference.

De�nition 2.2 (Derivation). A derivation of a formula i from assumptions Γ is a
tree of formulas satisfying the following conditions:

1. �e topmost formulas of the tree are either in Γ or are discharged by an inference
in the tree.

2. �e bo�ommost formula of the tree is i .

3. Every formula in the tree except the sentence i at the bo�om is a premise of a
correct application of an inference rule whose conclusion stands directly below
that formula in the tree.

We then say that i is the conclusion of the derivation and that i is derivable from Γ.

Example 2.3. Every assumption on its own is a derivation. So, e.g., j by itself is
a derivation, and so is \ by itself. We can obtain a new derivation from these by
applying, say, the ∧I rule,

i k
∧I

i ∧k

�ese rules are meant to be general: we can replace thei andk in it with any formulas,
e.g., by j and \ . �en the conclusion would be j ∧ \ , and so

j \
∧I

j ∧ \

is a correct derivation. Of course, we can also switch the assumptions, so that \ plays
the role of i and j that ofk . �us,
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\ j
∧I

\ ∧ j

is also a correct derivation.
We can now apply another rule, say,→I, which allows us to conclude a conditional

and allows us to discharge any assumption that is identical to the antecedent of that
conditional. So both of the following would be correct derivations:

[j]1 \
∧I

j ∧ \ →I1
j→ (j ∧ \ )

j [\ ]1
∧I

j ∧ \ →I1
\ → (j ∧ \ )

Remember that discharging of assumptions is a permission, not a requirement:
we don’t have to discharge the assumptions. In particular, we can apply a rule even if
the assumptions are not present in the derivation. For instance, the following is legal,
even though there is no assumption i to be discharged:

k →I1
i→k

2.6 Examples of Derivations

Example 2.4. Let’s give a derivation of the formula (i ∧k ) → i .
We begin by writing the desired conclusion at the bo�om of the derivation.

(i ∧k ) → i

Next, we need to �gure out what kind of inference could result in a formula of
this form. �e main operator of the conclusion is→, so we’ll try to arrive at the
conclusion using the→I rule. It is best to write down the assumptions involved and
label the inference rules as you progress, so it is easy to see whether all assumptions
have been discharged at the end of the proof.

[i ∧k ]1

i →I1(i ∧k ) → i

We now need to �ll in the steps from the assumption i ∧k to i . Since we only
have one connective to deal with, ∧, we must use the ∧ elim rule. �is gives us the
following proof:

[i ∧k ]1
∧Ei →I1(i ∧k ) → i

We now have a correct derivation of (i ∧k ) → i .

Example 2.5. Now let’s give a derivation of (¬i ∨k ) → (i→k ).
We begin by writing the desired conclusion at the bo�om of the derivation.

(¬i ∨k ) → (i→k )
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To �nd a logical rule that could give us this conclusion, we look at the logical con-
nectives in the conclusion: ¬, ∨, and→. We only care at the moment about the �rst
occurence of→ because it is the main operator of the formula in the end-sequent,
while ¬, ∨ and the second occurence of→ are inside the scope of another connective,
so we will take care of those later. We therefore start with the→I rule. A correct
application must look like this:

[¬i ∨k ]1

i→k →I1(¬i ∨k ) → (i→k )

�is leaves us with two possibilities to continue. Either we can keep working from
the bo�om up and look for another application of the→I rule, or we can work from
the top down and apply a ∨E rule. Let us apply the la�er. We will use the assumption
¬i ∨k as the le�most premise of ∨E. For a valid application of ∨E, the other two
premises must be identical to the conclusion i→k , but each may be derived in turn
from another assumption, namely the two disjuncts of ¬i ∨k . So our derivation will
look like this:

[¬i ∨k ]1

[¬i]2

i→k

[k ]2

i→k ∨E2
i→k →I1(¬i ∨k ) → (i→k )

In each of the two branches on the right, we want to derive i→k , which is best
done using→I.

[¬i ∨k ]1

[¬i]2, [i]3

k →I3
i→k

[k ]2, [i]4

k →I4
i→k ∨E2

i→k →I1(¬i ∨k ) → (i→k )

For the two missing parts of the derivation, we need derivations of k from ¬i
and i in the middle, and from i andk on the le�. Let’s take the former �rst. ¬i and
i are the two premises of ¬E:

[¬i]2 [i]3
¬E⊥

k

By using ⊥E, we can obtaink as a conclusion and complete the branch.
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[¬i ∨k ]1

[¬i]2 [i]3
⊥I⊥ ⊥E

k →I3
i→k

[k ]2, [i]4

k →I4
i→k ∨E2

i→k →I1(¬i ∨k ) → (i→k )

Let’s now look at the rightmost branch. Here it’s important to realize that the
de�nition of derivation allows assumptions to be discharged but does not require them
to be. In other words, if we can derivek from one of the assumptions i andk without
using the other, that’s ok. And to derive k from k is trivial: k by itself is such a
derivation, and no inferences are needed. So we can simply delete the assumption i .

[¬i ∨k ]1

[¬i]2 [i]3
¬E⊥ ⊥E

k →I3
i→k

[k ]2
→I

i→k ∨E2
i→k →I1(¬i ∨k ) → (i→k )

Note that in the �nished derivation, the rightmost→I inference does not actually
discharge any assumptions.

Example 2.6. So far we have not needed the RAA rule. It is special in that it allows
us to discharge an assumption that isn’t a sub-formula of the conclusion of the rule.
It is closely related to the ⊥E rule. In fact, the ⊥E rule is a special case of the RAA
rule—there is a logic called “intuitionistic logic” in which only ⊥E is allowed. �e
RAA rule is a last resort when nothing else works. For instance, suppose we want to
derive i ∨¬i . Our usual strategy would be to a�empt to derive i ∨¬i using ∨I. But
this would require us to derive either i or ¬i from no assumptions, and this can’t be
done. RAA to the rescue!

[¬(i ∨ ¬i)]1

⊥ RAA1i ∨ ¬i

Now we’re looking for a derivation of ⊥ from ¬(i ∨ ¬i). Since ⊥ is the conclusion
of ¬E we might try that:

[¬(i ∨ ¬i)]1

¬i

[¬(i ∨ ¬i)]1

i
¬E⊥ RAA1i ∨ ¬i

Our strategy for �nding a derivation of ¬i calls for an application of ¬I:
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[¬(i ∨ ¬i)]1, [i]2

⊥ ¬I2¬i

[¬(i ∨ ¬i)]1

i
¬E⊥ RAA1i ∨ ¬i

Here, we can get ⊥ easily by applying ¬E to the assumption ¬(i ∨ ¬i) and i ∨ ¬i
which follows from our new assumption i by ∨I:

[¬(i ∨ ¬i)]1
[i]2

∨Ii ∨ ¬i
¬E⊥ ¬I2¬i

[¬(i ∨ ¬i)]1

i
¬E⊥ RAA1i ∨ ¬i

On the right side we use the same strategy, except we get i by RAA:

[¬(i ∨ ¬i)]1
[i]2

∨Ii ∨ ¬i
¬E⊥ ¬I2¬i

[¬(i ∨ ¬i)]1
[¬i]3

∨Ii ∨ ¬i
¬E⊥ RAA3i

¬E⊥ RAA1i ∨ ¬i

2.7 Proof-�eoretic Notions

Just as we’ve de�ned a number of important semantic notions (validity, entailment,
satis�abilty), we now de�ne corresponding proof-theoretic notions. �ese are not
de�ned by appeal to satisfaction of formulas in structures, but by appeal to the
derivability or non-derivability of certain formulas from others. It was an important
discovery that these notions coincide. �at they do is the content of the soundness
and completeness theorems.

De�nition 2.7 (�eorems). A formula i is a theorem if there is a derivation of i
in natural deduction in which all assumptions are discharged. We write ` i if i is a
theorem and 0 i if it is not.

De�nition 2.8 (Derivability). A formula i is derivable from a set of formulas Γ,
Γ ` i , if there is a derivation with conclusion i and in which every assumption is
either discharged or is in Γ. If i is not derivable from Γ we write Γ 0 i .

De�nition 2.9 (Consistency). A set of formulas Γ is inconsistent i� Γ ` ⊥. If Γ is
not inconsistent, i.e., if Γ 0 ⊥, we say it is consistent.

Proposition 2.10 (Re�exivity). If i ∈ Γ, then Γ ` i .

Proof. �e assumption i by itself is a derivation of i where every undischarged
assumption (i.e., i) is in Γ. �

Proposition 2.11 (Monotony). If Γ ⊆ Δ and Γ ` i , then Δ ` i .
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2. Natural Deduction

Proof. Any derivation of i from Γ is also a derivation of i from Δ. �

Proposition 2.12 (Transitivity). If Γ ` i and {i} ∪ Δ ` k , then Γ ∪ Δ ` k .

Proof. If Γ ` i , there is a derivation X0 of i with all undischarged assumptions in Γ.
If {i} ∪ Δ ` k , then there is a derivation X1 ofk with all undischarged assumptions
in {i} ∪ Δ. Now consider:

Δ, [i]1

X1

k →I1
i→k

Γ

X0

i
→E

k

�e undischarged assumptions are now all among Γ ∪ Δ, so this shows Γ ∪ Δ ` k .�

When Γ = {i1, i2, . . . , i: } is a �nite set we may use the simpli�ed notation
i1, i2, . . . , i: ` k for Γ ` k , in particular i ` k means that {i} ` k .

Note that if Γ ` i and i ` k , then Γ ` k . It follows also that if i1, . . . , i= ` k and
Γ ` i8 for each 8 , then Γ ` k .

Proposition 2.13. �e following are equivalent.

1. Γ is inconsistent.

2. Γ ` i for every formula i .

3. Γ ` i and Γ ` ¬i for some formula i .

Proof. Exercise. �

Proposition 2.14 (Compactness). 1. If Γ ` i then there is a �nite subset Γ0 ⊆ Γ
such that Γ0 ` i .

2. If every �nite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ` i , then there is a derivation X of i from Γ. Let Γ0 be the set
of undischarged assumptions of X . Since any derivation is �nite, Γ0 can only
contain �nitely many formulas. So, X is a derivation of i from a �nite Γ0 ⊆ Γ.

2. �is is the contrapositive of (1) for the special case i ≡ ⊥. �

2.8 Derivability and Consistency

We will now establish a number of properties of the derivability relation. �ey are
independently interesting, but each will play a role in the proof of the completeness
theorem.

Proposition 2.15. If Γ ` i and Γ ∪ {i} is inconsistent, then Γ is inconsistent.
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Proof. Let the derivation of i from Γ be X1 and the derivation of ⊥ from Γ ∪ {i} be X2.
We can then derive:

Γ, [i]1

X2

⊥ ¬I1¬i

Γ

X1

i
¬E⊥

In the new derivation, the assumption i is discharged, so it is a derivation from Γ.�

Proposition 2.16. Γ ` i i� Γ ∪ {¬i} is inconsistent.

Proof. First suppose Γ ` i , i.e., there is a derivation X0 of i from undischarged
assumptions Γ. We obtain a derivation of ⊥ from Γ ∪ {¬i} as follows:

¬i

Γ

X0

i
¬E⊥

Now assume Γ ∪ {¬i} is inconsistent, and let X1 be the corresponding derivation
of ⊥ from undischarged assumptions in Γ ∪ {¬i}. We obtain a derivation of i from Γ
alone by using RAA:

Γ, [¬i]1

X1

⊥ RAAi �

Proposition 2.17. If Γ ` i and ¬i ∈ Γ, then Γ is inconsistent.

Proof. Suppose Γ ` i and ¬i ∈ Γ. �en there is a derivation X of i from Γ. Consider
this simple application of the ¬E rule:

¬i

Γ

X

i
¬E⊥

Since ¬i ∈ Γ, all undischarged assumptions are in Γ, this shows that Γ ` ⊥. �

Proposition 2.18. If Γ∪{i} and Γ∪{¬i} are both inconsistent, then Γ is inconsistent.

Proof. �ere are derivations X1 and X2 of ⊥ from Γ ∪ {i} and ⊥ from Γ ∪ {¬i},
respectively. We can then derive
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Γ, [¬i]2

X2

⊥ ¬I2¬¬i

Γ, [i]1

X1

⊥ ¬I1¬i
¬E⊥

Since the assumptions i and ¬i are discharged, this is a derivation of ⊥ from Γ alone.
Hence Γ is inconsistent. �

2.9 Derivability and the Propositional Connectives

Proposition 2.19. 1. Both i ∧k ` i and i ∧k ` k

2. i,k ` i ∧k .

Proof. 1. We can derive both

i ∧k
∧Ei

i ∧k
∧E

k

2. We can derive:

i k
∧I

i ∧k �

Proposition 2.20. 1. i ∨k,¬i,¬k is inconsistent.

2. Both i ` i ∨k andk ` i ∨k .

Proof. 1. Consider the following derivation:

i ∨k
¬i [i]1

¬E⊥
¬k [k ]1

¬E⊥ ∨E1⊥

�is is a derivation of ⊥ from undischarged assumptions i ∨k , ¬i , and ¬k .

2. We can derive both

i
∨I

i ∨k
k

∨I
i ∨k �

Proposition 2.21. 1. i, i→k ` k .

2. Both ¬i ` i→k andk ` i→k .

Proof. 1. We can derive:

i→k i
→E

k
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2. �is is shown by the following two derivations:

¬i [i]1
¬E⊥ ⊥E

k →I1
i→k

k
→I

i→k

Note that→I may, but does not have to, discharge the assumption i . �

2.10 Soundness

A derivation system, such as natural deduction, is sound if it cannot derive things
that do not actually follow. Soundness is thus a kind of guaranteed safety property
for derivation systems. Depending on which proof theoretic property is in question,
we would like to know for instance, that

1. every derivable formula is a tautology;

2. if a formula is derivable from some others, it is also a consequence of them;

3. if a set of formulas is inconsistent, it is unsatis�able.

�ese are important properties of a derivation system. If any of them do not hold, the
derivation system is de�cient—it would derive too much. Consequently, establishing
the soundness of a derivation system is of the utmost importance.

�eorem 2.22 (Soundness). If i is derivable from the undischarged assumptions Γ,
then Γ � i .

Proof. Let X be a derivation ofi . We proceed by induction on the number of inferences
in X .

For the induction basis we show the claim if the number of inferences is 0. In this
case, X consists only of a single formula i , i.e., an assumption. �at assumption is
undischarged, since assumptions can only be discharged by inferences, and there are
no inferences. So, any valuation E that satis�es all of the undischarged assumptions
of the proof also satis�es i .

Now for the inductive step. Suppose that X contains = inferences. �e premise(s)
of the lowermost inference are derived using sub-derivations, each of which contains
fewer than = inferences. We assume the induction hypothesis: �e premises of the
lowermost inference follow from the undischarged assumptions of the sub-derivations
ending in those premises. We have to show that the conclusion i follows from the
undischarged assumptions of the entire proof.

We distinguish cases according to the type of the lowermost inference. First, we
consider the possible inferences with only one premise.

1. Suppose that the last inference is ¬I: �e derivation has the form

Γ, [i]=

X1

⊥ ¬I=¬i
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2. Natural Deduction

By inductive hypothesis, ⊥ follows from the undischarged assumptions Γ∪ {i}
of X1. Consider a valuation E . We need to show that, if E � Γ, then E � ¬i .
Suppose for reductio that E � Γ, but E 2 ¬i , i.e., E � i . �is would mean that
E � Γ ∪ {i}. �is is contrary to our inductive hypothesis. So, E � ¬i .

2. �e last inference is ∧E: �ere are two variants: i ork may be inferred from
the premise i ∧k . Consider the �rst case. �e derivation X looks like this:

Γ

X1

i ∧k
∧Ei

By inductive hypothesis, i ∧k follows from the undischarged assumptions Γ
of X1. Consider a structure E . We need to show that, if E � Γ, then E � i . Suppose
E � Γ. By our inductive hypothesis (Γ � i ∧k ), we know that E � i ∧k . By
de�nition, E � i ∧k i� E � i and E � k . (�e case where k is inferred from
i ∧k is handled similarly.)

3. �e last inference is ∨I: �ere are two variants: i ∨k may be inferred from
the premise i or the premisek . Consider the �rst case. �e derivation has the
form

Γ

X1

i
∨I

i ∨k

By inductive hypothesis, i follows from the undischarged assumptions Γ of X1.
Consider a valuation E . We need to show that, if E � Γ, then E � i ∨k . Suppose
E � Γ; then E � i since Γ � i (the inductive hypothesis). So it must also be
the case that E � i ∨k . (�e case where i ∨k is inferred from k is handled
similarly.)

4. �e last inference is→I: i→k is inferred from a subproof with assumption i
and conclusionk , i.e.,

Γ, [i]=

X1

k →I=
i→k

By inductive hypothesis,k follows from the undischarged assumptions of X1,
i.e., Γ ∪ {i} � k . Consider a valuation E . �e undischarged assumptions of X
are just Γ, since i is discharged at the last inference. So we need to show that
Γ � i→k . For reductio, suppose that for some valuation E , E � Γ but E 2 i→k .
So, E � i and E 2 k . But by hypothesis,k is a consequence of Γ∪ {i}, i.e., E � k ,
which is a contradiction. So, Γ � i→k .
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5. �e last inference is ⊥E: Here, X ends in

Γ

X1

⊥ ⊥Ei

By induction hypothesis, Γ � ⊥. We have to show that Γ � i . Suppose not; then
for some E we have E � Γ and E 2 i . But we always have E 2 ⊥, so this would
mean that Γ 2 ⊥, contrary to the induction hypothesis.

6. �e last inference is RAA: Exercise.

Now let’s consider the possible inferences with several premises: ∨E, ∧I, and→E.

1. �e last inference is ∧I. i ∧k is inferred from the premises i andk and X has
the form

Γ1

X1

i

Γ2

X2

k
∧I

i ∧k

By induction hypothesis, i follows from the undischarged assumptions Γ1 of X1
andk follows from the undischarged assumptions Γ2 of X2. �e undischarged
assumptions of X are Γ1 ∪W2, so we have to show that Γ1 ∪ Γ2 � i ∧k . Consider
a valuation E with E � Γ1 ∪ Γ2. Since E � Γ1, it must be the case that E � i as
Γ1 � i , and since E � Γ2, E � k since Γ2 � k . Together, E � i ∧k .

2. �e last inference is ∨E: Exercise.

3. �e last inference is→E. k is inferred from the premises i →k and i . �e
derivation X looks like this:

Γ1

X1

i→k

Γ2

X2

i
→E

k �

By induction hypothesis, i→k follows from the undischarged assumptions Γ1
of X1 and i follows from the undischarged assumptions Γ2 of X2. Consider
a valuation E . We need to show that, if E � Γ1∪Γ2, then E � k . Suppose E � Γ1∪Γ2.
Since Γ1 � i→k , E � i→k . Since Γ2 � i , we have E � i . �is means that E � k
(For if E 2 k , since E � i , we’d have E 2 i→k , contradicting E � i→k ).

4. �e last inference is ¬E: Exercise.

Corollary 2.23. If ` i , then i is a tautology.
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2. Natural Deduction

Corollary 2.24. If Γ is satis�able, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not consistent. �en Γ ` ⊥, i.e.,
there is a derivation of ⊥ from undischarged assumptions in Γ. By �eorem 2.22, any
valuation E that satis�es Γ must satisfy ⊥. Since E 2 ⊥ for every valuation E , no E can
satisfy Γ, i.e., Γ is not satis�able. �

Problems

Problem 2.1. Give derivations of the following:

1. ¬(i→k ) → (i ∧ ¬k )

2. (i→ j) ∨ (k → j) from the assumption (i ∧k ) → j

3. ¬¬i→ i ,

4. ¬i→¬k from the assumptionk → i ,

5. ¬i from the assumption (i→¬i),

6. i from the assumptionsk → i and ¬k → i .

Problem 2.2. Prove Proposition 2.13

Problem 2.3. Prove that Γ ` ¬i i� Γ ∪ {i} is inconsistent.

Problem 2.4. Complete the proof of �eorem 2.22.
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Chapter 3

�e Completeness �eorem

3.1 Introduction

�e completeness theorem is one of the most fundamental results about logic. It comes
in two formulations, the equivalence of which we’ll prove. In its �rst formulation it
says something fundamental about the relationship between semantic consequence
and our proof system: if a formula i follows from some formulas Γ, then there is
also a derivation that establishes Γ ` i . �us, the proof system is as strong as it can
possibly be without proving things that don’t actually follow.

In its second formulation, it can be stated as a model existence result: every
consistent set of formulas is satis�able. Consistency is a proof-theoretic notion: it
says that our proof system is unable to produce certain derivations. But who’s to say
that just because there are no derivations of a certain sort from Γ, it’s guaranteed that
there is valuation E with E � Γ? Before the completeness theorem was �rst proved—in
fact before we had the proof systems we now do—the great German mathematician
David Hilbert held the view that consistency of mathematical theories guarantees
the existence of the objects they are about. He put it as follows in a le�er to Go�lob
Frege:

If the arbitrarily given axioms do not contradict one another with all their
consequences, then they are true and the things de�ned by the axioms
exist. �is is for me the criterion of truth and existence.

Frege vehemently disagreed. �e second formulation of the completeness theorem
shows that Hilbert was right in at least the sense that if the axioms are consistent,
then some valuation exists that makes them all true.

�ese aren’t the only reasons the completeness theorem—or rather, its proof—is
important. It has a number of important consequences, some of which we’ll discuss
separately. For instance, since any derivation that shows Γ ` i is �nite and so can
only use �nitely many of the formulas in Γ, it follows by the completeness theorem
that if i is a consequence of Γ, it is already a consequence of a �nite subset of Γ. �is
is called compactness. Equivalently, if every �nite subset of Γ is consistent, then Γ
itself must be consistent.

Although the compactness theorem follows from the completeness theorem via the
detour through derivations, it is also possible to use the the proof of the completeness
theorem to establish it directly. For what the proof does is take a set of formulas
with a certain property—consistency—and constructs a structure out of this set that
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3. The Completeness Theorem

has certain properties (in this case, that it satis�es the set). Almost the very same
construction can be used to directly establish compactness, by starting from “�nitely
satis�able” sets of formulas instead of consistent ones.

3.2 Outline of the Proof

�e proof of the completeness theorem is a bit complex, and upon �rst reading it, it is
easy to get lost. So let us outline the proof. �e �rst step is a shi� of perspective, that
allows us to see a route to a proof. When completeness is thought of as “whenever
Γ � i then Γ ` i ,” it may be hard to even come up with an idea: for to show that Γ ` i
we have to �nd a derivation, and it does not look like the hypothesis that Γ � i helps
us for this in any way. For some proof systems it is possible to directly construct
a derivation, but we will take a slightly di�erent approach. �e shi� in perspective
required is this: completeness can also be formulated as: “if Γ is consistent, it is
satis�able.” Perhaps we can use the information in Γ together with the hypothesis
that it is consistent to construct a valuation that satis�es every formula in Γ. A�er all,
we know what kind of valuation we are looking for: one that is as Γ describes it!

If Γ contains only propositional variables, it is easy to construct a model for it.
All we have to do is come up with a valuation E such that E � ? for all ? ∈ Γ. Well, let
E (?) = T i� ? ∈ Γ.

Now suppose Γ contains some formula ¬k , withk atomic. We might worry that
the construction of E interferes with the possibility of making ¬k true. But here’s
where the consistency of Γ comes in: if ¬k ∈ Γ, then k ∉ Γ, or else Γ would be
inconsistent. And ifk ∉ Γ, then according to our construction of E , E 2 k , so E � ¬k .
So far so good.

What if Γ contains complex, non-atomic formulas? Say it contains i ∧k . To make
that true, we should proceed as if both i andk were in Γ. And if i ∨k ∈ Γ, then we
will have to make at least one of them true, i.e., proceed as if one of them was in Γ.

�is suggests the following idea: we add additional formulas to Γ so as to (a) keep
the resulting set consistent and (b) make sure that for every possible atomic formula i ,
either i is in the resulting set, or ¬i is, and (c) such that, whenever i ∧k is in the set,
so are both i andk , if i ∨k is in the set, at least one of i ork is also, etc. We keep
doing this (potentially forever). Call the set of all formulas so added Γ∗. �en our
construction above would provide us with a valuation E for which we could prove, by
induction, that it satis�es all sentences in Γ∗, and hence also all sentence in Γ since
Γ ⊆ Γ∗. It turns out that guaranteeing (a) and (b) is enough. A set of sentences for
which (b) holds is called complete. So our task will be to extend the consistent set Γ to
a consistent and complete set Γ∗.

So here’s what we’ll do. First we investigate the properties of complete consistent
sets, in particular we prove that a complete consistent set contains i ∧k i� it contains
both i andk , i∨k i� it contains at least one of them, etc. (Proposition 3.2). We’ll then
take the consistent set Γ and show that it can be extended to a consistent and complete
set Γ∗ (Lemma 3.3). �is set Γ∗ is what we’ll use to de�ne our valuation E (Γ∗). �e
valuation is determined by the propositional variables in Γ∗ (De�nition 3.4). We’ll use
the properties of complete consistent sets to show that indeed E (Γ∗) � i i� i ∈ Γ∗
(Lemma 3.5), and thus in particular, E (Γ∗) � Γ.
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3.3 Complete Consistent Sets of Formulas

De�nition 3.1 (Complete set). A set Γ of formulas is complete i� for any formula i ,
either i ∈ Γ or ¬i ∈ Γ.

Complete sets of sentences leave no questions unanswered. For any formula i ,
Γ “says” if i is true or false. �e importance of complete sets extends beyond the
proof of the completeness theorem. A theory which is complete and axiomatizable,
for instance, is always decidable.

Complete consistent sets are important in the completeness proof since we can
guarantee that every consistent set of formulas Γ is contained in a complete consistent
set Γ∗. A complete consistent set contains, for each formula i , either i or its negation
¬i , but not both. �is is true in particular for propositional variables, so from
a complete consistent set, we can construct a valuation where the truth value assigned
to propositional variables is de�ned according to which propositional variables are
in Γ∗. �is valuation can then be shown to make all formulas in Γ∗ (and hence also
all those in Γ) true. �e proof of this la�er fact requires that ¬i ∈ Γ∗ i� i ∉ Γ∗,
(i ∨k ) ∈ Γ∗ i� i ∈ Γ∗ ork ∈ Γ∗, etc.

In what follows, we will o�en tacitly use the properties of re�exivity, monotonicity,
and transitivity of ` (see section 2.7).

Proposition 3.2. Suppose Γ is complete and consistent. �en:

1. If Γ ` i , then i ∈ Γ.

2. i ∧k ∈ Γ i� both i ∈ Γ andk ∈ Γ.

3. i ∨k ∈ Γ i� either i ∈ Γ ork ∈ Γ.

4. i→k ∈ Γ i� either i ∉ Γ ork ∈ Γ.

Proof. Let us suppose for all of the following that Γ is complete and consistent.

1. If Γ ` i , then i ∈ Γ.
Suppose that Γ ` i . Suppose to the contrary that i ∉ Γ. Since Γ is complete,
¬i ∈ Γ. By Proposition 2.17, Γ is inconsistent. �is contradicts the assumption
that Γ is consistent. Hence, it cannot be the case that i ∉ Γ, so i ∈ Γ.

2. i ∧k ∈ Γ i� both i ∈ Γ andk ∈ Γ:
For the forward direction, suppose i∧k ∈ Γ. �en by Proposition 2.19, item (1),
Γ ` i and Γ ` k . By (1), i ∈ Γ andk ∈ Γ, as required.
For the reverse direction, let i ∈ Γ and k ∈ Γ. By Proposition 2.19, item (2),
Γ ` i ∧k . By (1), i ∧k ∈ Γ.

3. First we show that ifi∨k ∈ Γ, then eitheri ∈ Γ ork ∈ Γ. Supposei∨k ∈ Γ but
i ∉ Γ andk ∉ Γ. Since Γ is complete, ¬i ∈ Γ and ¬k ∈ Γ. By Proposition 2.20,
item (1), Γ is inconsistent, a contradiction. Hence, either i ∈ Γ ork ∈ Γ.
For the reverse direction, suppose that i ∈ Γ or k ∈ Γ. By Proposition 2.20,
item (2), Γ ` i ∨k . By (1), i ∨k ∈ Γ, as required.
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4. For the forward direction, suppose i →k ∈ Γ, and suppose to the contrary
that i ∈ Γ and k ∉ Γ. On these assumptions, i → k ∈ Γ and i ∈ Γ. By
Proposition 2.21, item (1), Γ ` k . But then by (1), k ∈ Γ, contradicting the
assumption thatk ∉ Γ.

For the reverse direction, �rst consider the case where i ∉ Γ. Since Γ is
complete, ¬i ∈ Γ. By Proposition 2.21, item (2), Γ ` i→k . Again by (1), we
get that i→k ∈ Γ, as required.

Now consider the case where k ∈ Γ. By Proposition 2.21, item (2) again,
Γ ` i→k . By (1), i→k ∈ Γ. �

3.4 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of formulas is contained
in some set of sentences which is not just consistent, but also complete. �e proof
works by adding one formula at a time, guaranteeing at each step that the set remains
consistent. We do this so that for every i , either i or ¬i gets added at some stage.
�e union of all stages in that construction then contains either i or its negation ¬i
and is thus complete. It is also consistent, since we made sure at each stage not to
introduce an inconsistency.

Lemma 3.3 (Lindenbaum’s Lemma). Every consistent set Γ in a language L can be
extended to a complete and consistent set Γ∗.

Proof. Let Γ be consistent. Let i0, i1, . . . be an enumeration of all the formulas of L.
De�ne Γ0 = Γ, and

Γ=+1 =

{
Γ= ∪ {i=} if Γ= ∪ {i=} is consistent;
Γ= ∪ {¬i=} otherwise.

Let Γ∗ =
⋃
=≥0 Γ= .

Each Γ= is consistent: Γ0 is consistent by de�nition. If Γ=+1 = Γ= ∪ {i=}, this is
because the la�er is consistent. If it isn’t, Γ=+1 = Γ= ∪ {¬i=}. We have to verify that
Γ= ∪ {¬i=} is consistent. Suppose it’s not. �en both Γ= ∪ {i=} and Γ= ∪ {¬i=} are
inconsistent. �is means that Γ= would be inconsistent by Proposition 2.17, contrary
to the induction hypothesis.

For every = and every 8 < =, Γ8 ⊆ Γ= . �is follows by a simple induction on =. For
= = 0, there are no 8 < 0, so the claim holds automatically. For the inductive step,
suppose it is true for =. We have Γ=+1 = Γ= ∪ {i=} or = Γ= ∪ {¬i=} by construction. So
Γ= ⊆ Γ=+1. If 8 < =, then Γ8 ⊆ Γ= by inductive hypothesis, and so ⊆ Γ=+1 by transitivity
of ⊆.

From this it follows that every �nite subset of Γ∗ is a subset of Γ= for some =, since
each k ∈ Γ∗ not already in Γ0 is added at some stage 8 . If = is the last one of these,
then allk in the �nite subset are in Γ= . So, every �nite subset of Γ∗ is consistent. By
Proposition 2.14, Γ∗ is consistent.

Every formula of Frm(L) appears on the list used to de�ne Γ∗. If i= ∉ Γ∗, then
that is because Γ= ∪ {i=} was inconsistent. But then ¬i= ∈ Γ∗, so Γ∗ is complete. �
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3.5 Construction of a Model

We are now ready to de�ne a valuation that makes all i ∈ Γ true. To do this, we
�rst apply Lindenbaum’s Lemma: we get a complete consistent Γ∗ ⊇ Γ. We let the
propositional variables in Γ∗ determine E (Γ∗).

De�nition 3.4. Suppose Γ∗ is a complete consistent set of formulas. �en we let

E (Γ∗) (?) =
{

T if ? ∈ Γ∗

F if ? ∉ Γ∗

Lemma 3.5 (Truth Lemma). E (Γ∗) � i i� i ∈ Γ∗.

Proof. We prove both directions simultaneously, and by induction on i .

1. i ≡ ⊥: E (Γ∗) 2 ⊥ by de�nition of satisfaction. On the other hand, ⊥ ∉ Γ∗ since
Γ∗ is consistent.

2. i ≡ ?: E (Γ∗) � ? i� E (Γ∗) (?) = T (by the de�nition of satisfaction) i� ? ∈ Γ∗
(by the construction of E (Γ∗)).

3. i ≡ ¬k : E (Γ∗) � i i� E (Γ∗) � k (by de�nition of satisfaction). By induction
hypothesis, E (Γ∗) � k i�k ∉ Γ∗. Since Γ∗ is consistent and complete,k ∉ Γ∗ i�
¬k ∈ Γ∗.

4. i ≡ k ∧ j : E (Γ∗) � i i� we have both E (Γ∗) � k and E (Γ∗) � j (by de�nition
of satisfaction) i� both k ∈ Γ∗ and j ∈ Γ∗ (by the induction hypothesis). By
Proposition 3.2(2), this is the case i� (k ∧ j) ∈ Γ∗.

5. i ≡ k ∨ j : E (Γ∗) � i i� E (Γ∗) � k or E (Γ∗) � j (by de�nition of satisfaction)
i�k ∈ Γ∗ or j ∈ Γ∗ (by induction hypothesis). �is is the case i� (k ∨ j) ∈ Γ∗
(by Proposition 3.2(3)).

6. i ≡ k → j : E (Γ∗) � i i� E (Γ∗) 2 k or E (Γ∗) � j (by de�nition of satisfaction)
i�k ∉ Γ∗ or j ∈ Γ∗ (by induction hypothesis). �is is the case i� (k→ j) ∈ Γ∗
(by Proposition 3.2(4)).

3.6 �e Completeness �eorem

Let’s combine our results: we arrive at the completeness theorem.

�eorem 3.6 (Completeness �eorem). Let Γ be a set of formulas. If Γ is consistent,
it is satis�able.

Proof. Suppose Γ is consistent. By Lemma 3.3, there is a Γ∗ ⊇ Γ which is consistent
and complete. By Lemma 3.5, E (Γ∗) � i i� i ∈ Γ∗. From this it follows in particular
that for all i ∈ Γ, E (Γ∗) � i , so Γ is satis�able. �

Corollary 3.7 (Completeness �eorem, Second Version). For all Γ and formu-
las i : if Γ � i then Γ ` i .
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Proof. Note that the Γ’s in Corollary 3.7 and �eorem 3.6 are universally quanti�ed.
To make sure we do not confuse ourselves, let us restate �eorem 3.6 using a di�erent
variable: for any set of formulas Δ, if Δ is consistent, it is satis�able. By contraposition,
if Δ is not satis�able, then Δ is inconsistent. We will use this to prove the corollary.

Suppose that Γ � i . �en Γ ∪ {¬i} is unsatis�able by Proposition 1.20. Taking
Γ ∪ {¬i} as our Δ, the previous version of �eorem 3.6 gives us that Γ ∪ {¬i} is
inconsistent. By Proposition 2.16, Γ ` i . �

3.7 �e Compactness �eorem

One important consequence of the completeness theorem is the compactness theorem.
�e compactness theorem states that if each �nite subset of a set of formulas is
satis�able, the entire set is satis�able—even if the set itself is in�nite. �is is far from
obvious. �ere is nothing that seems to rule out, at �rst glance at least, the possibility
of there being in�nite sets of formulas which are contradictory, but the contradiction
only arises, so to speak, from the in�nite number. �e compactness theorem says that
such a scenario can be ruled out: there are no unsatis�able in�nite sets of formulas
each �nite subset of which is satis�able. Like the completeness theorem, it has a
version related to entailment: if an in�nite set of formulas entails something, already
a �nite subset does.

De�nition 3.8. A set Γ of formulas is �nitely satis�able if and only if every �nite
Γ0 ⊆ Γ is satis�able.

�eorem 3.9 (Compactness �eorem). �e following hold for any sentences Γ and
i :

1. Γ � i i� there is a �nite Γ0 ⊆ Γ such that Γ0 � i .

2. Γ is satis�able if and only if it is �nitely satis�able.

Proof. We prove (2). If Γ is satis�able, then there is a valuation E such that E � i
for all i ∈ Γ. Of course, this E also satis�es every �nite subset of Γ, so Γ is �nitely
satis�able.

Now suppose that Γ is �nitely satis�able. �en every �nite subset Γ0 ⊆ Γ is
satis�able. By soundness (Corollary 2.24), every �nite subset is consistent. �en Γ
itself must be consistent by Proposition 2.14. By completeness (�eorem 3.6), since
Γ is consistent, it is satis�able. �

3.8 A Direct Proof of the Compactness �eorem

We can prove the Compactness �eorem directly, without appealing to the Complete-
ness �eorem, using the same ideas as in the proof of the completeness theorem. In
the proof of the Completeness �eorem we started with a consistent set Γ of formulas,
expanded it to a consistent and complete set Γ∗ of formulas, and then showed that in
the valuation E (Γ∗) constructed from Γ∗, all formulas of Γ are true, so Γ is satis�able.

We can use the same method to show that a �nitely satis�able set of sentences is
satis�able. We just have to prove the corresponding versions of the results leading to
the truth lemma where we replace “consistent” with “�nitely satis�able.”

Proposition 3.10. Suppose Γ is complete and �nitely satis�able. �en:
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1. (i ∧k ) ∈ Γ i� both i ∈ Γ andk ∈ Γ.

2. (i ∨k ) ∈ Γ i� either i ∈ Γ ork ∈ Γ.

3. (i→k ) ∈ Γ i� either i ∉ Γ ork ∈ Γ.

Lemma 3.11. Every �nitely satis�able set Γ can be extended to a complete and �nitely
satis�able set Γ∗.

�eorem 3.12 (Compactness). Γ is satis�able if and only if it is �nitely satis�able.

Proof. If Γ is satis�able, then there is a valuation E such that E � i for all i ∈ Γ. Of
course, this E also satis�es every �nite subset of Γ, so Γ is �nitely satis�able.

Now suppose that Γ is �nitely satis�able. By Lemma 3.11, Γ can be extended
to a complete and �nitely satis�able set Γ∗. Construct the valuation E (Γ∗) as in
De�nition 3.4. �e proof of the Truth Lemma (Lemma 3.5) goes through if we replace
references to Proposition 3.2. �

Problems

Problem 3.1. Complete the proof of Proposition 3.2.

Problem 3.2. Use Corollary 3.7 to prove �eorem 3.6, thus showing that the two
formulations of the completeness theorem are equivalent.

Problem 3.3. In order for a derivation system to be complete, its rules must be strong
enough to prove every unsatis�able set inconsistent. Which of the rules of derivation
were necessary to prove completeness? Are any of these rules not used anywhere
in the proof? In order to answer these questions, make a list or diagram that shows
which of the rules of derivation were used in which results that lead up to the proof
of �eorem 3.6. Be sure to note any tacit uses of rules in these proofs.

Problem 3.4. Prove (1) of �eorem 3.9.

Problem 3.5. Prove Proposition 3.10. Avoid the use of `.

Problem 3.6. Prove Lemma 3.11. (Hint: the crucial step is to show that if Γ= is �nitely
satis�able, then either Γ= ∪ {i=} or Γ= ∪ {¬i=} is �nitely satis�able.)

Problem 3.7. Write out the complete proof of the Truth Lemma (Lemma 3.5) in the
version required for the proof of �eorem 3.12.
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Part II

First-order Logic

Chapter 4

Syntax and Semantics

4.1 Introduction

In order to develop the theory and metatheory of �rst-order logic, we must �rst
de�ne the syntax and semantics of its expressions. �e expressions of �rst-order logic
are terms and formulas. Terms are formed from variables, constant symbols, and
function symbols. Formulas, in turn, are formed from predicate symbols together with
terms (these form the smallest, “atomic” formulas), and then from atomic formulas
we can form more complex ones using logical connectives and quanti�ers. �ere are
many di�erent ways to set down the formation rules; we give just one possible one.
Other systems will chose di�erent symbols, will select di�erent sets of connectives
as primitive, will use parentheses di�erently (or even not at all, as in the case of
so-called Polish notation). What all approaches have in common, though, is that the
formation rules de�ne the set of terms and formulas inductively. If done properly,
every expression can result essentially in only one way according to the formation
rules. �e inductive de�nition resulting in expressions that are uniquely readable
means we can give meanings to these expressions using the same method—inductive
de�nition.

Giving the meaning of expressions is the domain of semantics. �e central concept
in semantics is that of satisfaction in a structure. A structure gives meaning to the
building blocks of the language: a domain is a non-empty set of objects. �e quanti�ers
are interpreted as ranging over this domain, constant symbols are assigned elements
in the domain, function symbols are assigned functions from the domain to itself, and
predicate symbols are assigned relations on the domain. �e domain together with
assignments to the basic vocabulary constitutes a structure. Variables may appear
in formulas, and in order to give a semantics, we also have to assign elements of
the domain to them—this is a variable assignment. �e satisfaction relation, �nally,
brings these together. A formula may be satis�ed in a structure M relative to a
variable assignment B , wri�en as M, B � i . �is relation is also de�ned by induction
on the structure of i , using the truth tables for the logical connectives to de�ne, say,
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satisfaction of i ∧k in terms of satisfaction (or not) of i and k . It then turns out that
the variable assignment is irrelevant if the formula i is a sentence, i.e., has no free
variables, and so we can talk of sentences being simply satis�ed (or not) in structures.

On the basis of the satisfaction relation M � i for sentences we can then de�ne the
basic semantic notions of validity, entailment, and satis�ability. A sentence is valid,
� i , if every structure satis�es it. It is entailed by a set of sentences, Γ � i , if every
structure that satis�es all the sentences in Γ also satis�es i . And a set of sentences
is satis�able if some structure satis�es all sentences in it at the same time. Because
formulas are inductively de�ned, and satisfaction is in turn de�ned by induction on
the structure of formulas, we can use induction to prove properties of our semantics
and to relate the semantic notions de�ned.

4.2 First-Order Languages

Expressions of �rst-order logic are built up from a basic vocabulary containing vari-
ables, constant symbols, predicate symbols and sometimes function symbols. From
them, together with logical connectives, quanti�ers, and punctuation symbols such
as parentheses and commas, terms and formulas are formed.

Informally, predicate symbols are names for properties and relations, constant
symbols are names for individual objects, and function symbols are names for map-
pings. �ese, except for the identity predicate =, are the non-logical symbols and
together make up a language. Any �rst-order language L is determined by its non-
logical symbols. In the most general case, L contains in�nitely many symbols of each
kind.

In the general case, we make use of the following symbols in �rst-order logic:

1. Logical symbols

a) Logical connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction), →
(conditional), ∀ (universal quanti�er), ∃ (existential quanti�er).

b) �e propositional constant for falsity ⊥.
c) �e two-place identity predicate =.
d) A countably in�nite set of variables: E0, E1, E2, . . .

2. Non-logical symbols, making up the standard language of �rst-order logic

a) A countably in�nite set of =-place predicate symbols for each = > 0: �=0 ,
�=1 , �=2 , . . .

b) A countably in�nite set of constant symbols: 20, 21, 22, . . . .
c) A countably in�nite set of =-place function symbols for each = > 0: 5 =0 ,

5 =1 , 5 =2 , . . .

3. Punctuation marks: (, ), and the comma.

Most of our de�nitions and results will be formulated for the full standard language
of �rst-order logic. However, depending on the application, we may also restrict the
language to only a few predicate symbols, constant symbols, and function symbols.

Example 4.1. �e language L� of arithmetic contains a single two-place predicate
symbol <, a single constant symbol 0, one one-place function symbol ′, and two
two-place function symbols + and ×.
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Example 4.2. �e language of set theory L/ contains only the single two-place
predicate symbol ∈.

Example 4.3. �e language of orders L≤ contains only the two-place predicate
symbol ≤.

Again, these are conventions: o�cially, these are just aliases, e.g., <, ∈, and ≤ are
aliases for �2

0, 0 for 20, ′ for 5 1
0 , + for 5 2

0 , × for 5 2
1 .

In addition to the primitive connectives and quanti�ers introduced above, we also
use the following de�ned symbols:↔ (biconditional), truth >

A de�ned symbol is not o�cially part of the language, but is introduced as an
informal abbreviation: it allows us to abbreviate formulas which would, if we only
used primitive symbols, get quite long. �is is obviously an advantage. �e bigger
advantage, however, is that proofs become shorter. If a symbol is primitive, it has to
be treated separately in proofs. �e more primitive symbols, therefore, the longer our
proofs.

You may be familiar with di�erent terminology and symbols than the ones we
use above. Logic texts (and teachers) commonly use either ∼, ¬, and ! for “negation”,
∧, ·, and & for “conjunction”. Commonly used symbols for the “conditional” or
“implication” are →, ⇒, and ⊃. Symbols for “biconditional,” “bi-implication,” or
“(material) equivalence” are↔,⇔, and ≡. �e ⊥ symbol is variously called “falsity,”
“falsum,”, “absurdity,”, or “bo�om.” �e > symbol is variously called “truth,” “verum,”,
or “top.”

It is conventional to use lower case le�ers (e.g., 0, 1, 2) from the beginning of the
Latin alphabet for constant symbols (sometimes called names), and lower case le�ers
from the end (e.g., G , ~, I) for variables. �anti�ers combine with variables, e.g., G ;
notational variations include ∀G , (∀G), (G), ΠG ,

∧
G for the universal quanti�er and

∃G , (∃G), (�G), ΣG ,
∨
G for the existential quanti�er.

We might treat all the propositional operators and both quanti�ers as primitive
symbols of the language. We might instead choose a smaller stock of primitive
symbols and treat the other logical operators as de�ned. “Truth functionally complete”
sets of Boolean operators include {¬,∨}, {¬,∧}, and {¬,→}—these can be combined
with either quanti�er for an expressively complete �rst-order language.

You may be familiar with two other logical operators: the She�er stroke | (named
a�er Henry She�er), and Peirce’s arrow ↓, also known as �ine’s dagger. When given
their usual readings of “nand” and “nor” (respectively), these operators are truth
functionally complete by themselves.

4.3 Terms and Formulas

Once a �rst-order language L is given, we can de�ne expressions built up from the
basic vocabulary of L. �ese include in particular terms and formulas.

De�nition 4.4 (Terms). �e set of terms Trm(L) of L is de�ned inductively by:

1. Every variable is a term.

2. Every constant symbol of L is a term.

3. If 5 is an =-place function symbol and C1, . . . , C= are terms, then 5 (C1, . . . , C=) is
a term.
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4. Nothing else is a term.

A term containing no variables is a closed term.

�e constant symbols appear in our speci�cation of the language and the terms
as a separate category of symbols, but they could instead have been included as
zero-place function symbols. We could then do without the second clause in the
de�nition of terms. We just have to understand 5 (C1, . . . , C=) as just 5 by itself if = = 0.

De�nition 4.5 (Formula). �e set of formulas Frm(L) of the language L is de�ned
inductively as follows:

1. ⊥ is an atomic formula.

2. If ' is an =-place predicate symbol of L and C1, . . . , C= are terms of L, then
'(C1, . . . , C=) is an atomic formula.

3. If C1 and C2 are terms of L, then =(C1, C2) is an atomic formula.

4. If i is a formula, then ¬i is formula.

5. If i andk are formulas, then (i ∧k ) is a formula.

6. If i andk are formulas, then (i ∨k ) is a formula.

7. If i andk are formulas, then (i→k ) is a formula.

8. If i is a formula and G is a variable, then ∀G i is a formula.

9. If i is a formula and G is a variable, then ∃G i is a formula.

10. Nothing else is a formula.

�e de�nitions of the set of terms and that of formulas are inductive de�nitions.
Essentially, we construct the set of formulas in in�nitely many stages. In the initial
stage, we pronounce all atomic formulas to be formulas; this corresponds to the �rst
few cases of the de�nition, i.e., the cases for ⊥, '(C1, . . . , C=) and =(C1, C2). “Atomic
formula” thus means any formula of this form.

�e other cases of the de�nition give rules for constructing new formulas out
of formulas already constructed. At the second stage, we can use them to construct
formulas out of atomic formulas. At the third stage, we construct new formulas from
the atomic formulas and those obtained in the second stage, and so on. A formula is
anything that is eventually constructed at such a stage, and nothing else.

By convention, we write = between its arguments and leave out the parentheses:
C1 = C2 is an abbreviation for =(C1, C2). Moreover, ¬=(C1, C2) is abbreviated as C1 ≠ C2.
When writing a formula (k ∗ j) constructed fromk , j using a two-place connective ∗,
we will o�en leave out the outermost pair of parentheses and write simplyk ∗ j .

Some logic texts require that the variable G must occur in i in order for ∃G i
and ∀G i to count as formulas. Nothing bad happens if you don’t require this, and it
makes things easier.

De�nition 4.6. Formulas constructed using the de�ned operators are to be under-
stood as follows:

1. > abbreviates ¬⊥.
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2. i↔k abbreviates (i→k ) ∧ (k → i).

If we work in a language for a speci�c application, we will o�en write two-place
predicate symbols and function symbols between the respective terms, e.g., C1 < C2
and (C1 + C2) in the language of arithmetic and C1 ∈ C2 in the language of set theory.
�e successor function in the language of arithmetic is even wri�en conventionally
a�er its argument: C ′. O�cially, however, these are just conventional abbreviations
for �2

0 (C1, C2), 5 2
0 (C1, C2), �2

0 (C1, C2) and 5 1
0 (C), respectively.

De�nition 4.7 (Syntactic identity). �e symbol ≡ expresses syntactic identity be-
tween strings of symbols, i.e., i ≡ k i� i and k are strings of symbols of the same
length and which contain the same symbol in each place.

�e ≡ symbol may be �anked by strings obtained by concatenation, e.g., i ≡
(k ∨ j) means: the string of symbols i is the same string as the one obtained by
concatenating an opening parenthesis, the stringk , the ∨ symbol, the string j , and
a closing parenthesis, in this order. If this is the case, then we know that the �rst
symbol of i is an opening parenthesis, i contains k as a substring (starting at the
second symbol), that substring is followed by ∨, etc.

4.4 Unique Readability

�e way we de�ned formulas guarantees that every formula has a unique reading,
i.e., there is essentially only one way of constructing it according to our formation
rules for formulas and only one way of “interpreting” it. If this were not so, we
would have ambiguous formulas, i.e., formulas that have more than one reading or
intepretation—and that is clearly something we want to avoid. But more importantly,
without this property, most of the de�nitions and proofs we are going to give will
not go through.

Perhaps the best way to make this clear is to see what would happen if we had
given bad rules for forming formulas that would not guarantee unique readability.
For instance, we could have forgo�en the parentheses in the formation rules for
connectives, e.g., we might have allowed this:

If i andk are formulas, then so is i→k .

Starting from an atomic formula \ , this would allow us to form \ → \ . From this,
together with \ , we would get \ → \ → \ . But there are two ways to do this:

1. We take \ to be i and \ → \ to bek .

2. We take i to be \ → \ andk is \ .

Correspondingly, there are two ways to “read” the formula \ → \ → \ . It is of the
formk→ j wherek is \ and j is \→\ , but it is also of the formk→ j withk being
\ → \ and j being \ .

If this happens, our de�nitions will not always work. For instance, when we
de�ne the main operator of a formula, we say: in a formula of the formk → j , the
main operator is the indicated occurrence of→. But if we can match the formula
\ → \ → \ withk → j in the two di�erent ways mentioned above, then in one case
we get the �rst occurrence of→ as the main operator, and in the second case the
second occurrence. But we intend the main operator to be a function of the formula,
i.e., every formula must have exactly one main operator occurrence.
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Lemma 4.8. �e number of le� and right parentheses in a formula i are equal.

Proof. We prove this by induction on the way i is constructed. �is requires two
things: (a) We have to prove �rst that all atomic formulas have the property in
question (the induction basis). (b) �en we have to prove that when we construct
new formulas out of given formulas, the new formulas have the property provided
the old ones do.

Let ; (i) be the number of le� parentheses, and A (i) the number of right paren-
theses in i , and ; (C) and A (C) similarly the number of le� and right parentheses in a
term C . We leave the proof that for any term C , ; (C) = A (C) as an exercise.

1. i ≡ ⊥: i has 0 le� and 0 right parentheses.

2. i ≡ '(C1, . . . , C=): ; (i) = 1 + ; (C1) + · · · + ; (C=) = 1 + A (C1) + · · · + A (C=) = A (i).
Here we make use of the fact, le� as an exercise, that ; (C) = A (C) for any term C .

3. i ≡ C1 = C2: ; (i) = ; (C1) + ; (C2) = A (C1) + A (C2) = A (i).

4. i ≡ ¬k : By induction hypothesis, ; (k ) = A (k ). �us ; (i) = ; (k ) = A (k ) =
A (i).

5. i ≡ (k ∗ j): By induction hypothesis, ; (k ) = A (k ) and ; (j) = A (j). �us
; (i) = 1 + ; (k ) + ; (j) = 1 + A (k ) + A (j) = A (i).

6. i ≡ ∀G k : By induction hypothesis, ; (k ) = A (k ). �us, ; (i) = ; (k ) = A (k ) =
A (i).

7. i ≡ ∃G k : Similarly. �

De�nition 4.9 (Proper pre�x). A string of symbolsk is a proper pre�x of a string
of symbols i if concatenatingk and a non-empty string of symbols yields i .

Lemma 4.10. If i is a formula, andk is a proper pre�x of i , thenk is not a formula.

Proof. Exercise. �

Proposition 4.11. If i is an atomic formula, then it satisfes one, and only one of the
following conditions.

1. i ≡ ⊥.

2. i ≡ '(C1, . . . , C=) where ' is an =-place predicate symbol, C1, . . . , C= are terms, and
each of ', C1, . . . , C= is uniquely determined.

3. i ≡ C1 = C2 where C1 and C2 are uniquely determined terms.

Proof. Exercise. �

Proposition 4.12 (Unique Readability). Every formula satis�es one, and only one
of the following conditions.

1. i is atomic.

2. i is of the form ¬k .
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3. i is of the form (k ∧ j).

4. i is of the form (k ∨ j).

5. i is of the form (k → j).

6. i is of the form ∀G k .

7. i is of the form ∃G k .

Moreover, in each case k , or k and j , are uniquely determined. �is means that, e.g.,
there are no di�erent pairs k , j and k ′, j ′ so that i is both of the form (k → j) and
(k ′→ j ′).

Proof. �e formation rules require that if a formula is not atomic, it must start with
an opening parenthesis (, ¬, or with a quanti�er. On the other hand, every formula
that start with one of the following symbols must be atomic: a predicate symbol,
a function symbol, a constant symbol, ⊥.

So we really only have to show that if i is of the form (k ∗ j) and also of the form
(k ′ ∗′ j ′), thenk ≡ k ′, j ≡ j ′, and ∗ = ∗′.

So suppose both i ≡ (k ∗ j) and i ≡ (k ′ ∗′ j ′). �en eitherk ≡ k ′ or not. If it is,
clearly ∗ = ∗′ and j ≡ j ′, since they then are substrings of i that begin in the same
place and are of the same length. �e other case isk 6≡ k ′. Sincek andk ′ are both
substrings of i that begin at the same place, one must be a proper pre�x of the other.
But this is impossible by Lemma 4.10. �

4.5 Main operator of a Formula

It is o�en useful to talk about the last operator used in constructing a formula i . �is
operator is called the main operator of i . Intuitively, it is the “outermost” operator of
i . For example, the main operator of ¬i is ¬, the main operator of (i ∨k ) is ∨, etc.

De�nition 4.13 (Main operator). �e main operator of a formula i is de�ned as
follows:

1. i is atomic: i has no main operator.

2. i ≡ ¬k : the main operator of i is ¬.

3. i ≡ (k ∧ j): the main operator of i is ∧.

4. i ≡ (k ∨ j): the main operator of i is ∨.

5. i ≡ (k → j): the main operator of i is→.

6. i ≡ ∀G k : the main operator of i is ∀.

7. i ≡ ∃G k : the main operator of i is ∃.

In each case, we intend the speci�c indicated occurrence of the main operator in
the formula. For instance, since the formula ((\ → U) → (U → \ )) is of the form
(k → j) where k is (\ → U) and j is (U → \ ), the second occurrence of→ is the
main operator.

�is is a recursive de�nition of a function which maps all non-atomic formulas to
their main operator occurrence. Because of the way formulas are de�ned inductively,

47



4. Syntax and Semantics

every formula i satis�es one of the cases in De�nition 4.13. �is guarantees that for
each non-atomic formula i a main operator exists. Because each formula satis�es
only one of these conditions, and because the smaller formulas from which i is
constructed are uniquely determined in each case, the main operator occurrence of i
is unique, and so we have de�ned a function.

We call formulas by the following names depending on which symbol their main
operator is:

Main operator Type of formula Example
none atomic (formula) ⊥, '(C1, . . . , C=), C1 = C2
¬ negation ¬i
∧ conjunction (i ∧k )
∨ disjunction (i ∨k )
→ conditional (i→k )
∀ universal (formula) ∀G i
∃ existential (formula) ∃G i

4.6 Subformulas

It is o�en useful to talk about the formulas that “make up” a given formula. We call
these its subformulas. Any formula counts as a subformula of itself; a subformula of
i other than i itself is a proper subformula.

De�nition 4.14 (Immediate Subformula). If i is a formula, the immediate subfor-
mulas of i are de�ned inductively as follows:

1. Atomic formulas have no immediate subformulas.

2. i ≡ ¬k : �e only immediate subformula of i isk .

3. i ≡ (k ∗ j): �e immediate subformulas of i arek and j (∗ is any one of the
two-place connectives).

4. i ≡ ∀G k : �e only immediate subformula of i isk .

5. i ≡ ∃G k : �e only immediate subformula of i isk .

De�nition 4.15 (Proper Subformula). If i is a formula, the proper subformulas of
i are recursively as follows:

1. Atomic formulas have no proper subformulas.

2. i ≡ ¬k : �e proper subformulas of i are k together with all proper subfor-
mulas ofk .

3. i ≡ (k ∗ j): �e proper subformulas of i are k , j , together with all proper
subformulas ofk and those of j .

4. i ≡ ∀G k : �e proper subformulas of i arek together with all proper subfor-
mulas ofk .

5. i ≡ ∃G k : �e proper subformulas of i arek together with all proper subfor-
mulas ofk .
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De�nition 4.16 (Subformula). �e subformulas of i are i itself together with all
its proper subformulas.

Note the subtle di�erence in how we have de�ned immediate subformulas and
proper subformulas. In the �rst case, we have directly de�ned the immediate sub-
formulas of a formula i for each possible form of i . It is an explicit de�nition by
cases, and the cases mirror the inductive de�nition of the set of formulas. In the
second case, we have also mirrored the way the set of all formulas is de�ned, but in
each case we have also included the proper subformulas of the smaller formulask ,
j in addition to these formulas themselves. �is makes the de�nition recursive. In
general, a de�nition of a function on an inductively de�ned set (in our case, formulas)
is recursive if the cases in the de�nition of the function make use of the function itself.
To be well de�ned, we must make sure, however, that we only ever use the values of
the function for arguments that come “before” the one we are de�ning—in our case,
when de�ning “proper subformula” for (k ∗ j) we only use the proper subformulas
of the “earlier” formulask and j .

4.7 Free Variables and Sentences

De�nition 4.17 (Free occurrences of a variable). �e free occurrences of a vari-
able in a formula are de�ned inductively as follows:

1. i is atomic: all variable occurrences in i are free.

2. i ≡ ¬k : the free variable occurrences of i are exactly those ofk .

3. i ≡ (k ∗ j): the free variable occurrences of i are those in k together with
those in j .

4. i ≡ ∀G k : the free variable occurrences in i are all of those in k except for
occurrences of G .

5. i ≡ ∃G k : the free variable occurrences in i are all of those in k except for
occurrences of G .

De�nition 4.18 (Bound Variables). An occurrence of a variable in a formula i is
bound if it is not free.

De�nition 4.19 (Scope). If ∀G k is an occurrence of a subformula in a formula i ,
then the corresponding occurrence ofk in i is called the scope of the corresponding
occurrence of ∀G . Similarly for ∃G .

Ifk is the scope of a quanti�er occurrence ∀G or ∃G in i , then the free occurrences
of G in k are bound in ∀G k and ∃G k . We say that these occurrences are bound by
the mentioned quanti�er occurrence.

Example 4.20. Consider the following formula:

∃E0 �
2
0 (E0, E1)︸     ︷︷     ︸
k

k represents the scope of ∃E0. �e quanti�er binds the occurence of E0 ink , but does
not bind the occurence of E1. So E1 is a free variable in this case.

49



4. Syntax and Semantics

We can now see how this might work in a more complicated formula i :

∀E0 (�1
0 (E0) →�2

0 (E0, E1))︸                      ︷︷                      ︸
k

→∃E1 (�2
1 (E0, E1) ∨ ∀E0

\︷   ︸︸   ︷
¬�1

1 (E0))︸                             ︷︷                             ︸
j

k is the scope of the �rst ∀E0, j is the scope of ∃E1, and \ is the scope of the second
∀E0. �e �rst ∀E0 binds the occurrences of E0 ink , ∃E1 the occurrence of E1 in j , and
the second ∀E0 binds the occurrence of E0 in \ . �e �rst occurrence of E1 and the
fourth occurrence of E0 are free in i . �e last occurrence of E0 is free in \ , but bound
in j and i .

De�nition 4.21 (Sentence). A formula i is a sentence i� it contains no free occur-
rences of variables.

4.8 Substitution

De�nition 4.22 (Substitution in a term). We de�ne B [C/G], the result of substitut-
ing C for every occurrence of G in B , recursively:

1. B ≡ 2: B [C/G] is just B .

2. B ≡ ~: B [C/G] is also just B , provided ~ is a variable and ~ 6≡ G .

3. B ≡ G : B [C/G] is C .

4. B ≡ 5 (C1, . . . , C=): B [C/G] is 5 (C1 [C/G], . . . , C= [C/G]).

De�nition 4.23. A term C is free for G in i if none of the free occurrences of G in i
occur in the scope of a quanti�er that binds a variable in C .

Example 4.24.

1. E8 is free for E1 in ∃E3�
2
4 (E3, E1)

2. 5 2
1 (E1, E2) is not free for E0 in ∀E2�

2
4 (E0, E2)

De�nition 4.25 (Substitution in a formula). If i is a formula, G is a variable, and
C is a term free for G in i , then i [C/G] is the result of substituting C for all free
occurrences of G in i .

1. i ≡ ⊥: i [C/G] is ⊥.

2. i ≡ % (C1, . . . , C=): i [C/G] is % (C1 [C/G], . . . , C= [C/G]).

3. i ≡ C1 = C2: i [C/G] is C1 [C/G] = C2 [C/G].

4. i ≡ ¬k : i [C/G] is ¬k [C/G].

5. i ≡ (k ∧ j): i [C/G] is (k [C/G] ∧ j [C/G]).

6. i ≡ (k ∨ j): i [C/G] is (k [C/G] ∨ j [C/G]).

7. i ≡ (k → j): i [C/G] is (k [C/G] → j [C/G]).
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8. i ≡ ∀~k : i [C/G] is ∀~k [C/G], provided ~ is a variable other than G ; otherwise
i [C/G] is just i .

9. i ≡ ∃~k : i [C/G] is ∃~k [C/G], provided ~ is a variable other than G ; otherwise
i [C/G] is just i .

Note that substitution may be vacuous: If G does not occur in i at all, then i [C/G]
is just i .

�e restriction that C must be free for G in i is necessary to exclude cases like
the following. If i ≡ ∃~ G < ~ and C ≡ ~, then i [C/G] would be ∃~ ~ < ~. In this
case the free variable ~ is “captured” by the quanti�er ∃~ upon substitution, and
that is undesirable. For instance, we would like it to be the case that whenever ∀G k
holds, so does k [C/G]. But consider ∀G ∃~ G < ~ (here k is ∃~ G < ~). It is sentence
that is true about, e.g., the natural numbers: for every number G there is a number ~
greater than it. If we allowed ~ as a possible substitution for G , we would end up with
k [~/G] ≡ ∃~ ~ < ~, which is false. We prevent this by requiring that none of the free
variables in C would end up being bound by a quanti�er in i .

We o�en use the following convention to avoid cumbersume notation: If i is a
formula with a free variable G , we write i (G) to indicate this. When it is clear which
i and G we have in mind, and C is a term (assumed to be free for G in i (G)), then we
write i (C) as short for i (G) [C/G].

4.9 Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the constant symbols, function
symbols, and predicate symbols have no speci�c meaning a�ached to them. Meanings
are given by specifying a structure. It speci�es the domain, i.e., the objects which
the constant symbols pick out, the function symbols operate on, and the quanti�ers
range over. In addition, it speci�es which constant symbols pick out which objects,
how a function symbol maps objects to objects, and which objects the predicate
symbols apply to. Structures are the basis for semantic notions in logic, e.g., the
notion of consequence, validity, satis�ablity. �ey are variously called “structures,”
“interpretations,” or “models” in the literature.

De�nition 4.26 (Structures). A structure M, for a language L of �rst-order logic
consists of the following elements:

1. Domain: a non-empty set, |M |

2. Interpretation of constant symbols: for each constant symbol 2 of L, an element
2M ∈ |M |

3. Interpretation of predicate symbols: for each =-place predicate symbol ' of L
(other than =), an =-place relation 'M ⊆ |M |=

4. Interpretation of function symbols: for each =-place function symbol 5 of L, an
=-place function 5M : |M |= → |M |

Example 4.27. A structure M for the language of arithmetic consists of a set, an
element of |M |, 0M , as interpretation of the constant symbol 0, a one-place function
′M : |M | → |M |, two two-place functions +M and ×M , both |M |2 → |M |, and a
two-place relation <M ⊆ |M |2.

An obvious example of such a structure is the following:
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1. |N | = N

2. 0N = 0

3. ′N (=) = = + 1 for all = ∈ N

4. +N (=,<) = = +< for all =,< ∈ N

5. ×N (=,<) = = ·< for all =,< ∈ N

6. <N = {〈=,<〉 | = ∈ N,< ∈ N, = < <}

�e structure N for L� so de�ned is called the standard model of arithmetic, because
it interprets the non-logical constants of L� exactly how you would expect.

However, there are many other possible structures for L�. For instance, we might
take as the domain the set Z of integers instead of N, and de�ne the interpretations of
0, ′, +, ×, < accordingly. But we can also de�ne structures for L� which have nothing
even remotely to do with numbers.

Example 4.28. A structure M for the language L/ of set theory requires just a set
and a single-two place relation. So technically, e.g., the set of people plus the relation
“G is older than ~” could be used as a structure for L/ , as well as N together with
= ≥ < for =,< ∈ N.

A particularly interesting structure for L/ in which the elements of the domain
are actually sets, and the interpretation of ∈ actually is the relation “G is an element
of ~” is the structure ℌF of hereditarily �nite sets:

1. |ℌF| = ∅ ∪ ℘(∅) ∪ ℘(℘(∅)) ∪ ℘(℘(℘(∅))) ∪ . . . ;

2. ∈ℌF = {〈G,~〉 | G,~ ∈ |ℌF| , G ∈ ~}.

�e stipulations we make as to what counts as a structure impact our logic. For
example, the choice to prevent empty domains ensures, given the usual account of
satisfaction (or truth) for quanti�ed sentences, that ∃G (i (G) ∨ ¬i (G)) is valid—that
is, a logical truth. And the stipulation that all constant symbols must refer to an
object in the domain ensures that the existential generalization is a sound pa�ern of
inference: i (0), therefore ∃G i (G). If we allowed names to refer outside the domain,
or to not refer, then we would be on our way to a free logic, in which existential
generalization requires an additional premise: i (0) and ∃G G = 0, therefore ∃G i (G).

4.10 Covered Structures for First-order Languages

Recall that a term is closed if it contains no variables.

De�nition 4.29 (Value of closed terms). If C is a closed term of the language L
and M is a structure for L, the value ValM (C) is de�ned as follows:

1. If C is just the constant symbol 2 , then ValM (2) = 2M .

2. If C is of the form 5 (C1, . . . , C=), then

ValM (C) = 5M (ValM (C1), . . . ,ValM (C=)) .
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De�nition 4.30 (Covered structure). A structure is covered if every element of the
domain is the value of some closed term.

Example 4.31. Let L be the language with constant symbols I4A> , >=4 , CF> , . . . , the
binary predicate symbol <, and the binary function symbols + and ×. �en a structure
M for L is the one with domain |M | = {0, 1, 2, . . .} and assignments I4A>M = 0,
>=4M = 1, CF>M = 2, and so forth. For the binary relation symbol <, the set <M is
the set of all pairs 〈21, 22〉 ∈ |M |2 such that 21 is less than 22: for example, 〈1, 3〉 ∈ <M

but 〈2, 2〉 ∉ <M . For the binary function symbol +, de�ne +M in the usual way—for
example, +M (2, 3) maps to 5, and similarly for the binary function symbol ×. Hence,
the value of 5 >DA is just 4, and the value of ×(CF>, +(CℎA44, I4A>)) (or in in�x notation,
CF> × (CℎA44 + I4A>)) is

ValM (×(CF>, +(CℎA44, I4A>)) =
= ×M (ValM (CF>),ValM (+(CℎA44, I4A>)))
= ×M (ValM (CF>), +M (ValM (CℎA44),ValM (I4A>)))
= ×M (CF>M, +M (CℎA44M, I4A>M))
= ×M (2, +M (3, 0))
= ×M (2, 3)
= 6

4.11 Satisfaction of a Formula in a Structure

�e basic notion that relates expressions such as terms and formulas, on the one
hand, and structures on the other, are those of value of a term and satisfaction of
a formula. Informally, the value of a term is an element of a structure—if the term
is just a constant, its value is the object assigned to the constant by the structure,
and if it is built up using function symbols, the value is computed from the values
of constants and the functions assigned to the functions in the term. A formula is
satis�ed in a structure if the interpretation given to the predicates makes the formula
true in the domain of the structure. �is notion of satisfaction is speci�ed inductively:
the speci�cation of the structure directly states when atomic formulas are satis�ed,
and we de�ne when a complex formula is satis�ed depending on the main connective
or quanti�er and whether or not the immediate subformulas are satis�ed. �e case
of the quanti�ers here is a bit tricky, as the immediate subformula of a quanti�ed
formula has a free variable, and structures don’t specify the values of variables. In
order to deal with this di�culty, we also introduce variable assignments and de�ne
satisfaction not with respect to a structure alone, but with respect to a structure plus
a variable assignment.

De�nition 4.32 (Variable Assignment). A variable assignment B for a structure M
is a function which maps each variable to an element of |M |, i.e., B : Var→ |M |.

A structure assigns a value to each constant symbol, and a variable assignment to
each variable. But we want to use terms built up from them to also name elements of
the domain. For this we de�ne the value of terms inductively. For constant symbols
and variables the value is just as the structure or the variable assignment speci�es it;
for more complex terms it is computed recursively using the functions the structure
assigns to the function symbols.
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De�nition 4.33 (Value of Terms). If C is a term of the language L, M is a structure
for L, and B is a variable assignment for M, the value ValMB (C) is de�ned as follows:

1. C ≡ 2: ValMB (C) = 2M .

2. C ≡ G : ValMB (C) = B (G).

3. C ≡ 5 (C1, . . . , C=):

ValMB (C) = 5M (ValMB (C1), . . . ,ValMB (C=)) .

De�nition 4.34 (G-Variant). If B is a variable assignment for a structure M, then
any variable assignment B ′ for M which di�ers from B at most in what it assigns to G
is called an G-variant of B . If B ′ is an G-variant of B we write B ∼G B ′.

Note that an G-variant of an assignment B does not have to assign something
di�erent to G . In fact, every assignment counts as an G-variant of itself.

De�nition 4.35 (Satisfaction). Satisfaction of a formula i in a structure M relative
to a variable assignment B , in symbols: M, B � i , is de�ned recursively as follows. (We
write M, B 2 i to mean “not M, B � i .”)

1. i ≡ ⊥: M, B 2 i .

2. i ≡ '(C1, . . . , C=): M, B � i i� 〈ValMB (C1), . . . ,ValMB (C=)〉 ∈ 'M .

3. i ≡ C1 = C2: M, B � i i� ValMB (C1) = ValMB (C2).

4. i ≡ ¬k : M, B � i i� M, B 2 k .

5. i ≡ (k ∧ j): M, B � i i� M, B � k and M, B � j .

6. i ≡ (k ∨ j): M, B � i i� M, B � i or M, B � k (or both).

7. i ≡ (k → j): M, B � i i� M, B 2 k or M, B � j (or both).

8. i ≡ ∀G k : M, B � i i� for every G-variant B ′ of B , M, B ′ � k .

9. i ≡ ∃G k : M, B � i i� there is an G-variant B ′ of B so that M, B ′ � k .

�e variable assignments are important in the last two clauses. We cannot de�ne
satisfaction of ∀G k (G) by “for all 0 ∈ |M |, M � k (0).” We cannot de�ne satisfaction
of ∃G k (G) by “for at least one 0 ∈ |M |, M � k (0).” �e reason is that 0 is not symbol
of the language, and sok (0) is not a formula (that is,k [0/G] is unde�ned). We also
cannot assume that we have constant symbols or terms available that name every
element of M, since there is nothing in the de�nition of structures that requires it.
Even in the standard language the set of constant symbols is countably in�nite, so
if |M | is not countable there aren’t even enough constant symbols to name every
object.

Example 4.36. Let L = {0, 1, 5 , '} where 0 and 1 are constant symbols, 5 is a
two-place function symbol, and ' is a two-place predicate symbol. Consider the
structure M de�ned by:

1. |M | = {1, 2, 3, 4}
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2. 0M = 1

3. 1M = 2

4. 5M (G,~) = G + ~ if G + ~ ≤ 3 and = 3 otherwise.

5. 'M = {〈1, 1〉, 〈1, 2〉, 〈2, 3〉, 〈2, 4〉}

�e function B (G) = 1 that assigns 1 ∈ |M | to every variable is a variable assignment
for M.

�en

ValMB (5 (0, 1)) = 5M (ValMB (0),ValMB (1)) .

Since 0 and 1 are constant symbols, ValMB (0) = 0M = 1 and ValMB (1) = 1M = 2. So

ValMB (5 (0, 1)) = 5M (1, 2) = 1 + 2 = 3.

To compute the value of 5 (5 (0, 1), 0) we have to consider

ValMB (5 (5 (0, 1), 0)) = 5M (ValMB (5 (0, 1)),ValMB (0)) = 5M (3, 1) = 3,

since 3 + 1 > 3. Since B (G) = 1 and ValMB (G) = B (G), we also have

ValMB (5 (5 (0, 1), G)) = 5M (ValMB (5 (0, 1)),ValMB (G)) = 5M (3, 1) = 3,

An atomic formula '(C1, C2) is satis�ed if the tuple of values of its arguments, i.e.,
〈ValMB (C1),ValMB (C2)〉, is an element of 'M . So, e.g., we have M, B � '(1, 5 (0, 1)) since
〈ValM (1),ValM (5 (0, 1))〉 = 〈2, 3〉 ∈ 'M , but M, B 2 '(G, 5 (0, 1)) since 〈1, 3〉 ∉ 'M [B].

To determine if a non-atomic formula i is satis�ed, you apply the clauses in
the inductive de�nition that applies to the main connective. For instance, the main
connective in '(0, 0) → ('(1, G) ∨ '(G, 1) is the→, and

M, B � '(0, 0) → ('(1, G) ∨ '(G, 1)) i�
M, B 2 '(0, 0) or M, B � '(1, G) ∨ '(G, 1)

Since M, B � '(0, 0) (because 〈1, 1〉 ∈ 'M) we can’t yet determine the answer and
must �rst �gure out if M, B � '(1, G) ∨ '(G, 1):

M, B � '(1, G) ∨ '(G, 1) i�
M, B � '(1, G) or M, B � '(G, 1)

And this is the case, since M, B � '(G, 1) (because 〈1, 2〉 ∈ 'M).

Recall that an G-variant of B is a variable assignment that di�ers from B at most in
what it assigns to G . For every element of |M |, there is an G-variant of B: B1 (G) = 1,
B2 (G) = 2, B3 (G) = 3, B4 (G) = 4, and with B8 (~) = B (~) = 1 for all variables ~ other
than G . �ese are all the G-variants of B for the structure M, since |M | = {1, 2, 3, 4}.
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Note, in particular, that B1 = B is also an G-variant of B , i.e., B is always an G-variant of
itself.

To determine if an existentially quanti�ed formula ∃G i (G) is satis�ed, we have
to determine if M, B ′ � i (G) for at least one G-variant B ′ of B . So,

M, B � ∃G ('(1, G) ∨ '(G, 1)),

since M, B1 � '(1, G) ∨ '(G, 1) (B3 would also �t the bill). But,

M, B 2 ∃G ('(1, G) ∧ '(G, 1))

since for none of the B8 , M, B8 � '(1, G) ∧ '(G, 1).
To determine if a universally quanti�ed formula ∀G i (G) is satis�ed, we have to

determine if M, B ′ � i (G) for all G-variants B ′ of B . So,

M, B � ∀G ('(G, 0) → '(0, G)),

since M, B8 � '(G, 0) → '(0, G) for all B8 (M, B1 � '(0, G) and M, B 9 2 '(G, 0) for 9 = 2,
3, and 4). But,

M, B 2 ∀G ('(0, G) → '(G, 0))
since M, B2 2 '(0, G) → '(G, 0) (because M, B2 � '(0, G) and M, B2 2 '(G, 0)).

For a more complicated case, consider

∀G ('(0, G) → ∃~ '(G,~)) .

SinceM, B3 2 '(0, G) andM, B4 2 '(0, G), the interesting cases where we have to worry
about the consequent of the conditional are only B1 and B2. Does M, B1 � ∃~ '(G,~)
hold? It does if there is at least one ~-variant B ′1 of B1 so that M, B ′1 � '(G,~). In fact,
B1 is such a ~-variant (B1 (G) = 1, B1 (~) = 1, and 〈1, 1〉 ∈ 'M), so the answer is yes. To
determine if M, B2 � ∃~ '(G,~) we have to look at the ~-variants of B2. Here, B2 itself
does not satisfy '(G,~) (B2 (G) = 2, B2 (~) = 1, and 〈2, 1〉 ∉ 'M). However, consider
B ′2 ∼~ B2 with B ′2 (~) = 3. M, B ′2 � '(G,~) since 〈2, 3〉 ∈ 'M , and so M, B2 � ∃~ '(G,~).
In sum, for every G-variant B8 of B , either M, B8 2 '(0, G) (8 = 3, 4) or M, B8 � ∃~ '(G,~)
(8 = 1, 2), and so

M, B � ∀G ('(0, G) → ∃~ '(G,~)) .
On the other hand,

M, B 2 ∃G ('(0, G) ∧ ∀~ '(G,~)) .
�e only G-variants B8 of B with M, B8 � '(0, G) are B1 and B2. But for each, there is in
turn a~-variant B ′8 ∼~ B8 with B ′8 (~) = 4 so thatM, B ′8 2 '(G,~) and soM, B8 2 ∀~ '(G,~)
for 8 = 1, 2. In sum, none of the G-variants B8 ∼G B are such that M, B8 � '(0, G) ∧
∀~ '(G,~).

4.12 Variable Assignments

A variable assignment B provides a value for every variable—and there are in�nitely
many of them. �is is of course not necessary. We require variable assignments to
assign values to all variables simply because it makes things a lot easier. �e value of
a term C , and whether or not a formula i is satis�ed in a structure with respect to B ,
only depend on the assignments B makes to the variables in C and the free variables
of i . �is is the content of the next two propositions. To make the idea of “depends
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on” precise, we show that any two variable assignments that agree on all the variables
in C give the same value, and that i is satis�ed relative to one i� it is satis�ed relative
to the other if two variable assignments agree on all free variables of i .

Proposition 4.37. If the variables in a term C are among G1, . . . , G= , and B1 (G8 ) = B2 (G8 )
for 8 = 1, . . . , =, then ValMB1 (C) = ValMB2 (C).

Proof. By induction on the complexity of C . For the base case, C can be a constant
symbol or one of the variables G1, . . . , G= . If C = 2 , then ValMB1 (C) = 2

M = ValMB2 (C). If
C = G8 , B1 (G8 ) = B2 (G8 ) by the hypothesis of the proposition, and so ValMB1 (C) = B1 (G8 ) =
B2 (G8 ) = ValMB2 (C).

For the inductive step, assume that C = 5 (C1, . . . , C: ) and that the claim holds for
C1, . . . , C: . �en

ValMB1 (C) = ValMB1 (5 (C1, . . . , C: )) =
= 5M (ValMB1 (C1), . . . ,ValMB1 (C: ))

For 9 = 1, . . . , : , the variables of C 9 are among G1, . . . , G= . So by induction hypothesis,
ValMB1 (C 9 ) = ValMB2 (C 9 ). So,

ValMB1 (C) = ValMB2 (5 (C1, . . . , C: )) =
= 5M (ValMB1 (C1), . . . ,ValMB1 (C: )) =
= 5M (ValMB2 (C1), . . . ,ValMB2 (C: )) =
= ValMB2 (5 (C1, . . . , C: )) = ValMB2 (C). �

Proposition 4.38. If the free variables in i are among G1, . . . , G= , and B1 (G8 ) = B2 (G8 )
for 8 = 1, . . . , =, then M, B1 � i i� M, B2 � i .

Proof. We use induction on the complexity of i . For the base case, where i is atomic,
i can be: ⊥, '(C1, . . . , C: ) for a :-place predicate ' and terms C1, . . . , C: , or C1 = C2 for
terms C1 and C2.

1. i ≡ ⊥: both M, B1 2 i and M, B2 2 i .

2. i ≡ '(C1, . . . , C: ): let M, B1 � i . �en

〈ValMB1 (C1), . . . ,ValMB1 (C: )〉 ∈ '
M .

For 8 = 1, . . . , : , ValMB1 (C8 ) = ValMB2 (C8 ) by Proposition 4.37. So we also have
〈ValMB2 (C8 ), . . . ,ValMB2 (C: )〉 ∈ '

M .

3. i ≡ C1 = C2: suppose M, B1 � i . �en ValMB1 (C1) = ValMB1 (C2). So,

ValMB2 (C1) = ValMB1 (C1) (by Proposition 4.37)
= ValMB1 (C2) (since M, B1 � C1 = C2)
= ValMB2 (C2) (by Proposition 4.37),

so M, B2 � C1 = C2.
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Now assume M, B1 � k i� M, B2 � k for all formulask less complex than i . �e
induction step proceeds by cases determined by the main operator of i . In each
case, we only demonstrate the forward direction of the biconditional; the proof of
the reverse direction is symmetrical. In all cases except those for the quanti�ers, we
apply the induction hypothesis to sub-formulas k of i . �e free variables of k are
among those of i . �us, if B1 and B2 agree on the free variables of i , they also agree
on those ofk , and the induction hypothesis applies tok .

1. i ≡ ¬k : if M, B1 � i , then M, B1 2 k , so by the induction hypothesis, M, B2 2 k ,
hence M, B2 � i .

2. i ≡ k ∧ j : if M, B1 � i , then M, B1 � k and M, B1 � j , so by induction
hypothesis, M, B2 � k and M, B2 � j . Hence, M, B2 � i .

3. i ≡ k ∨ j : if M, B1 � i , then M, B1 � k or M, B1 � j . By induction hypothesis,
M, B2 � k or M, B2 � j , so M, B2 � i .

4. i ≡ k → j : if M, B1 � i , then M, B1 2 k or M, B1 � j . By the induction
hypothesis, M, B2 2 k or M, B2 � j , so M, B2 � i .

5. i ≡ ∃G k : if M, B1 � i , there is an G-variant B ′1 of B1 so that M, B ′1 � k . Let B ′2 be
the G-variant of B2 that assigns the same thing to G as does B ′1. �e free variables
ofk are among G1, . . . , G= , and G . B ′1 (G8 ) = B ′2 (G8 ), since B ′1 and B ′2 are G-variants
of B1 and B2, respectively, and by hypothesis B1 (G8 ) = B2 (G8 ). B ′1 (G) = B ′2 (G) by
the way we have de�ned B ′2. �en the induction hypothesis applies to k and
B ′1, B ′2, so M, B ′2 � k . Hence, there is an G-variant of B2 that satis�es k , and so
M, B2 � i .

6. i ≡ ∀G k : if M, B1 � i , then for every G-variant B ′1 of B1, M, B ′1 � k . Take
an arbitrary G-variant B ′2 of B2, let B ′1 be the G-variant of B1 which assigns the
same thing to G as does B ′2. �e free variables ofk are among G1, . . . , G= , and G .
B ′1 (G8 ) = B ′2 (G8 ), since B ′1 and B ′2 are G-variants of B1 and B2, respectively, and by
hypothesis B1 (G8 ) = B2 (G8 ). B ′1 (G) = B ′2 (G) by the way we have de�ned B ′1. �en
the induction hypothesis applies tok and B ′1, B ′2, and we have M, B ′2 � k . Since B ′2
is an arbitrary G-variant of B2, every G-variant of B2 satis�esk , and so M, B2 � i .

By induction, we get that M, B1 � i i� M, B2 � i whenever the free variables in i are
among G1, . . . , G= and B1 (G8 ) = B2 (G8 ) for 8 = 1, . . . , =. �

Sentences have no free variables, so any two variable assignments assign the same
things to all the (zero) free variables of any sentence. �e proposition just proved
then means that whether or not a sentence is satis�ed in a structure relative to a
variable assignment is completely independent of the assignment. We’ll record this
fact. It justi�es the de�nition of satisfaction of a sentence in a structure (without
mentioning a variable assignment) that follows.

Corollary 4.39. If i is a sentence and B a variable assignment, then M, B � i i�
M, B ′ � i for every variable assignment B ′.

Proof. Let B ′ be any variable assignment. Since i is a sentence, it has no free variables,
and so every variable assignment B ′ trivially assigns the same things to all free
variables of i as does B . So the condition of Proposition 4.38 is satis�ed, and we have
M, B � i i� M, B ′ � i . �
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De�nition 4.40. If i is a sentence, we say that a structure M satis�es i , M � i , i�
M, B � i for all variable assignments B .

If M � i , we also simply say that i is true in M.

Proposition 4.41. Let M be a structure, i be a sentence, and B a variable assignment.
M � i i� M, B � i .

Proof. Exercise. �

Proposition 4.42. Suppose i (G) only contains G free, and M is a structure. �en:

1. M � ∃G i (G) i� M, B � i (G) for at least one variable assignment B .

2. M � ∀G i (G) i� M, B � i (G) for all variable assignments B .

Proof. Exercise. �

4.13 Extensionality

Extensionality, sometimes called relevance, can be expressed informally as follows:
the only factors that bears upon the satisfaction of formula i in a structure M relative
to a variable assignment B , are the size of the domain and the assignments made by M

and B to the elements of the language that actually appear in i .
One immediate consequence of extensionality is that where two structures M

and M′ agree on all the elements of the language appearing in a sentence i and have
the same domain, M and M′ must also agree on whether or not i itself is true.

Proposition 4.43 (Extensionality). Leti be a formula, andM1 andM2 be structures
with |M1 | = |M2 |, and B a variable assignment on |M1 | = |M2 |. If 2M1 = 2M2 , 'M1 =

'M2 , and 5M1 = 5M2 for every constant symbol 2 , relation symbol ', and function
symbol 5 occurring in i , then M1, B � i i� M2, B � i .

Proof. First prove (by induction on C ) that for every term, ValM1
B (C) = ValM2

B (C). �en
prove the proposition by induction on i , making use of the claim just proved for the
induction basis (where i is atomic). �

Corollary 4.44 (Extensionality for Sentences). Let i be a sentence and M1, M2
as in Proposition 4.43. �en M1 � i i� M2 � i .

Proof. Follows from Proposition 4.43 by Corollary 4.39. �

Moreover, the value of a term, and whether or not a structure satis�es a formula,
only depends on the values of its subterms.

Proposition 4.45. LetM be a structure, C and C ′ terms, and B a variable assignment. Let
B ′ ∼G B be the G-variant of B given by B ′(G) = ValMB (C ′). �en ValMB (C [C ′/G]) = ValMB′ (C).

Proof. By induction on C .

1. If C is a constant, say, C ≡ 2 , then C [C ′/G] = 2 , and ValMB (2) = 2M = ValMB′ (2).

2. If C is a variable other than G , say, C ≡ ~, then C [C ′/G] = ~, and ValMB (~) =
ValMB′ (~) since B ′ ∼G B .
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3. If C ≡ G , then C [C ′/G] = C ′. But ValMB′ (G) = ValMB (C ′) by de�nition of B ′.

4. If C ≡ 5 (C1, . . . , C=) then we have:

ValMB (C [C ′/G]) =
= ValMB (5 (C1 [C ′/G], . . . , C= [C ′/G]))

by de�nition of C [C ′/G]
= 5M (ValMB (C1 [C ′/G]), . . . ,ValMB (C= [C ′/G]))

by de�nition of ValMB (5 (. . . ))
= 5M (ValMB′ (C1), . . . ,ValMB′ (C=))

by induction hypothesis
= ValMB′ (C) by de�nition of ValMB′ (5 (. . . )) �

Proposition 4.46. Let M be a structure, i a formula, C a term, and B a variable
assignment. Let B ′ ∼G B be the G-variant of B given by B ′(G) = ValMB (C). �en M, B �
i [C/G] i� M, B ′ � i .

Proof. Exercise. �

4.14 Semantic Notions

Give the de�nition of structures for �rst-order languages, we can de�ne some basic
semantic properties of and relationships between sentences. �e simplest of these
is the notion of validity of a sentence. A sentence is valid if it is satis�ed in every
structure. Valid sentences are those that are satis�ed regardless of how the non-
logical symbols in it are interpreted. Valid sentences are therefore also called logical
truths—they are true, i.e., satis�ed, in any structure and hence their truth depends
only on the logical symbols occurring in them and their syntactic structure, but not
on the non-logical symbols or their interpretation.

De�nition 4.47 (Validity). A sentence i is valid, � i , i� M � i for every struc-
ture M.

De�nition 4.48 (Entailment). A set of sentences Γ entails a sentence i , Γ � i , i�
for every structure M with M � Γ, M � i .

De�nition 4.49 (Satis�ability). A set of sentences Γ is satis�able if M � Γ for some
structure M. If Γ is not satis�able it is called unsatis�able.

Proposition 4.50. A sentence i is valid i� Γ � i for every set of sentences Γ.

Proof. For the forward direction, let i be valid, and let Γ be a set of sentences. Let M
be a structure so that M � Γ. Since i is valid, M � i , hence Γ � i .

For the contrapositive of the reverse direction, let i be invalid, so there is a
structure M with M 2 i . When Γ = {>}, since > is valid, M � Γ. Hence, there is a
structure M so that M � Γ but M 2 i , hence Γ does not entail i . �

Proposition 4.51. Γ � i i� Γ ∪ {¬i} is unsatis�able.
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Proof. For the forward direction, suppose Γ � i and suppose to the contrary that
there is a structure M so that M � Γ ∪ {¬i}. Since M � Γ and Γ � i , M � i . Also,
since M � Γ ∪ {¬i}, M � ¬i , so we have both M � i and M 2 i , a contradiction.
Hence, there can be no such structure M, so Γ ∪ {i} is unsatis�able.

For the reverse direction, suppose Γ∪ {¬i} is unsatis�able. So for every structure
M, either M 2 Γ or M � i . Hence, for every structure M with M � Γ, M � i , so
Γ � i . �

Proposition 4.52. If Γ ⊆ Γ′ and Γ � i , then Γ′ � i .

Proof. Suppose that Γ ⊆ Γ′ and Γ � i . Let M be such that M � Γ′; then M � Γ, and
since Γ � i , we get that M � i . Hence, whenever M � Γ′, M � i , so Γ′ � i . �

�eorem 4.53 (Semantic Deduction �eorem). Γ ∪ {i} � k i� Γ � i→k .

Proof. For the forward direction, let Γ ∪ {i} � k and let M be a structure so that
M � Γ. If M � i , then M � Γ ∪ {i}, so since Γ ∪ {i} entails k , we get M � k .
�erefore, M � i→k , so Γ � i→k .

For the reverse direction, let Γ � i→k and M be a structure so that M � Γ ∪ {i}.
�en M � Γ, so M � i→k , and since M � i , M � k . Hence, whenever M � Γ ∪ {i},
M � k , so Γ ∪ {i} � k . �

Proposition 4.54. Let M be a structure, and i (G) a formula with one free variable G ,
and C a closed term. �en:

1. i (C) � ∃G i (G)

2. ∀G i (G) � i (C)

Proof. 1. Suppose M � i (C). Let B be a variable assignment with B (G) = ValM (C).
�en M, B � i (C) since i (C) is a sentence. By Proposition 4.46, M, B � i (G). By
Proposition 4.42, M � ∃G i (G).

2. Suppose M � ∀G i (G). Let B be a variable assignment with B (G) = ValM (C). By
Proposition 4.42, M, B � i (G). By Proposition 4.46, M, B � i (C). By Proposi-
tion 4.41, M � i (C) since i (C) is a sentence. �

Problems

Problem 4.1. Prove Lemma 4.10.

Problem 4.2. Prove Proposition 4.11 (Hint: Formulate and prove a version of
Lemma 4.10 for terms.)

Problem 4.3. Give an inductive de�nition of the bound variable occurrences along
the lines of De�nition 4.17.

Problem 4.4. Is N, the standard model of arithmetic, covered? Explain.

Problem 4.5. Let L = {2, 5 , �} with one constant symbol, one one-place function
symbol and one two-place predicate symbol, and let the structure M be given by

61



4. Syntax and Semantics

1. |M | = {1, 2, 3}

2. 2M = 3

3. 5M (1) = 2, 5M (2) = 3, 5M (3) = 2

4. �M = {〈1, 2〉, 〈2, 3〉, 〈3, 3〉}

(a) Let B (E) = 1 for all variables E . Find out whether

M, B � ∃G (�(5 (I), 2) → ∀~ (�(~, G) ∨�(5 (~), G)))

Explain why or why not.
(b) Give a di�erent structure and variable assignment in which the formula is not

satis�ed.

Problem 4.6. Complete the proof of Proposition 4.38.

Problem 4.7. Prove Proposition 4.41

Problem 4.8. Prove Proposition 4.42.

Problem 4.9. Suppose L is a language without function symbols. Given a struc-
ture M, 2 a constant symbol and 0 ∈ |M |, de�ne M[0/2] to be the structure that is
just like M, except that 2M [0/2 ] = 0. De�ne M | |= i for sentences i by:

1. i ≡ ⊥: not M | |= i .

2. i ≡ '(31, . . . , 3=): M | |= i i� 〈3M1 , . . . , 3M= 〉 ∈ 'M .

3. i ≡ 31 = 32: M | |= i i� 3M1 = 3M2 .

4. i ≡ ¬k : M | |= i i� not M | |= k .

5. i ≡ (k ∧ j): M | |= i i� M | |= k and M | |= j .

6. i ≡ (k ∨ j): M | |= i i� M | |= k or M | |= j (or both).

7. i ≡ (k → j): M | |= i i� not M | |= k or M | |= j (or both).

8. i ≡ ∀G k : M | |= i i� for all 0 ∈ |M |, M[0/2] | |= k [2/G], if 2 does not occur
ink .

9. i ≡ ∃G k : M | |= i i� there is an 0 ∈ |M | such that M[0/2] | |= k [2/G], if 2
does not occur ink .

Let G1, . . . , G= be all free variables in i , 21, . . . , 2= constant symbols not in i , 01, . . . ,
0= ∈ |M |, and B (G8 ) = 08 .

Show that M, B � i i� M[01/21, . . . , 0=/2=] | |= i [21/G1] . . . [2=/G=].
(�is problem shows that it is possible to give a semantics for �rst-order logic

that makes do without variable assignments.)

Problem 4.10. Suppose that 5 is a function symbol not in i (G,~). Show that there
is a structure M such that M � ∀G ∃~ i (G,~) i� there is an M′ such that M′ �
∀G i (G, 5 (G)).

(�is problem is a special case of what’s known as Skolem’s �eorem;∀G i (G, 5 (G))
is called a Skolem normal form of ∀G ∃~ i (G,~).)
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Problem 4.11. Carry out the proof of Proposition 4.43 in detail.

Problem 4.12. Prove Proposition 4.46

Problem 4.13. 1. Show that Γ � ⊥ i� Γ is unsatis�able.

2. Show that Γ ∪ {i} � ⊥ i� Γ � ¬i .

3. Suppose 2 does not occur in i or Γ. Show that Γ � ∀G i i� Γ � i [2/G].

Problem 4.14. Complete the proof of Proposition 4.54.
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Chapter 5

�eories and �eir Models

5.1 Introduction

�e development of the axiomatic method is a signi�cant achievement in the history
of science, and is of special importance in the history of mathematics. An axiomatic
development of a �eld involves the clari�cation of many questions: What is the �eld
about? What are the most fundamental concepts? How are they related? Can all the
concepts of the �eld be de�ned in terms of these fundamental concepts? What laws
do, and must, these concepts obey?

�e axiomatic method and logic were made for each other. Formal logic provides
the tools for formulating axiomatic theories, for proving theorems from the axioms
of the theory in a precisely speci�ed way, for studying the properties of all systems
satisfying the axioms in a systematic way.

De�nition 5.1. A set of sentences Γ is closed i�, whenever Γ � i then i ∈ Γ. �e
closure of a set of sentences Γ is {i | Γ � i}.

We say that Γ is axiomatized by a set of sentences Δ if Γ is the closure of Δ.

We can think of an axiomatic theory as the set of sentences that is axiomatized
by its set of axioms Δ. In other words, when we have a �rst-order language which
contains non-logical symbols for the primitives of the axiomatically developed science
we wish to study, together with a set of sentences that express the fundamental laws
of the science, we can think of the theory as represented by all the sentences in this
language that are entailed by the axioms. �is ranges from simple examples with
only a single primitive and simple axioms, such as the theory of partial orders, to
complex theories such as Newtonian mechanics.

�e important logical facts that make this formal approach to the axiomatic
method so important are the following. Suppose Γ is an axiom system for a theory,
i.e., a set of sentences.

1. We can state precisely when an axiom system captures an intended class of
structures. �at is, if we are interested in a certain class of structures, we
will successfully capture that class by an axiom system Γ i� the structures are
exactly those M such that M � Γ.

2. We may fail in this respect because there are M such that M � Γ, but M is not
one of the structures we intend. �is may lead us to add axioms which are not
true in M.
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3. If we are successful at least in the respect that Γ is true in all the intended
structures, then a sentence i is true in all intended structures whenever Γ � i .
�us we can use logical tools (such as proof methods) to show that sentences
are true in all intended structures simply by showing that they are entailed by
the axioms.

4. Sometimes we don’t have intended structures in mind, but instead start from
the axioms themselves: we begin with some primitives that we want to satisfy
certain laws which we codify in an axiom system. One thing that we would
like to verify right away is that the axioms do not contradict each other: if they
do, there can be no concepts that obey these laws, and we have tried to set
up an incoherent theory. We can verify that this doesn’t happen by �nding a
model of Γ. And if there are models of our theory, we can use logical methods
to investigate them, and we can also use logical methods to construct models.

5. �e independence of the axioms is likewise an important question. It may
happen that one of the axioms is actually a consequence of the others, and
so is redundant. We can prove that an axiom i in Γ is redundant by proving
Γ \ {i} � i . We can also prove that an axiom is not redundant by showing that
(Γ \ {i}) ∪ {¬i} is satis�able. For instance, this is how it was shown that the
parallel postulate is independent of the other axioms of geometry.

6. Another important question is that of de�nability of concepts in a theory: �e
choice of the language determines what the models of a theory consists of. But
not every aspect of a theory must be represented separately in its models. For
instance, every ordering ≤ determines a corresponding strict ordering <—given
one, we can de�ne the other. So it is not necessary that a model of a theory
involving such an order must also contain the corresponding strict ordering.
When is it the case, in general, that one relation can be de�ned in terms of
others? When is it impossible to de�ne a relation in terms of other (and hence
must add it to the primitives of the language)?

5.2 Expressing Properties of Structures

It is o�en useful and important to express conditions on functions and relations, or
more generally, that the functions and relations in a structure satisfy these conditions.
For instance, we would like to have ways of distinguishing those structures for a
language which “capture” what we want the predicate symbols to “mean” from those
that do not. Of course we’re completely free to specify which structures we “intend,”
e.g., we can specify that the interpretation of the predicate symbol ≤ must be an
ordering, or that we are only interested in interpretations of L in which the domain
consists of sets and ∈ is interpreted by the “is an element of” relation. But can
we do this with sentences of the language? In other words, which conditions on
a structure M can we express by a sentence (or perhaps a set of sentences) in the
language of M? �ere are some conditions that we will not be able to express. For
instance, there is no sentence ofL� which is only true in a structure M if |M | = N. We
cannot express “the domain contains only natural numbers.” But there are “structural
properties” of structures that we perhaps can express. Which properties of structures
can we express by sentences? Or, to put it another way, which collections of structures
can we describe as those making a sentence (or set of sentences) true?
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De�nition 5.2 (Model of a set). Let Γ be a set of sentences in a language L. We
say that a structure M is a model of Γ if M � i for all i ∈ Γ.

Example 5.3. �e sentence ∀G G ≤ G is true in M i� ≤M is a re�exive relation. �e
sentence ∀G ∀~ ((G ≤ ~ ∧~ ≤ G) → G = ~) is true in M i� ≤M is anti-symmetric. �e
sentence ∀G ∀~ ∀I ((G ≤ ~ ∧ ~ ≤ I) → G ≤ I) is true in M i� ≤M is transitive. �us,
the models of

{ ∀G G ≤ G,
∀G ∀~ ((G ≤ ~ ∧ ~ ≤ G) → G = ~),
∀G ∀~ ∀I ((G ≤ ~ ∧ ~ ≤ I) → G ≤ I) }

are exactly those structures in which ≤M is re�exive, anti-symmetric, and transitive,
i.e., a partial order. Hence, we can take them as axioms for the �rst-order theory of
partial orders.

5.3 Examples of First-Order �eories

Example 5.4. �e theory of strict linear orders in the language L< is axiomatized
by the set

∀G ¬G < G,

∀G ∀~ ((G < ~ ∨ ~ < G) ∨ G = ~),
∀G ∀~ ∀I ((G < ~ ∧ ~ < I) → G < I)

It completely captures the intended structures: every strict linear order is a model of
this axiom system, and vice versa, if ' is a linear order on a set - , then the structure
M with |M | = - and <M = ' is a model of this theory.

Example 5.5. �e theory of groups in the language 1 (constant symbol), · (two-place
function symbol) is axiomatized by

∀G (G · 1) = G
∀G ∀~ ∀I (G · (~ · I)) = ((G · ~) · I)
∀G ∃~ (G · ~) = 1

Example 5.6. �e theory of Peano arithmetic is axiomatized by the following sen-
tences in the language of arithmetic L�.

∀G ∀~ (G ′ = ~ ′→ G = ~)
∀G 0 ≠ G ′

∀G (G + 0) = G
∀G ∀~ (G + ~ ′) = (G + ~) ′

∀G (G × 0) = 0
∀G ∀~ (G × ~ ′) = ((G × ~) + G)
∀G ∀~ (G < ~↔∃I (I ′ + G) = ~))
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plus all sentences of the form

(i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G)

Since there are in�nitely many sentences of the la�er form, this axiom system is
in�nite. �e la�er form is called the induction schema. (Actually, the induction schema
is a bit more complicated than we let on here.)

�e last axiom is an explicit de�nition of <.

Example 5.7. �e theory of pure sets plays an important role in the foundations (and
in the philosophy) of mathematics. A set is pure if all its elements are also pure sets.
�e empty set counts therefore as pure, but a set that has something as an element
that is not a set would not be pure. So the pure sets are those that are formed just
from the empty set and no “urelements,” i.e., objects that are not themselves sets.

�e following might be considered as an axiom system for a theory of pure sets:

∃G ¬∃~ ~ ∈ G
∀G ∀~ (∀I (I ∈ G ↔ I ∈ ~) → G = ~)
∀G ∀~ ∃I ∀D (D ∈ I↔ (D = G ∨ D = ~))
∀G ∃~ ∀I (I ∈ ~↔∃D (I ∈ D ∧ D ∈ G))

plus all sentences of the form

∃G ∀~ (~ ∈ G ↔ i (~))

�e �rst axiom says that there is a set with no elements (i.e., ∅ exists); the second says
that sets are extensional; the third that for any sets - and . , the set {-,. } exists; the
fourth that for any set - , the set ∪- exists, where ∪- is the union of all the elements
of - .

�e sentences mentioned last are collectively called the naive comprehension
scheme. It essentially says that for every i (G), the set {G | i (G)} exists—so at �rst
glance a true, useful, and perhaps even necessary axiom. It is called “naive” because,
as it turns out, it makes this theory unsatis�able: if you take i (~) to be ¬~ ∈ ~, you
get the sentence

∃G ∀~ (~ ∈ G ↔¬~ ∈ ~)

and this sentence is not satis�ed in any structure.

Example 5.8. In the area of mereology, the relation of parthood is a fundamental
relation. Just like theories of sets, there are theories of parthood that axiomatize
various conceptions (sometimes con�icting) of this relation.

�e language of mereology contains a single two-place predicate symbol % , and
% (G,~) “means” that G is a part of ~. When we have this interpretation in mind,
a structure for this language is called a parthood structure. Of course, not every
structure for a single two-place predicate will really deserve this name. To have a
chance of capturing “parthood,” %M must satisfy some conditions, which we can lay
down as axioms for a theory of parthood. For instance, parthood is a partial order
on objects: every object is a part (albeit an improper part) of itself; no two di�erent
objects can be parts of each other; a part of a part of an object is itself part of that
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object. Note that in this sense “is a part of” resembles “is a subset of,” but does not
resemble “is an element of” which is neither re�exive nor transitive.

∀G % (G, G),
∀G ∀~ ((% (G,~) ∧ % (~, G)) → G = ~),
∀G ∀~ ∀I ((% (G,~) ∧ % (~, I)) → % (G, I)),

Moreover, any two objects have a mereological sum (an object that has these two
objects as parts, and is minimal in this respect).

∀G ∀~ ∃I ∀D (% (I,D) ↔ (% (G,D) ∧ % (~,D)))

�ese are only some of the basic principles of parthood considered by metaphysicians.
Further principles, however, quickly become hard to formulate or write down without
�rst introducting some de�ned relations. For instance, most metaphysicians interested
in mereology also view the following as a valid principle: whenever an object G has a
proper part ~, it also has a part I that has no parts in common with ~, and so that the
fusion of ~ and I is G .

5.4 Expressing Relations in a Structure

One main use formulas can be put to is to express properties and relations in a struc-
ture M in terms of the primitives of the language L of M. By this we mean the
following: the domain of M is a set of objects. �e constant symbols, function sym-
bols, and predicate symbols are interpreted in M by some objects in|M |, functions
on |M |, and relations on |M |. For instance, if �2

0 is in L, then M assigns to it a
relation ' = �2

0
M . �en the formula �2

0 (E1, E2) expresses that very relation, in the
following sense: if a variable assignment B maps E1 to 0 ∈ |M | and E2 to 1 ∈ |M |, then

'01 i� M, B � �2
0 (E1, E2).

Note that we have to involve variable assignments here: we can’t just say “'01 i�
M � �2

0 (0, 1)” because 0 and 1 are not symbols of our language: they are elements
of |M |.

Since we don’t just have atomic formulas, but can combine them using the logical
connectives and the quanti�ers, more complex formulas can de�ne other relations
which aren’t directly built into M. We’re interested in how to do that, and speci�cally,
which relations we can de�ne in a structure.

De�nition 5.9. Let i (E1, . . . , E=) be a formula of L in which only E1,. . . , E= occur
free, and let M be a structure for L. i (E1, . . . , E=) expresses the relation ' ⊆ |M |= i�

'01 . . . 0= i� M, B � i (E1, . . . , E=)

for any variable assignment B with B (E8 ) = 08 (8 = 1, . . . , =).

Example 5.10. In the standard model of arithmetic N, the formula E1 < E2 ∨ E1 = E2
expresses the ≤ relation on N. �e formula E2 = E

′
1 expresses the successor relation,

i.e., the relation ' ⊆ N2 where '=< holds if < is the successor of =. �e formula
E1 = E

′
2 expresses the predecessor relation. �e formulas ∃E3 (E3 ≠ 0 ∧ E2 = (E1 + E3))

and ∃E3 (E1 + E3
′) = E2 both express the < relation. �is means that the predicate

symbol < is actually super�uous in the language of arithmetic; it can be de�ned.
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�is idea is not just interesting in speci�c structures, but generally whenever
we use a language to describe an intended model or models, i.e., when we consider
theories. �ese theories o�en only contain a few predicate symbols as basic symbols,
but in the domain they are used to describe o�en many other relations play an
important role. If these other relations can be systematically expressed by the relations
that interpret the basic predicate symbols of the language, we say we can de�ne them
in the language.

5.5 �e �eory of Sets

Almost all of mathematics can be developed in the theory of sets. Developing mathe-
matics in this theory involves a number of things. First, it requires a set of axioms for
the relation ∈. A number of di�erent axiom systems have been developed, sometimes
with con�icting properties of ∈. �e axiom system known as ZFC, Zermelo-Fraenkel
set theory with the axiom of choice stands out: it is by far the most widely used and
studied, because it turns out that its axioms su�ce to prove almost all the things
mathematicians expect to be able to prove. But before that can be established, it �rst
is necessary to make clear how we can even express all the things mathematicians
would like to express. For starters, the language contains no constant symbols or
function symbols, so it seems at �rst glance unclear that we can talk about particular
sets (such as ∅ or N), can talk about operations on sets (such as - ∪ . and ℘(- )), let
alone other constructions which involve things other than sets, such as relations and
functions.

To begin with, “is an element of” is not the only relation we are interested in: “is
a subset of” seems almost as important. But we can de�ne “is a subset of” in terms of
“is an element of.” To do this, we have to �nd a formula i (G,~) in the language of set
theory which is satis�ed by a pair of sets 〈-,. 〉 i� - ⊆ . . But - is a subset of . just
in case all elements of - are also elements of . . So we can de�ne ⊆ by the formula

∀I (I ∈ G → I ∈ ~)

Now, whenever we want to use the relation ⊆ in a formula, we could instead use
that formula (with G and ~ suitably replaced, and the bound variable I renamed if
necessary). For instance, extensionality of sets means that if any sets G and ~ are
contained in each other, then G and ~ must be the same set. �is can be expressed by
∀G ∀~ ((G ⊆ ~ ∧ ~ ⊆ G) → G = ~), or, if we replace ⊆ by the above de�nition, by

∀G ∀~ ((∀I (I ∈ G → I ∈ ~) ∧ ∀I (I ∈ ~→ I ∈ G)) → G = ~).

�is is in fact one of the axioms of ZFC, the “axiom of extensionality.”
�ere is no constant symbol for ∅, but we can express “G is empty” by ¬∃~ ~ ∈ G .

�en “∅ exists” becomes the sentence ∃G ¬∃~ ~ ∈ G . �is is another axiom of ZFC.
(Note that the axiom of extensionality implies that there is only one empty set.)
Whenever we want to talk about ∅ in the language of set theory, we would write this
as “there is a set that’s empty and . . . ” As an example, to express the fact that ∅ is a
subset of every set, we could write

∃G (¬∃~ ~ ∈ G ∧ ∀I G ⊆ I)

where, of course, G ⊆ I would in turn have to be replaced by its de�nition.
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To talk about operations on sets, such has - ∪ . and ℘(- ), we have to use a
similar trick. �ere are no function symbols in the language of set theory, but we can
express the functional relations - ∪ . = / and ℘(- ) = . by

∀D ((D ∈ G ∨ D ∈ ~) ↔ D ∈ I)
∀D (D ⊆ G ↔ D ∈ ~)

since the elements of - ∪ . are exactly the sets that are either elements of - or
elements of . , and the elements of ℘(- ) are exactly the subsets of - . However, this
doesn’t allow us to use G ∪~ or ℘(G) as if they were terms: we can only use the entire
formulas that de�ne the relations - ∪ . = / and ℘(- ) = . . In fact, we do not know
that these relations are ever satis�ed, i.e., we do not know that unions and power sets
always exist. For instance, the sentence ∀G ∃~ ℘(G) = ~ is another axiom of ZFC (the
power set axiom).

Now what about talk of ordered pairs or functions? Here we have to explain how
we can think of ordered pairs and functions as special kinds of sets. One way to de�ne
the ordered pair 〈G,~〉 is as the set {{G}, {G,~}}. But like before, we cannot introduce
a function symbol that names this set; we can only de�ne the relation 〈G,~〉 = I, i.e.,
{{G}, {G,~}} = I:

∀D (D ∈ I↔ (∀E (E ∈ D↔ E = G) ∨ ∀E (E ∈ D↔ (E = G ∨ E = ~))))

�is says that the elements D of I are exactly those sets which either have G as its
only element or have G and ~ as its only elements (in other words, those sets that are
either identical to {G} or identical to {G,~}). Once we have this, we can say further
things, e.g., that - × . = / :

∀I (I ∈ / ↔∃G ∃~ (G ∈ - ∧ ~ ∈ . ∧ 〈G,~〉 = I))

A function 5 : - → . can be thought of as the relation 5 (G) = ~, i.e., as the set of
pairs {〈G,~〉 | 5 (G) = ~}. We can then say that a set 5 is a function from - to . if (a)
it is a relation ⊆ - × . , (b) it is total, i.e., for all G ∈ - there is some ~ ∈ . such that
〈G,~〉 ∈ 5 and (c) it is functional, i.e., whenever 〈G,~〉, 〈G,~ ′〉 ∈ 5 , ~ = ~ ′ (because
values of functions must be unique). So “5 is a function from - to . ” can be wri�en
as:

∀D (D ∈ 5 →∃G ∃~ (G ∈ - ∧ ~ ∈ . ∧ 〈G,~〉 = D)) ∧
∀G (G ∈ - → (∃~ (~ ∈ . ∧maps(5 , G,~)) ∧

(∀~ ∀~ ′ ((maps(5 , G,~) ∧maps(5 , G,~ ′)) → ~ = ~ ′)))

where maps(5 , G,~) abbreviates ∃E (E ∈ 5 ∧ 〈G,~〉 = E) (this formula expresses
“5 (G) = ~”).

It is now also not hard to express that 5 : - → . is injective, for instance:

5 : - → . ∧ ∀G ∀G ′ ((G ∈ - ∧ G ′ ∈ - ∧
∃~ (maps(5 , G,~) ∧maps(5 , G ′, ~))) → G = G ′)

A function 5 : - → . is injective i�, whenever 5 maps G, G ′ ∈ - to a single ~, G = G ′.
If we abbreviate this formula as inj(5 , -,. ), we’re already in a position to state in
the language of set theory something as non-trivial as Cantor’s theorem: there is no
injective function from ℘(- ) to - :

∀- ∀. (℘(- ) = . →¬∃5 inj(5 , . , - ))
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One might think that set theory requires another axiom that guarantees the
existence of a set for every de�ning property. If i (G) is a formula of set theory with
the variable G free, we can consider the sentence

∃~ ∀G (G ∈ ~↔ i (G)) .

�is sentence states that there is a set ~ whose elements are all and only those G
that satisfy i (G). �is schema is called the “comprehension principle.” It looks very
useful; unfortunately it is inconsistent. Take i (G) ≡ ¬G ∈ G , then the comprehension
principle states

∃~ ∀G (G ∈ ~↔ G ∉ G),
i.e., it states the existence of a set of all sets that are not elements of themselves. No
such set can exist—this is Russell’s Paradox. ZFC, in fact, contains a restricted—and
consistent—version of this principle, the separation principle:

∀I ∃~ ∀G (G ∈ ~↔ (G ∈ I ∧ i (G)) .

5.6 Expressing the Size of Structures

�ere are some properties of structures we can express even without using the non-
logical symbols of a language. For instance, there are sentences which are true in
a structure i� the domain of the structure has at least, at most, or exactly a certain
number = of elements.

Proposition 5.11. �e sentence

i≥= ≡ ∃G1 ∃G2 . . . ∃G=
(G1 ≠ G2 ∧ G1 ≠ G3 ∧ G1 ≠ G4 ∧ · · · ∧ G1 ≠ G= ∧

G2 ≠ G3 ∧ G2 ≠ G4 ∧ · · · ∧ G2 ≠ G= ∧
...

G=−1 ≠ G=)

is true in a structure M i� |M | contains at least = elements. Consequently, M � ¬i≥=+1
i� |M | contains at most = elements.

Proposition 5.12. �e sentence

i== ≡ ∃G1 ∃G2 . . . ∃G=
(G1 ≠ G2 ∧ G1 ≠ G3 ∧ G1 ≠ G4 ∧ · · · ∧ G1 ≠ G= ∧

G2 ≠ G3 ∧ G2 ≠ G4 ∧ · · · ∧ G2 ≠ G= ∧
...

G=−1 ≠ G= ∧
∀~ (~ = G1 ∨ · · · ∨ ~ = G=))

is true in a structure M i� |M | contains exactly = elements.

Proposition 5.13. A structure is in�nite i� it is a model of

{i≥1, i≥2, i≥3, . . . }.
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�ere is no single purely logical sentence which is true in M i� |M | is in�nite.
However, one can give sentences with non-logical predicate symbols which only
have in�nite models (although not every in�nite structure is a model of them). �e
property of being a �nite structure, and the property of being a uncountable structure
cannot even be expressed with an in�nite set of sentences. �ese facts follow from
the compactness and Löwenheim-Skolem theorems.

Problems

Problem 5.1. Find formulas in L� which de�ne the following relations:

1. = is between 8 and 9 ;

2. = evenly divides< (i.e.,< is a multiple of =);

3. = is a prime number (i.e., no number other than 1 and = evenly divides =).

Problem 5.2. Suppose the formula i (E1, E2) expresses the relation ' ⊆ |M |2 in a
structure M. Find formulas that express the following relations:

1. the inverse '−1 of ';

2. the relative product ' | ';

Can you �nd a way to express '+, the transitive closure of '?

Problem 5.3. LetL be the language containing a 2-place predicate symbol < only (no
other constant symbols, function symbols or predicate symbols— except of course =).
Let N be the structure such that |N | = N, and <N = {〈=,<〉 | = < <}. Prove the
following:

1. {0} is de�nable in N;

2. {1} is de�nable in N;

3. {2} is de�nable in N;

4. for each = ∈ N, the set {=} is de�nable in N;

5. every �nite subset of |N | is de�nable in N;

6. every co-�nite subset of |N | is de�nable in N (where- ⊆ N is co-�nite i� N\-
is �nite).

Problem 5.4. Show that the comprehension principle is inconsistent by giving
a derivation that shows

∃~ ∀G (G ∈ ~↔ G ∉ G) ` ⊥.

It may help to �rst show (�→¬�) ∧ (¬�→�) ` ⊥.
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Chapter 6

Natural Deduction

6.1 Introduction

To de�ne a derivation system for �rst-order logic we will use what we already have
for propositional logic and add rules for the quanti�ers.

6.2 �anti�er Rules

Rules for ∀

i (0)
∀I∀G i (G)

∀G i (G)
∀E

i (C)

In the rules for ∀, C is a ground term (a term that does not contain any variables),
and 0 is a constant symbol which does not occur in the conclusion ∀G i (G), or in any
assumption which is undischarged in the derivation ending with the premise i (0).
We call 0 the eigenvariable of the ∀I inference.

Rules for ∃

i (C)
∃I∃G i (G)

∃G i (G)

[i (0)]=

j
∃E=j

Again, C is a ground term, and 0 is a constant which does not occur in the premise
∃G i (G), in the conclusion j , or any assumption which is undischarged in the deriva-
tions ending with the two premises (other than the assumptions i (0)). We call 0 the
eigenvariable of the ∃E inference.

�e condition that an eigenvariable neither occur in the premises nor in any
assumption that is undischarged in the derivations leading to the premises for the ∀I
or ∃E inference is called the eigenvariable condition.
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We use the term “eigenvariable” even though 0 in the above rules is a constant.
�is has historical reasons.

In ∃I and ∀E there are no restrictions, and the term C can be anything, so we do
not have to worry about any conditions. On the other hand, in the ∃E and ∀I rules, the
eigenvariable condition requires that the constant symbol 0 does not occur anywhere
in the conclusion or in an undischarged assumption. �e condition is necessary
to ensure that the system is sound, i.e., only derives sentences from undischarged
assumptions from which they follow. Without this condition, the following would be
allowed:

∃G i (G)
[i (0)]1

*∀I∀G i (G)
∃E∀G i (G)

However, ∃G i (G) 2 ∀G i (G).

6.3 Derivations with �anti�ers

Example 6.1. When dealing with quanti�ers, we have to make sure not to violate
the eigenvariable condition, and sometimes this requires us to play around with the
order of carrying out certain inferences. In general, it helps to try and take care
of rules subject to the eigenvariable condition �rst (they will be lower down in the
�nished proof).

Let’s see how we’d give a derivation of the formula ∃G ¬i (G)→¬∀G i (G). Starting
as usual, we write

∃G ¬i (G) → ¬∀G i (G)

We start by writing down what it would take to justify that last step using the→I
rule.

[∃G ¬i (G)]1

¬∀G i (G) →I1∃G ¬i (G) → ¬∀G i (G)

Since there is no obvious rule to apply to ¬∀G i (G), we will proceed by se�ing up the
derivation so we can use the ∃E rule. Here we must pay a�ention to the eigenvariable
condition, and choose a constant that does not appear in ∃G i (G) or any assumptions
that it depends on. (Since no constant symbols appear, however, any choice will do
�ne.)

[∃G ¬i (G)]1

[¬i (0)]2

¬∀G i (G)
∃E2¬∀G i (G) →I1∃G ¬i (G) → ¬∀G i (G)
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In order to derive ¬∀G i (G), we will a�empt to use the ¬I rule: this requires that we
derive a contradiction, possibly using ∀G i (G) as an additional assumption. Of course,
this contradiction may involve the assumption ¬i (0) which will be discharged by
the→I inference. We can set it up as follows:

[∃G ¬i (G)]1

[¬i (0)]2, [∀G i (G)]3

⊥ ¬I3¬∀G i (G)
∃E2¬∀G i (G) →I1∃G ¬i (G) → ¬∀G i (G)

It looks like we are close to ge�ing a contradiction. �e easiest rule to apply is the
∀E, which has no eigenvariable conditions. Since we can use any term we want to
replace the universally quanti�ed G , it makes the most sense to continue using 0 so
we can reach a contradiction.

[∃G ¬i (G)]1

[¬i (0)]2
[∀G i (G)]3

∀E
i (0)

¬E⊥ ¬I3¬∀G i (G)
∃E2¬∀G i (G) →I1∃G ¬i (G) → ¬∀G i (G)

It is important, especially when dealing with quanti�ers, to double check at this
point that the eigenvariable condition has not been violated. Since the only rule we
applied that is subject to the eigenvariable condition was ∃E, and the eigenvariable 0
does not occur in any assumptions it depends on, this is a correct derivation.

Example 6.2. Sometimes we may derive a formula from other formulas. In these
cases, we may have undischarged assumptions. It is important to keep track of our
assumptions as well as the end goal.

Let’s see how we’d give a derivation of the formula ∃G j (G, 1) from the assump-
tions ∃G (i (G) ∧ k (G)) and ∀G (k (G) → j (G, 1)). Starting as usual, we write the
conclusion at the bo�om.

∃G j (G, 1)

We have two premises to work with. To use the �rst, i.e., try to �nd a derivation
of ∃G j (G, 1) from ∃G (i (G) ∧ k (G)) we would use the ∃E rule. Since it has an
eigenvariable condition, we will apply that rule �rst. We get the following:

∃G (i (G) ∧k (G))

[i (0) ∧k (0)]1

∃G j (G, 1)
∃E1∃G j (G, 1)

�e two assumptions we are working with sharek . It may be useful at this point to
apply ∧E to separate outk (0).
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∃G (i (G) ∧k (G))

[i (0) ∧k (0)]1
∧E

k (0)

∃G j (G, 1)
∃E1∃G j (G, 1)

�e second assumption we have to work with is ∀G (k (G) → j (G, 1)). Since there
is no eigenvariable condition we can instantiate G with the constant symbol 0 using
∀E to getk (0)→ j (0, 1). We now have bothk (0)→ j (0, 1) andk (0). Our next move
should be a straightforward application of the→E rule.

∃G (i (G) ∧k (G))

∀G (k (G) → j (G, 1))
∀E

k (0) → j (0, 1)
[i (0) ∧k (0)]1

∧E
k (0)

→E
j (0, 1)

∃G j (G, 1)
∃E1∃G j (G, 1)

We are so close! One application of ∃I and we have reached our goal.

∃G (i (G) ∧k (G))

∀G (k (G) → j (G, 1))
∀E

k (0) → j (0, 1)
[i (0) ∧k (0)]1

∧E
k (0)

→E
j (0, 1)

∃I∃G j (G, 1)
∃E1∃G j (G, 1)

Since we ensured at each step that the eigenvariable conditions were not violated, we
can be con�dent that this is a correct derivation.

Example 6.3. Give a derivation of the formula ¬∀G i (G) from the assumptions
∀G i (G) → ∃~k (~) and ¬∃~k (~). Starting as usual, we write the target formula
at the bo�om.

¬∀G i (G)

�e last line of the derivation is a negation, so let’s try using ¬I. �is will require that
we �gure out how to derive a contradiction.

[∀G i (G)]1

⊥ ¬I1¬∀G i (G)

So far so good. We can use ∀E but it’s not obvious if that will help us get to our goal.
Instead, let’s use one of our assumptions. ∀G i (G) → ∃~k (~) together with ∀G i (G)
will allow us to use the→E rule.
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∀G i (G) → ∃~k (~) [∀G i (G)]1
→E∃~k (~)

⊥ ¬I1¬∀G i (G)

We now have one �nal assumption to work with, and it looks like this will help us
reach a contradiction by using ¬E.

¬∃~k (~)
∀G i (G) → ∃~k (~) [∀G i (G)]1

→E∃~k (~)
¬E⊥ ¬I1¬∀G i (G)

6.4 Proof-�eoretic Notions

Just as we’ve de�ned a number of important semantic notions (validity, entailment,
satis�abilty), we now de�ne corresponding proof-theoretic notions. �ese are not
de�ned by appeal to satisfaction of sentences in structures, but by appeal to the
derivability or non-derivability of certain sentences from others. It was an important
discovery that these notions coincide. �at they do is the content of the soundness
and completeness theorems.

De�nition 6.4 (�eorems). A sentence i is a theorem if there is a derivation of i
in natural deduction in which all assumptions are discharged. We write ` i if i is a
theorem and 0 i if it is not.

De�nition 6.5 (Derivability). A sentence i is derivable from a set of sentences Γ,
Γ ` i , if there is a derivation with conclusion i and in which every assumption is
either discharged or is in Γ. If i is not derivable from Γ we write Γ 0 i .

De�nition 6.6 (Consistency). A set of sentences Γ is inconsistent i� Γ ` ⊥. If Γ is
not inconsistent, i.e., if Γ 0 ⊥, we say it is consistent.

Proposition 6.7 (Re�exivity). If i ∈ Γ, then Γ ` i .

Proof. �e assumption i by itself is a derivation of i where every undischarged
assumption (i.e., i) is in Γ. �

Proposition 6.8 (Monotony). If Γ ⊆ Δ and Γ ` i , then Δ ` i .

Proof. Any derivation of i from Γ is also a derivation of i from Δ. �

Proposition 6.9 (Transitivity). If Γ ` i and {i} ∪ Δ ` k , then Γ ∪ Δ ` k .

Proof. If Γ ` i , there is a derivation X0 of i with all undischarged assumptions in Γ.
If {i} ∪ Δ ` k , then there is a derivation X1 ofk with all undischarged assumptions
in {i} ∪ Δ. Now consider:
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Δ, [i]1

X1

k →I1
i→k

Γ

X0

i
→E

k

�e undischarged assumptions are now all among Γ ∪ Δ, so this shows Γ ∪ Δ ` k .�

When Γ = {i1, i2, . . . , i: } is a �nite set we may use the simpli�ed notation
i1, i2, . . . , i: ` k for Γ ` k , in particular i ` k means that {i} ` k .

Note that if Γ ` i and i ` k , then Γ ` k . It follows also that if i1, . . . , i= ` k and
Γ ` i8 for each 8 , then Γ ` k .

Proposition 6.10. �e following are equivalent.

1. Γ is inconsistent.

2. Γ ` i for every sentence i .

3. Γ ` i and Γ ` ¬i for some sentence i .

Proof. Exercise. �

Proposition 6.11 (Compactness). 1. If Γ ` i then there is a �nite subset Γ0 ⊆ Γ
such that Γ0 ` i .

2. If every �nite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ` i , then there is a derivation X of i from Γ. Let Γ0 be the set
of undischarged assumptions of X . Since any derivation is �nite, Γ0 can only
contain �nitely many sentences. So, X is a derivation of i from a �nite Γ0 ⊆ Γ.

2. �is is the contrapositive of (1) for the special case i ≡ ⊥. �

6.5 Derivability and Consistency

We will now establish a number of properties of the derivability relation. �ey are
independently interesting, but each will play a role in the proof of the completeness
theorem.

Proposition 6.12. If Γ ` i and Γ ∪ {i} is inconsistent, then Γ is inconsistent.

Proof. Let the derivation of i from Γ be X1 and the derivation of ⊥ from Γ ∪ {i} be X2.
We can then derive:

Γ, [i]1

X2

⊥ ¬I1¬i

Γ

X1

i
¬E⊥
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In the new derivation, the assumption i is discharged, so it is a derivation from Γ.�

Proposition 6.13. Γ ` i i� Γ ∪ {¬i} is inconsistent.

Proof. First suppose Γ ` i , i.e., there is a derivation X0 of i from undischarged
assumptions Γ. We obtain a derivation of ⊥ from Γ ∪ {¬i} as follows:

¬i

Γ

X0

i
¬E⊥

Now assume Γ ∪ {¬i} is inconsistent, and let X1 be the corresponding derivation
of ⊥ from undischarged assumptions in Γ ∪ {¬i}. We obtain a derivation of i from Γ
alone by using RAA:

Γ, [¬i]1

X1

⊥ RAAi �

Proposition 6.14. If Γ ` i and ¬i ∈ Γ, then Γ is inconsistent.

Proof. Suppose Γ ` i and ¬i ∈ Γ. �en there is a derivation X of i from Γ. Consider
this simple application of the ¬E rule:

¬i

Γ

X

i
¬E⊥

Since ¬i ∈ Γ, all undischarged assumptions are in Γ, this shows that Γ ` ⊥. �

Proposition 6.15. If Γ∪{i} and Γ∪{¬i} are both inconsistent, then Γ is inconsistent.

Proof. �ere are derivations X1 and X2 of ⊥ from Γ ∪ {i} and ⊥ from Γ ∪ {¬i},
respectively. We can then derive

Γ, [¬i]2

X2

⊥ ¬I2¬¬i

Γ, [i]1

X1

⊥ ¬I1¬i
¬E⊥

Since the assumptions i and ¬i are discharged, this is a derivation of ⊥ from Γ alone.
Hence Γ is inconsistent. �
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6.6 Derivability and the Propositional Connectives

Proposition 6.16. 1. Both i ∧k ` i and i ∧k ` k

2. i,k ` i ∧k .

Proof. 1. We can derive both

i ∧k
∧Ei

i ∧k
∧E

k

2. We can derive:

i k
∧I

i ∧k �

Proposition 6.17. 1. i ∨k,¬i,¬k is inconsistent.

2. Both i ` i ∨k andk ` i ∨k .

Proof. 1. Consider the following derivation:

i ∨k
¬i [i]1

¬E⊥
¬k [k ]1

¬E⊥ ∨E1⊥

�is is a derivation of ⊥ from undischarged assumptions i ∨k , ¬i , and ¬k .

2. We can derive both

i
∨I

i ∨k
k

∨I
i ∨k �

Proposition 6.18. 1. i, i→k ` k .

2. Both ¬i ` i→k andk ` i→k .

Proof. 1. We can derive:

i→k i
→E

k

2. �is is shown by the following two derivations:

¬i [i]1
¬E⊥ ⊥E

k →I1
i→k

k
→I

i→k

Note that→I may, but does not have to, discharge the assumption i . �
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6.7 Derivability and the �anti�ers

�eorem 6.19. If 2 is a constant not occurring in Γ or i (G) and Γ ` i (2), then Γ `
∀G i (G).

Proof. Let X be a derivation of i (2) from Γ. By adding a ∀I inference, we obtain a
proof of ∀G i (G). Since 2 does not occur in Γ or i (G), the eigenvariable condition is
satis�ed. �

Proposition 6.20. 1. i (C) ` ∃G i (G).

2. ∀G i (G) ` i (C).

Proof. 1. �e following is a derivation of ∃G i (G) from i (C):

i (C)
∃I∃G i (G)

2. �e following is a derivation of i (C) from ∀G i (G):

∀G i (G)
∀E

i (C) �

6.8 Soundness

A derivation system, such as natural deduction, is sound if it cannot derive things
that do not actually follow. Soundness is thus a kind of guaranteed safety property
for derivation systems. Depending on which proof theoretic property is in question,
we would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a consequence of them;

3. if a set of sentences is inconsistent, it is unsatis�able.

�ese are important properties of a derivation system. If any of them do not hold, the
derivation system is de�cient—it would derive too much. Consequently, establishing
the soundness of a derivation system is of the utmost importance.

�eorem 6.21 (Soundness). If i is derivable from the undischarged assumptions Γ,
then Γ � i .

Proof. Let X be a derivation ofi . We proceed by induction on the number of inferences
in X .

For the induction basis we show the claim if the number of inferences is 0. In this
case, X consists only of a single sentence i , i.e., an assumption. �at assumption is
undischarged, since assumptions can only be discharged by inferences, and there are
no inferences. So, any structure M that satis�es all of the undischarged assumptions
of the proof also satis�es i .

Now for the inductive step. Suppose that X contains = inferences. �e premise(s)
of the lowermost inference are derived using sub-derivations, each of which contains
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6. Natural Deduction

fewer than = inferences. We assume the induction hypothesis: �e premises of the
lowermost inference follow from the undischarged assumptions of the sub-derivations
ending in those premises. We have to show that the conclusion i follows from the
undischarged assumptions of the entire proof.

We distinguish cases according to the type of the lowermost inference. First, we
consider the possible inferences with only one premise.

1. Suppose that the last inference is ¬I: �e derivation has the form

Γ, [i]=

X1

⊥ ¬I=¬i

By inductive hypothesis, ⊥ follows from the undischarged assumptions Γ∪ {i}
of X1. Consider a structure M. We need to show that, if M � Γ, then M � ¬i .
Suppose for reductio that M � Γ, but M 2 ¬i , i.e., M � i . �is would mean
that M � Γ ∪ {i}. �is is contrary to our inductive hypothesis. So, M � ¬i .

2. �e last inference is ∧E: �ere are two variants: i ork may be inferred from
the premise i ∧k . Consider the �rst case. �e derivation X looks like this:

Γ

X1

i ∧k
∧Ei

By inductive hypothesis, i ∧k follows from the undischarged assumptions Γ
of X1. Consider a structure M. We need to show that, if M � Γ, then M � i .
Suppose M � Γ. By our inductive hypothesis (Γ � i ∧ k ), we know that
M � i ∧k . By de�nition, M � i ∧k i� M � i and M � k . (�e case wherek
is inferred from i ∧k is handled similarly.)

3. �e last inference is ∨I: �ere are two variants: i ∨k may be inferred from
the premise i or the premisek . Consider the �rst case. �e derivation has the
form

Γ

X1

i
∨I

i ∨k

By inductive hypothesis, i follows from the undischarged assumptions Γ of X1.
Consider a structure M. We need to show that, if M � Γ, then M � i ∨ k .
Suppose M � Γ; then M � i since Γ � i (the inductive hypothesis). So it must
also be the case that M � i ∨k . (�e case where i ∨k is inferred from k is
handled similarly.)
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4. �e last inference is→I: i→k is inferred from a subproof with assumption i
and conclusionk , i.e.,

Γ, [i]=

X1

k →I=
i→k

By inductive hypothesis,k follows from the undischarged assumptions of X1,
i.e., Γ ∪ {i} � k . Consider a structure M. �e undischarged assumptions of X
are just Γ, since i is discharged at the last inference. So we need to show
that Γ � i →k . For reductio, suppose that for some structure M, M � Γ but
M 2 i →k . So, M � i and M 2 k . But by hypothesis, k is a consequence of
Γ ∪ {i}, i.e., M � k , which is a contradiction. So, Γ � i→k .

5. �e last inference is ⊥E: Here, X ends in

Γ

X1

⊥ ⊥Ei

By induction hypothesis, Γ � ⊥. We have to show that Γ � i . Suppose not; then
for some M we have M � Γ and M 2 i . But we always have M 2 ⊥, so this
would mean that Γ 2 ⊥, contrary to the induction hypothesis.

6. �e last inference is RAA: Exercise.

7. �e last inference is ∀I: �en X has the form

Γ

X1

i (0)
∀I∀G i (G)

�e premise i (0) is a consequence of the undischarged assumptions Γ by
induction hypothesis. Consider some structure, M, such that M � Γ. We need
to show that M � ∀G i (G). Since ∀G i (G) is a sentence, this means we have to
show that for every variable assignment B , M, B � i (G) (Proposition 4.42). Since
Γ consists entirely of sentences, M, B � k for allk ∈ Γ by De�nition 4.35. Let
M′ be like M except that 0M′ = B (G). Since 0 does not occur in Γ, M′ � Γ by
Corollary 4.44. Since Γ � i (0), M′ � i (0). Sincei (0) is a sentence, M′, B � i (0)
by Proposition 4.41. M′, B � i (G) i� M′ � i (0) by Proposition 4.46 (recall that
i (0) is just i (G) [0/G]). So, M′, B � i (G). Since 0 does not occur in i (G), by
Proposition 4.43, M, B � i (G). But B was an arbitrary variable assignment, so
M � ∀G i (G).

8. �e last inference is ∃I: Exercise.

85



6. Natural Deduction

9. �e last inference is ∀E: Exercise.

Now let’s consider the possible inferences with several premises: ∨E, ∧I,→E, and
∃E.

1. �e last inference is ∧I. i ∧k is inferred from the premises i andk and X has
the form

Γ1

X1

i

Γ2

X2

k
∧I

i ∧k

By induction hypothesis, i follows from the undischarged assumptions Γ1 of X1
andk follows from the undischarged assumptions Γ2 of X2. �e undischarged
assumptions of X are Γ1 ∪W2, so we have to show that Γ1 ∪ Γ2 � i ∧k . Consider
a structure M with M � Γ1 ∪ Γ2. Since M � Γ1, it must be the case that M � i
as Γ1 � i , and since M � Γ2, M � k since Γ2 � k . Together, M � i ∧k .

2. �e last inference is ∨E: Exercise.

3. �e last inference is→E. k is inferred from the premises i →k and i . �e
derivation X looks like this:

Γ1

X1

i→k

Γ2

X2

i
→E

k

By induction hypothesis, i→k follows from the undischarged assumptions Γ1
of X1 and i follows from the undischarged assumptions Γ2 of X2. Consider
a structure M. We need to show that, if M � Γ1 ∪ Γ2, then M � k . Suppose
M � Γ1 ∪ Γ2. Since Γ1 � i → k , M � i → k . Since Γ2 � i , we have M � i .
�is means that M � k (For if M 2 k , since M � i , we’d have M 2 i → k ,
contradicting M � i→k ).

4. �e last inference is ¬E: Exercise.

5. �e last inference is ∃E: Exercise. �

Corollary 6.22. If ` i , then i is valid.

Corollary 6.23. If Γ is satis�able, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not consistent. �en Γ ` ⊥, i.e.,
there is a derivation of ⊥ from undischarged assumptions in Γ. By �eorem 6.21, any
structure M that satis�es Γ must satisfy ⊥. Since M 2 ⊥ for every structure M, no
M can satisfy Γ, i.e., Γ is not satis�able. �
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6.9 Derivations with Identity predicate

Derivations with identity predicate require additional inference rules.

=I
C = C

C1 = C2 i (C1)
=E

i (C2)
C1 = C2 i (C2)

=E
i (C1)

In the above rules, C , C1, and C2 are closed terms. �e =I rule allows us to derive
any identity statement of the form C = C outright, from no assumptions.

Example 6.24. If B and C are closed terms, then i (B), B = C ` i (C):

B = C i (B)
=E

i (C)

�is may be familiar as the “principle of substitutability of identicals,” or Leibniz’ Law.

Example 6.25. We derive the sentence

∀G ∀~ ((i (G) ∧ i (~)) → G = ~)

from the sentence

∃G ∀~ (i (~) → ~ = G)

We develop the derivation backwards:

∃G ∀~ (i (~) → ~ = G) [i (0) ∧ i (1)]1

0 = 1 →I1((i (0) ∧ i (1)) → 0 = 1)
∀I∀~ ((i (0) ∧ i (~)) → 0 = ~)
∀I∀G ∀~ ((i (G) ∧ i (~)) → G = ~)

We’ll now have to use the main assumption: since it is an existential formula, we use
∃E to derive the intermediary conclusion 0 = 1.

∃G ∀~ (i (~) → ~ = G)

[∀~ (i (~) → ~ = 2)]2

[i (0) ∧ i (1)]1

0 = 1
∃E2

0 = 1 →I1((i (0) ∧ i (1)) → 0 = 1)
∀I∀~ ((i (0) ∧ i (~)) → 0 = ~)
∀I∀G ∀~ ((i (G) ∧ i (~)) → G = ~)
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�e sub-derivation on the top right is completed by using its assumptions to show
that 0 = 2 and 1 = 2 . �is requires two separate derivations. �e derivation for 0 = 2

is as follows:
[∀~ (i (~) → ~ = 2)]2

∀E
i (0) → 0 = 2

[i (0) ∧ i (1)]1
∧E

i (0)
→E0 = 2

From 0 = 2 and 1 = 2 we derive 0 = 1 by =E.

6.10 Soundness with Identity predicate

Proposition 6.26. Natural deduction with rules for = is sound.

Proof. Any formula of the form C = C is valid, since for every structure M, M � C = C .
(Note that we assume the term C to be ground, i.e., it contains no variables, so variable
assignments are irrelevant).

Suppose the last inference in a derivation is =E, i.e., the derivation has the follow-
ing form:

Γ1

X1

C1 = C2

Γ2

X2

i (C1)
=E

i (C2)

�e premises C1 = C2 and i (C1) are derived from undischarged assumptions Γ1 and Γ2,
respectively. We want to show that i (C2) follows from Γ1∪ Γ2. Consider a structure M
with M � Γ1 ∪ Γ2. By induction hypothesis, M � i (C1) and M � C1 = C2. �erefore,
ValM (C1) = ValM (C2). Let B be any variable assignment, and B ′ be the G-variant given
by B ′(G) = ValM (C1) = ValM (C2). By Proposition 4.46, M, B � i (C1) i� M, B ′ � i (G) i�
M, B � i (C2). Since M � i (C1), we have M � i (C2). �

Problems

Problem 6.1. Give derivations of the following:

1. ∃~ i (~) →k from the assumption ∀G (i (G) →k )

2. ∃G (i (G) → ∀~ i (~))

Problem 6.2. Prove Proposition 6.10

Problem 6.3. Prove that Γ ` ¬i i� Γ ∪ {i} is inconsistent.

Problem 6.4. Complete the proof of �eorem 6.21.

Problem 6.5. Prove that = is both symmetric and transitive, i.e., give derivations of
∀G ∀~ (G = ~→ ~ = G) and ∀G ∀~ ∀I ((G = ~ ∧ ~ = I) → G = I)

Problem 6.6. Give derivations of the following formulas:

1. ∀G ∀~ ((G = ~ ∧ i (G)) → i (~))

2. ∃G i (G) ∧ ∀~ ∀I ((i (~) ∧ i (I)) → ~ = I) → ∃G (i (G) ∧ ∀~ (i (~) → ~ = G))
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Chapter 7

�e Completeness �eorem

7.1 Introduction

�e completeness theorem is one of the most fundamental results about logic. It comes
in two formulations, the equivalence of which we’ll prove. In its �rst formulation it
says something fundamental about the relationship between semantic consequence
and our proof system: if a sentence i follows from some sentences Γ, then there is
also a derivation that establishes Γ ` i . �us, the proof system is as strong as it can
possibly be without proving things that don’t actually follow.

In its second formulation, it can be stated as a model existence result: every
consistent set of sentences is satis�able. Consistency is a proof-theoretic notion: it
says that our proof system is unable to produce certain derivations. But who’s to say
that just because there are no derivations of a certain sort from Γ, it’s guaranteed
that there is a structure M? Before the completeness theorem was �rst proved—in
fact before we had the proof systems we now do—the great German mathematician
David Hilbert held the view that consistency of mathematical theories guarantees
the existence of the objects they are about. He put it as follows in a le�er to Go�lob
Frege:

If the arbitrarily given axioms do not contradict one another with all their
consequences, then they are true and the things de�ned by the axioms
exist. �is is for me the criterion of truth and existence.

Frege vehemently disagreed. �e second formulation of the completeness theorem
shows that Hilbert was right in at least the sense that if the axioms are consistent,
then some structure exists that makes them all true.

�ese aren’t the only reasons the completeness theorem—or rather, its proof—is
important. It has a number of important consequences, some of which we’ll discuss
separately. For instance, since any derivation that shows Γ ` i is �nite and so can
only use �nitely many of the sentences in Γ, it follows by the completeness theorem
that if i is a consequence of Γ, it is already a consequence of a �nite subset of Γ. �is
is called compactness. Equivalently, if every �nite subset of Γ is consistent, then Γ
itself must be consistent.

Although the compactness theorem follows from the completeness theorem via the
detour through derivations, it is also possible to use the the proof of the completeness
theorem to establish it directly. For what the proof does is take a set of sentences
with a certain property—consistency—and constructs a structure out of this set that
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has certain properties (in this case, that it satis�es the set). Almost the very same
construction can be used to directly establish compactness, by starting from “�nitely
satis�able” sets of sentences instead of consistent ones. �e construction also yields
other consequences, e.g., that any satis�able set of sentences has a �nite or countably
in�nite model. (�is result is called the Löwenheim-Skolem theorem.) In general, the
construction of structures from sets of sentences is used o�en in logic, and sometimes
even in philosophy.

7.2 Outline of the Proof

�e proof of the completeness theorem is a bit complex, and upon �rst reading it, it is
easy to get lost. So let us outline the proof. �e �rst step is a shi� of perspective, that
allows us to see a route to a proof. When completeness is thought of as “whenever
Γ � i then Γ ` i ,” it may be hard to even come up with an idea: for to show that Γ ` i
we have to �nd a derivation, and it does not look like the hypothesis that Γ � i helps
us for this in any way. For some proof systems it is possible to directly construct
a derivation, but we will take a slightly di�erent approach. �e shi� in perspective
required is this: completeness can also be formulated as: “if Γ is consistent, it is
satis�able.” Perhaps we can use the information in Γ together with the hypothesis
that it is consistent to construct a structure that satis�es every sentence in Γ. A�er
all, we know what kind of structure we are looking for: one that is as Γ describes it!

If Γ contains only atomic sentences, it is easy to construct a model for it. Suppose
the atomic sentences are all of the form % (01, . . . , 0=) where the 08 are constant
symbols. All we have to do is come up with a domain |M | and an assignment for %
so that M � % (01, . . . , 0=). But that’s not very hard: put |M | = N, 2M

8
= 8 , and for

every % (01, . . . , 0=) ∈ Γ, put the tuple 〈:1, . . . , :=〉 into %M , where :8 is the index of
the constant symbol 08 (i.e., 08 ≡ 2:8 ).

Now suppose Γ contains some formula ¬k , withk atomic. We might worry that
the construction of M interferes with the possibility of making ¬k true. But here’s
where the consistency of Γ comes in: if ¬k ∈ Γ, then k ∉ Γ, or else Γ would be
inconsistent. And if k ∉ Γ, then according to our construction of M, M 2 k , so
M � ¬k . So far so good.

What if Γ contains complex, non-atomic formulas? Say it contains i ∧k . To make
that true, we should proceed as if both i andk were in Γ. And if i ∨k ∈ Γ, then we
will have to make at least one of them true, i.e., proceed as if one of them was in Γ.

�is suggests the following idea: we add additional formulas to Γ so as to (a) keep
the resulting set consistent and (b) make sure that for every possible atomic sentencei ,
either i is in the resulting set, or ¬i is, and (c) such that, whenever i ∧k is in the set,
so are both i andk , if i ∨k is in the set, at least one of i ork is also, etc. We keep
doing this (potentially forever). Call the set of all formulas so added Γ∗. �en our
construction above would provide us with a structure M for which we could prove,
by induction, that it satis�es all sentences in Γ∗, and hence also all sentence in Γ since
Γ ⊆ Γ∗. It turns out that guaranteeing (a) and (b) is enough. A set of sentences for
which (b) holds is called complete. So our task will be to extend the consistent set Γ to
a consistent and complete set Γ∗.

�ere is one wrinkle in this plan: if ∃G i (G) ∈ Γ we would hope to be able to pick
some constant symbol 2 and add i (2) in this process. But how do we know we can
always do that? Perhaps we only have a few constant symbols in our language, and
for each one of them we have ¬i (2) ∈ Γ. We can’t also add i (2), since this would
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make the set inconsistent, and we wouldn’t know whether M has to make i (2) or
¬i (2) true. Moreover, it might happen that Γ contains only sentences in a language
that has no constant symbols at all (e.g., the language of set theory).

�e solution to this problem is to simply add in�nitely many constants at the
beginning, plus sentences that connect them with the quanti�ers in the right way.
(Of course, we have to verify that this cannot introduce an inconsistency.)

Our original construction works well if we only have constant symbols in the
atomic sentences. But the language might also contain function symbols. In that case,
it might be tricky to �nd the right functions on N to assign to these function symbols
to make everything work. So here’s another trick: instead of using 8 to interpret 28 ,
just take the set of constant symbols itself as the domain. �en M can assign every
constant symbol to itself: 2M

8
= 28 . But why not go all the way: let |M | be all terms of

the language! If we do this, there is an obvious assignment of functions (that take
terms as arguments and have terms as values) to function symbols: we assign to the
function symbol 5 =8 the function which, given = terms C1, . . . , C= as input, produces
the term 5 =8 (C1, . . . , C=) as value.

�e last piece of the puzzle is what to do with =. �e predicate symbol = has a
�xed interpretation: M � C = C ′ i� ValM (C) = ValM (C ′). Now if we set things up so
that the value of a term C is C itself, then this structure will make no sentence of the
form C = C ′ true unless C and C ′ are one and the same term. And of course this is a
problem, since basically every interesting theory in a language with function symbols
will have as theorems sentences C = C ′ where C and C ′ are not the same term (e.g., in
theories of arithmetic: (0 + 0) = 0). To solve this problem, we change the domain
of M: instead of using terms as the objects in |M |, we use sets of terms, and each set
is so that it contains all those terms which the sentences in Γ require to be equal. So,
e.g., if Γ is a theory of arithmetic, one of these sets will contain: 0, (0 + 0), (0 × 0), etc.
�is will be the set we assign to 0, and it will turn out that this set is also the value of
all the terms in it, e.g., also of (0 + 0). �erefore, the sentence (0 + 0) = 0 will be true
in this revised structure.

So here’s what we’ll do. First we investigate the properties of complete consistent
sets, in particular we prove that a complete consistent set contains i ∧k i� it contains
both i andk , i ∨k i� it contains at least one of them, etc. (Proposition 7.2). �en we
de�ne and investigate “saturated” sets of sentences. A saturated set is one which con-
tains conditionals that link each quanti�ed sentence to instances of it (De�nition 7.5).
We show that any consistent set Γ can always be extended to a saturated set Γ′
(Lemma 7.6). If a set is consistent, saturated, and complete it also has the property
that it contains ∃G i (G) i� it contains i (C) for some closed term C and ∀G i (G) i� it
contains i (C) for all closed terms C (Proposition 7.7). We’ll then take the saturated
consistent set Γ′ and show that it can be extended to a saturated, consistent, and com-
plete set Γ∗ (Lemma 7.8). �is set Γ∗ is what we’ll use to de�ne our term model M(Γ∗).
�e term model has the set of closed terms as its domain, and the interpretation of its
predicate symbols is given by the atomic sentences in Γ∗ (De�nition 7.9). We’ll use
the properties of saturated, complete consistent sets to show that indeed M(Γ∗) � i
i� i ∈ Γ∗ (Lemma 7.11), and thus in particular, M(Γ∗) � Γ. Finally, we’ll consider
how to de�ne a term model if Γ contains = as well (De�nition 7.15) and show that it
satis�es Γ∗ (Lemma 7.17).
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7.3 Complete Consistent Sets of Sentences

De�nition 7.1 (Complete set). A set Γ of sentences is complete i� for any sen-
tence i , either i ∈ Γ or ¬i ∈ Γ.

Complete sets of sentences leave no questions unanswered. For any sentence i ,
Γ “says” if i is true or false. �e importance of complete sets extends beyond the
proof of the completeness theorem. A theory which is complete and axiomatizable,
for instance, is always decidable.

Complete consistent sets are important in the completeness proof since we can
guarantee that every consistent set of sentences Γ is contained in a complete consistent
set Γ∗. A complete consistent set contains, for each sentence i , either i or its negation
¬i , but not both. �is is true in particular for atomic sentences, so from a complete
consistent set in a language suitably expanded by constant symbols, we can construct
a structure where the interpretation of predicate symbols is de�ned according to
which atomic sentences are in Γ∗. �is structure can then be shown to make all
sentences in Γ∗ (and hence also all those in Γ) true. �e proof of this la�er fact
requires that ¬i ∈ Γ∗ i� i ∉ Γ∗, (i ∨k ) ∈ Γ∗ i� i ∈ Γ∗ ork ∈ Γ∗, etc.

In what follows, we will o�en tacitly use the properties of re�exivity, monotonicity,
and transitivity of ` (see section 6.4).

Proposition 7.2. Suppose Γ is complete and consistent. �en:

1. If Γ ` i , then i ∈ Γ.

2. i ∧k ∈ Γ i� both i ∈ Γ andk ∈ Γ.

3. i ∨k ∈ Γ i� either i ∈ Γ ork ∈ Γ.

4. i→k ∈ Γ i� either i ∉ Γ ork ∈ Γ.

Proof. Let us suppose for all of the following that Γ is complete and consistent.

1. If Γ ` i , then i ∈ Γ.
Suppose that Γ ` i . Suppose to the contrary that i ∉ Γ. Since Γ is complete,
¬i ∈ Γ. By Proposition 6.14, Γ is inconsistent. �is contradicts the assumption
that Γ is consistent. Hence, it cannot be the case that i ∉ Γ, so i ∈ Γ.

2. i ∧k ∈ Γ i� both i ∈ Γ andk ∈ Γ:
For the forward direction, suppose i∧k ∈ Γ. �en by Proposition 6.16, item (1),
Γ ` i and Γ ` k . By (1), i ∈ Γ andk ∈ Γ, as required.
For the reverse direction, let i ∈ Γ and k ∈ Γ. By Proposition 6.16, item (2),
Γ ` i ∧k . By (1), i ∧k ∈ Γ.

3. First we show that ifi∨k ∈ Γ, then eitheri ∈ Γ ork ∈ Γ. Supposei∨k ∈ Γ but
i ∉ Γ andk ∉ Γ. Since Γ is complete, ¬i ∈ Γ and ¬k ∈ Γ. By Proposition 6.17,
item (1), Γ is inconsistent, a contradiction. Hence, either i ∈ Γ ork ∈ Γ.
For the reverse direction, suppose that i ∈ Γ or k ∈ Γ. By Proposition 6.17,
item (2), Γ ` i ∨k . By (1), i ∨k ∈ Γ, as required.
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4. For the forward direction, suppose i →k ∈ Γ, and suppose to the contrary
that i ∈ Γ and k ∉ Γ. On these assumptions, i → k ∈ Γ and i ∈ Γ. By
Proposition 6.18, item (1), Γ ` k . But then by (1), k ∈ Γ, contradicting the
assumption thatk ∉ Γ.
For the reverse direction, �rst consider the case where i ∉ Γ. Since Γ is
complete, ¬i ∈ Γ. By Proposition 6.18, item (2), Γ ` i→k . Again by (1), we
get that i→k ∈ Γ, as required.
Now consider the case where k ∈ Γ. By Proposition 6.18, item (2) again,
Γ ` i→k . By (1), i→k ∈ Γ. �

7.4 Henkin Expansion

Part of the challenge in proving the completeness theorem is that the model we
construct from a complete consistent set Γ must make all the quanti�ed formulas
in Γ true. In order to guarantee this, we use a trick due to Leon Henkin. In essence,
the trick consists in expanding the language by in�nitely many constant symbols
and adding, for each formula with one free variable i (G) a formula of the form
∃G i (G) →i (2), where 2 is one of the new constant symbols. When we construct the
structure satisfying Γ, this will guarantee that each true existential sentence has a
witness among the new constants.

Proposition 7.3. If Γ is consistent in L and L ′ is obtained from L by adding a count-
ably in�nite set of new constant symbols 30, 31, . . . , then Γ is consistent in L ′.

De�nition 7.4 (Saturated set). A set Γ of formulas of a language L is saturated
i� for each formula i (G) ∈ Frm(L) with one free variable G there is a constant
symbol 2 ∈ L such that ∃G i (G) → i (2) ∈ Γ.

�e following de�nition will be used in the proof of the next theorem.

De�nition 7.5. Let L ′ be as in Proposition 7.3. Fix an enumeration i0 (G0), i1 (G1),
. . . of all formulas i8 (G8 ) of L ′ in which one variable (G8 ) occurs free. We de�ne the
sentences \= by induction on =.

Let 20 be the �rst constant symbol among the 38 we added to L which does not
occur in i0 (G0). Assuming that \0, . . . , \=−1 have already been de�ned, let 2= be
the �rst among the new constant symbols 38 that occurs neither in \0, . . . , \=−1 nor
in i= (G=).

Now let \= be the formula ∃G= i= (G=) → i= (2=).

Lemma 7.6. Every consistent set Γ can be extended to a saturated consistent set Γ′.

Proof. Given a consistent set of sentences Γ in a language L, expand the language by
adding a countably in�nite set of new constant symbols to formL ′. By Proposition 7.3,
Γ is still consistent in the richer language. Further, let \8 be as in De�nition 7.5. Let

Γ0 = Γ

Γ=+1 = Γ= ∪ {\=}

i.e., Γ=+1 = Γ ∪ {\0, . . . , \=}, and let Γ′ =
⋃
= Γ= . Γ′ is clearly saturated.
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If Γ′ were inconsistent, then for some =, Γ= would be inconsistent (Exercise:
explain why). So to show that Γ′ is consistent it su�ces to show, by induction on =,
that each set Γ= is consistent.

�e induction basis is simply the claim that Γ0 = Γ is consistent, which is the
hypothesis of the theorem. For the induction step, suppose that Γ= is consistent but
Γ=+1 = Γ= ∪ {\=} is inconsistent. Recall that \= is ∃G= i= (G=) →i= (2=), where i= (G=)
is a formula of L ′ with only the variable G= free. By the way we’ve chosen the 2= (see
De�nition 7.5), 2= does not occur in i= (G=) nor in Γ= .

If Γ= ∪ {\=} is inconsistent, then Γ= ` ¬\= , and hence both of the following hold:

Γ= ` ∃G= i= (G=) Γ= ` ¬i= (2=)

Since 2= does not occur in Γ= or in i= (G=), �eorem 6.19 applies. From Γ= ` ¬i= (2=),
we obtain Γ= ` ∀G= ¬i= (G=). �us we have that both Γ= ` ∃G= i= (G=) and Γ= `
∀G= ¬i= (G=), so Γ= itself is inconsistent. (Note that ∀G= ¬i= (G=) ` ¬∃G= i= (G=).)
Contradiction: Γ= was supposed to be consistent. Hence Γ= ∪ {\=} is consistent. �

We’ll now show that complete, consistent sets which are saturated have the
property that it contains a universally quanti�ed sentence i� it contains all its instances
and it contains an existentially quanti�ed sentence i� it contains at least one instance.
We’ll use this to show that the structure we’ll generate from a complete, consistent,
saturated set makes all its quanti�ed sentences true.

Proposition 7.7. Suppose Γ is complete, consistent, and saturated.

1. ∃G i (G) ∈ Γ i� i (C) ∈ Γ for at least one closed term C .

2. ∀G i (G) ∈ Γ i� i (C) ∈ Γ for all closed terms C .

Proof. 1. First suppose that ∃G i (G) ∈ Γ. Because Γ is saturated, (∃G i (G) →
i (2)) ∈ Γ for some constant symbol 2 . By Proposition 6.18, item (1), and
Proposition 7.2(1), i (2) ∈ Γ.

For the other direction, saturation is not necessary: Suppose i (C) ∈ Γ. �en
Γ ` ∃G i (G) by Proposition 6.20, item (1). By Proposition 7.2(1), ∃G i (G) ∈ Γ.

2. Suppose that i (C) ∈ Γ for all closed terms C . By way of contradiction, assume
∀G i (G) ∉ Γ. Since Γ is complete, ¬∀G i (G) ∈ Γ. By saturation, (∃G ¬i (G) →
¬i (2)) ∈ Γ for some constant symbol 2 . By assumption, since 2 is a closed term,
i (2) ∈ Γ. But this would make Γ inconsistent. (Exercise: give the derivation
that shows

¬∀G i (G), ∃G ¬i (G) → ¬i (2), i (2)

is inconsistent.)

For the reverse direction, we do not need saturation: Suppose ∀G i (G) ∈ Γ.
�en Γ ` i (C) by Proposition 6.20, item (2). We get i (C) ∈ Γ by Proposition 7.2.
�
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7.5 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of sentences is contained
in some set of sentences which is not just consistent, but also complete. �e proof
works by adding one sentence at a time, guaranteeing at each step that the set remains
consistent. We do this so that for every i , either i or ¬i gets added at some stage.
�e union of all stages in that construction then contains either i or its negation ¬i
and is thus complete. It is also consistent, since we made sure at each stage not to
introduce an inconsistency.

Lemma 7.8 (Lindenbaum’s Lemma). Every consistent set Γ in a language L can be
extended to a complete and consistent set Γ∗.

Proof. Let Γ be consistent. Let i0, i1, . . . be an enumeration of all the sentences of L.
De�ne Γ0 = Γ, and

Γ=+1 =

{
Γ= ∪ {i=} if Γ= ∪ {i=} is consistent;
Γ= ∪ {¬i=} otherwise.

Let Γ∗ =
⋃
=≥0 Γ= .

Each Γ= is consistent: Γ0 is consistent by de�nition. If Γ=+1 = Γ= ∪ {i=}, this is
because the la�er is consistent. If it isn’t, Γ=+1 = Γ= ∪ {¬i=}. We have to verify that
Γ= ∪ {¬i=} is consistent. Suppose it’s not. �en both Γ= ∪ {i=} and Γ= ∪ {¬i=} are
inconsistent. �is means that Γ= would be inconsistent by Proposition 6.14, contrary
to the induction hypothesis.

For every = and every 8 < =, Γ8 ⊆ Γ= . �is follows by a simple induction on =. For
= = 0, there are no 8 < 0, so the claim holds automatically. For the inductive step,
suppose it is true for =. We have Γ=+1 = Γ= ∪ {i=} or = Γ= ∪ {¬i=} by construction. So
Γ= ⊆ Γ=+1. If 8 < =, then Γ8 ⊆ Γ= by inductive hypothesis, and so ⊆ Γ=+1 by transitivity
of ⊆.

From this it follows that every �nite subset of Γ∗ is a subset of Γ= for some =, since
each k ∈ Γ∗ not already in Γ0 is added at some stage 8 . If = is the last one of these,
then allk in the �nite subset are in Γ= . So, every �nite subset of Γ∗ is consistent. By
Proposition 6.11, Γ∗ is consistent.

Every sentence of Frm(L) appears on the list used to de�ne Γ∗. If i= ∉ Γ∗, then
that is because Γ= ∪ {i=} was inconsistent. But then ¬i= ∈ Γ∗, so Γ∗ is complete. �

7.6 Construction of a Model

Right now we are not concerned about =, i.e., we only want to show that a consistent
set Γ of sentences not containing = is satis�able. We �rst extend Γ to a consistent,
complete, and saturated set Γ∗. In this case, the de�nition of a model M(Γ∗) is simple:
We take the set of closed terms of L ′ as the domain. We assign every constant symbol
to itself, and make sure that more generally, for every closed term C , ValM (Γ∗) (C) = C .
�e predicate symbols are assigned extensions in such a way that an atomic sentence
is true in M(Γ∗) i� it is in Γ∗. �is will obviously make all the atomic sentences in Γ∗

true in M(Γ∗). �e rest are true provided the Γ∗ we start with is consistent, complete,
and saturated.

De�nition 7.9 (Term model). Let Γ∗ be a complete and consistent, saturated set of
sentences in a language L. �e term model M(Γ∗) of Γ∗ is the structure de�ned as
follows:
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1. �e domain |M(Γ∗) | is the set of all closed terms of L.

2. �e interpretation of a constant symbol 2 is 2 itself: 2M (Γ∗) = 2 .

3. �e function symbol 5 is assigned the function which, given as arguments the
closed terms C1, . . . , C= , has as value the closed term 5 (C1, . . . , C=):

5M (Γ
∗) (C1, . . . , C=) = 5 (C1, . . . , C=)

4. If ' is an =-place predicate symbol, then

〈C1, . . . , C=〉 ∈ 'M (Γ
∗) i� '(C1, . . . , C=) ∈ Γ∗ .

A structure M may make an existentially quanti�ed sentence ∃G i (G) true with-
out there being an instance i (C) that it makes true. A structure M may make
all instances i (C) of a universally quanti�ed sentence ∀G i (G) true, without mak-
ing ∀G i (G) true. �is is because in general not every element of |M | is the value of a
closed term (M may not be covered). �is is the reason the satisfaction relation is
de�ned via variable assignments. However, for our term model M(Γ∗) this wouldn’t
be necessary—because it is covered. �is is the content of the next result.

Proposition 7.10. Let M(Γ∗) be the term model of De�nition 7.9.

1. M(Γ∗) � ∃G i (G) i� M � i (C) for at least one term C .

2. M(Γ∗) � ∀G i (G) i� M � i (C) for all terms C .

Proof. 1. By Proposition 4.42, M(Γ∗) � ∃G i (G) i� for at least one variable as-
signment B , M(Γ∗), B � i (G). As |M(Γ∗) | consists of the closed terms of L,
this is the case i� there is at least one closed term C such that B (G) = C and
M(Γ∗), B � i (G). By Proposition 4.46, M(Γ∗), B � i (G) i� M(Γ∗), B � i (C),
where B (G) = C . By Proposition 4.41, M(Γ∗), B � i (C) i� M(Γ∗) � i (C), since
i (C) is a sentence.

2. By Proposition 4.42, M(Γ∗) � ∀G i (G) i� for every variable assignment B ,
M(Γ∗), B � i (G). Recall that |M(Γ∗) | consists of the closed terms of L, so for
every closed term C , B (G) = C is such a variable assignment, and for any variable
assignment, B (G) is some closed term C . By Proposition 4.46, M(Γ∗), B � i (G)
i� M(Γ∗), B � i (C), where B (G) = C . By Proposition 4.41, M(Γ∗), B � i (C) i�
M(Γ∗) � i (C), since i (C) is a sentence. �

Lemma 7.11 (Truth Lemma). Suppose i does not contain =. �en M(Γ∗) � i i�
i ∈ Γ∗.

Proof. We prove both directions simultaneously, and by induction on i .

1. i ≡ ⊥: M(Γ∗) 2 ⊥ by de�nition of satisfaction. On the other hand, ⊥ ∉ Γ∗

since Γ∗ is consistent.

2. i ≡ '(C1, . . . , C=): M(Γ∗) � '(C1, . . . , C=) i� 〈C1, . . . , C=〉 ∈ 'M (Γ
∗) (by the de�ni-

tion of satisfaction) i� '(C1, . . . , C=) ∈ Γ∗ (by the construction of M(Γ∗)).
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3. i ≡ ¬k : M(Γ∗) � i i� M(Γ∗) 2 k (by de�nition of satisfaction). By induction
hypothesis, M(Γ∗) 2 k i�k ∉ Γ∗. Since Γ∗ is consistent and complete,k ∉ Γ∗

i� ¬k ∈ Γ∗.

4. i ≡ k∧j : M(Γ∗) � i i� we have bothM(Γ∗) � k andM(Γ∗) � j (by de�nition
of satisfaction) i� both k ∈ Γ∗ and j ∈ Γ∗ (by the induction hypothesis). By
Proposition 7.2(2), this is the case i� (k ∧ j) ∈ Γ∗.

5. i ≡ k∨j : M(Γ∗) � i i�M(Γ∗) � k orM(Γ∗) � j (by de�nition of satisfaction)
i�k ∈ Γ∗ or j ∈ Γ∗ (by induction hypothesis). �is is the case i� (k ∨ j) ∈ Γ∗
(by Proposition 7.2(3)).

6. i ≡ k → j : M(Γ∗) � i i� M(Γ∗) 2 k or M(Γ∗) � j (by de�nition of
satisfaction) i�k ∉ Γ∗ or j ∈ Γ∗ (by induction hypothesis). �is is the case i�
(k → j) ∈ Γ∗ (by Proposition 7.2(4)).

7. i ≡ ∀G k (G): M(Γ∗) � i i� M(Γ∗) � k (C) for all terms C (Proposition 7.10). By
induction hypothesis, this is the case i�k (C) ∈ Γ∗ for all terms C , by Proposi-
tion 7.7, this in turn is the case i� ∀G i (G) ∈ Γ∗.

8. i ≡ ∃G k (G): M(Γ∗) � i i� M(Γ∗) � k (C) for at least one term C (Proposi-
tion 7.10). By induction hypothesis, this is the case i�k (C) ∈ Γ∗ for at least one
term C . By Proposition 7.7, this in turn is the case i� ∃G k (G) ∈ Γ∗. �

7.7 Identity

�e construction of the term model given in the preceding section is enough to
establish completeness for �rst-order logic for sets Γ that do not contain =. �e
term model satis�es every i ∈ Γ∗ which does not contain = (and hence all i ∈ Γ).
It does not work, however, if = is present. �e reason is that Γ∗ then may contain
a sentence C = C ′, but in the term model the value of any term is that term itself.
Hence, if C and C ′ are di�erent terms, their values in the term model—i.e., C and C ′,
respectively—are di�erent, and so C = C ′ is false. We can �x this, however, using a
construction known as “factoring.”

De�nition 7.12. Let Γ∗ be a consistent and complete set of sentences in L. We
de�ne the relation ≈ on the set of closed terms of L by

C ≈ C ′ i� C = C ′ ∈ Γ∗

Proposition 7.13. �e relation ≈ has the following properties:

1. ≈ is re�exive.

2. ≈ is symmetric.

3. ≈ is transitive.

4. If C ≈ C ′, 5 is a function symbol, and C1, . . . , C8−1, C8+1, . . . , C= are terms, then

5 (C1, . . . , C8−1, C, C8+1, . . . , C=) ≈ 5 (C1, . . . , C8−1, C
′, C8+1, . . . , C=).
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5. If C ≈ C ′, ' is a predicate symbol, and C1, . . . , C8−1, C8+1, . . . , C= are terms, then

'(C1, . . . , C8−1, C, C8+1, . . . , C=) ∈ Γ∗ i�
'(C1, . . . , C8−1, C

′, C8+1, . . . , C=) ∈ Γ∗ .

Proof. Since Γ∗ is consistent and complete, C = C ′ ∈ Γ∗ i� Γ∗ ` C = C ′. �us it is enough
to show the following:

1. Γ∗ ` C = C for all terms C .

2. If Γ∗ ` C = C ′ then Γ∗ ` C ′ = C .

3. If Γ∗ ` C = C ′ and Γ∗ ` C ′ = C ′′, then Γ∗ ` C = C ′′.

4. If Γ∗ ` C = C ′, then

Γ∗ ` 5 (C1, . . . , C8−1, C, C8+1, , . . . , C=) = 5 (C1, . . . , C8−1, C
′, C8+1, . . . , C=)

for every =-place function symbol 5 and terms C1, . . . , C8−1, C8+1, . . . , C= .

5. If Γ∗ ` C = C ′ and Γ∗ ` '(C1, . . . , C8−1, C, C8+1, . . . , C=), then Γ∗ ` '(C1, . . . , C8−1, C
′, C8+1, . . . , C=)

for every =-place predicate symbol ' and terms C1, . . . , C8−1, C8+1, . . . , C= . �

De�nition 7.14. Suppose Γ∗ is a consistent and complete set in a language L, C is a
term, and ≈ as in the previous de�nition. �en:

[C]≈ = {C ′ | C ′ ∈ Trm(L), C ≈ C ′}

and Trm(L)/≈= {[C]≈ | C ∈ Trm(L)}.

De�nition 7.15. Let M = M(Γ∗) be the term model for Γ∗. �en M/≈ is the follow-
ing structure:

1. |M/≈ | = Trm(L)/≈.

2. 2M/≈ = [2]≈

3. 5M/≈ ( [C1]≈, . . . , [C=]≈) = [5 (C1, . . . , C=)]≈

4. 〈[C1]≈, . . . , [C=]≈〉 ∈ 'M/≈ i� M � '(C1, . . . , C=).

Note that we have de�ned 5M/≈ and 'M/≈ for elements of Trm(L)/≈ by referring
to them as [C]≈, i.e., via representatives C ∈ [C]≈. We have to make sure that these
de�nitions do not depend on the choice of these representatives, i.e., that for some
other choices C ′ which determine the same equivalence classes ([C]≈ = [C ′]≈), the
de�nitions yield the same result. For instance, if ' is a one-place predicate symbol,
the last clause of the de�nition says that [C]≈ ∈ 'M/≈ i� M � '(C). If for some other
term C ′ with C ≈ C ′, M 2 '(C), then the de�nition would require [C ′]≈ ∉ 'M/≈ . If C ≈ C ′,
then [C]≈ = [C ′]≈, but we can’t have both [C]≈ ∈ 'M/≈ and [C]≈ ∉ 'M/≈ . However,
Proposition 7.13 guarantees that this cannot happen.

Proposition 7.16. M/≈ is well de�ned, i.e., if C1, . . . , C= , C ′1, . . . , C ′= are terms, and C8 ≈ C ′8
then
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7.8. �e Completeness �eorem

1. [5 (C1, . . . , C=)]≈ = [5 (C ′1, . . . , C ′=)]≈, i.e.,

5 (C1, . . . , C=) ≈ 5 (C ′1, . . . , C ′=)

and

2. M � '(C1, . . . , C=) i� M � '(C ′1, . . . , C ′=), i.e.,

'(C1, . . . , C=) ∈ Γ∗ i� '(C ′1, . . . , C ′=) ∈ Γ∗ .

Proof. Follows from Proposition 7.13 by induction on =. �

Lemma 7.17. M/≈ � i i� i ∈ Γ∗ for all sentences i .

Proof. By induction on i , just as in the proof of Lemma 7.11. �e only case that needs
additional a�ention is when i ≡ C = C ′.

M/≈ � C = C ′ i� [C]≈ = [C ′]≈ (by de�nition of M/≈)
i� C ≈ C ′ (by de�nition of [C]≈)
i� C = C ′ ∈ Γ∗ (by de�nition of ≈). �

Note that while M(Γ∗) is always countable and in�nite, M/≈ may be �nite, since
it may turn out that there are only �nitely many classes [C]≈. �is is to be expected,
since Γ may contain sentences which require any structure in which they are true to
be �nite. For instance, ∀G ∀~ G = ~ is a consistent sentence, but is satis�ed only in
structures with a domain that contains exactly one element.

7.8 �e Completeness �eorem

Let’s combine our results: we arrive at the completeness theorem.

�eorem 7.18 (Completeness �eorem). Let Γ be a set of sentences. If Γ is consis-
tent, it is satis�able.

Proof. Suppose Γ is consistent. By Lemma 7.6, there is a saturated consistent set
Γ′ ⊇ Γ. By Lemma 7.8, there is a Γ∗ ⊇ Γ′ which is consistent and complete. Since
Γ′ ⊆ Γ∗, for each formula i (G), Γ∗ contains a sentence of the form ∃G i (G) → i (2)
and so Γ∗ is saturated. If Γ does not contain =, then by Lemma 7.11, M(Γ∗) � i
i� i ∈ Γ∗. From this it follows in particular that for all i ∈ Γ, M(Γ∗) � i , so Γ is
satis�able. If Γ does contain =, then by Lemma 7.17, for all sentences i , M/≈ � i i�
i ∈ Γ∗. In particular, M/≈ � i for all i ∈ Γ, so Γ is satis�able. �

Corollary 7.19 (Completeness �eorem, Second Version). For all Γ and sen-
tences i : if Γ � i then Γ ` i .

Proof. Note that the Γ’s in Corollary 7.19 and �eorem 7.18 are universally quanti�ed.
To make sure we do not confuse ourselves, let us restate �eorem 7.18 using a di�erent
variable: for any set of sentencesΔ, ifΔ is consistent, it is satis�able. By contraposition,
if Δ is not satis�able, then Δ is inconsistent. We will use this to prove the corollary.

Suppose that Γ � i . �en Γ ∪ {¬i} is unsatis�able by Proposition 4.51. Taking
Γ ∪ {¬i} as our Δ, the previous version of �eorem 7.18 gives us that Γ ∪ {¬i} is
inconsistent. By Proposition 6.13, Γ ` i . �
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7.9 �e Compactness �eorem

One important consequence of the completeness theorem is the compactness theorem.
�e compactness theorem states that if each �nite subset of a set of sentences is
satis�able, the entire set is satis�able—even if the set itself is in�nite. �is is far from
obvious. �ere is nothing that seems to rule out, at �rst glance at least, the possibility
of there being in�nite sets of sentences which are contradictory, but the contradiction
only arises, so to speak, from the in�nite number. �e compactness theorem says that
such a scenario can be ruled out: there are no unsatis�able in�nite sets of sentences
each �nite subset of which is satis�able. Like the completeness theorem, it has a
version related to entailment: if an in�nite set of sentences entails something, already
a �nite subset does.

De�nition 7.20. A set Γ of formulas is �nitely satis�able if and only if every �nite
Γ0 ⊆ Γ is satis�able.

�eorem 7.21 (Compactness �eorem). �e following hold for any sentences Γ and
i :

1. Γ � i i� there is a �nite Γ0 ⊆ Γ such that Γ0 � i .

2. Γ is satis�able if and only if it is �nitely satis�able.

Proof. We prove (2). If Γ is satis�able, then there is a structure M such that M � i
for all i ∈ Γ. Of course, this M also satis�es every �nite subset of Γ, so Γ is �nitely
satis�able.

Now suppose that Γ is �nitely satis�able. �en every �nite subset Γ0 ⊆ Γ is
satis�able. By soundness (Corollary 6.23), every �nite subset is consistent. �en Γ
itself must be consistent by Proposition 6.11. By completeness (�eorem 7.18), since
Γ is consistent, it is satis�able. �

Example 7.22. In every model M of a theory Γ, each term C of course picks out
an element of |M |. Can we guarantee that it is also true that every element of |M | is
picked out by some term or other? In other words, are there theories Γ all models of
which are covered? �e compactness theorem shows that this is not the case if Γ has
in�nite models. Here’s how to see this: Let M be an in�nite model of Γ, and let 2 be
a constant symbol not in the language of Γ. Let Δ be the set of all sentences 2 ≠ C for
C a term in the language L of Γ, i.e.,

Δ = {2 ≠ C | C ∈ Trm(L)}.

A �nite subset of Γ ∪ Δ can be wri�en as Γ′ ∪ Δ′, with Γ′ ⊆ Γ and Δ′ ⊆ Δ. Since Δ′ is
�nite, it can contain only �nitely many terms. Let 0 ∈ |M | be an element of |M | not
picked out by any of them, and let M′ be the structure that is just like M, but also
2M

′
= 0. Since 0 ≠ ValM (C) for all C occuring in Δ′, M′ � Δ′. Since M � Γ, Γ′ ⊆ Γ,

and 2 does not occur in Γ, also M′ � Γ′. Together, M′ � Γ′ ∪Δ′ for every �nite subset
Γ′ ∪ Δ′ of Γ ∪ Δ. So every �nite subset of Γ ∪ Δ is satis�able. By compactness, Γ ∪ Δ
itself is satis�able. So there are models M � Γ ∪ Δ. Every such M is a model of Γ, but
is not covered, since ValM (2) ≠ ValM (C) for all terms C of L.

Example 7.23. Consider a language L containing the predicate symbol <, constant
symbols 0, 1, and function symbols +, ×, −, ÷. Let Γ be the set of all sentences in this
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language true in Q with domain Q and the obvious interpretations. Γ is the set of
all sentences of L true about the rational numbers. Of course, in Q (and even in R),
there are no numbers which are greater than 0 but less than 1/: for all : ∈ Z+. Such
a number, if it existed, would be an in�nitesimal: non-zero, but in�nitely small. �e
compactness theorem shows that there are models of Γ in which in�nitesimals exist:
Let Δ be {0 < 2} ∪ {2 < (1÷ :) | : ∈ Z+} (where : = (1 + (1 + · · · + (1 + 1) . . . )) with
: 1’s). For any �nite subset Δ0 of Δ there is a  such that all the sentences 2 < (1÷:)
in Δ0 have : <  . If we expand Q to Q ′ with 2Q′ = 1/ we have that Q ′ � Γ ∪ Δ0,
and so Γ ∪ Δ is �nitely satis�able (Exercise: prove this in detail). By compactness,
Γ ∪ Δ is satis�able. Any model S of Γ ∪ Δ contains an in�nitesimal, namely 2S .

Example 7.24. We know that �rst-order logic with identity predicate can express
that the size of the domain must have some minimal size: �e sentence i≥= (which
says “there are at least = distinct objects”) is true only in structures where |M | has at
least = objects. So if we take

Δ = {i≥= | = ≥ 1}

then any model of Δ must be in�nite. �us, we can guarantee that a theory only has
in�nite models by adding Δ to it: the models of Γ ∪ Δ are all and only the in�nite
models of Γ.

So �rst-order logic can express in�nitude. �e compactness theorem shows that it
cannot express �nitude, however. For suppose some set of sentences Λ were satis�ed
in all and only �nite structures. �en Δ ∪ Λ is �nitely satis�able. Why? Suppose
Δ′ ∪ Λ′ ⊆ Δ ∪ Λ is �nite with Δ′ ⊆ Δ and Λ′ ⊆ Λ. Let = be the largest number such
that i≥= ∈ Δ′. Λ, being satis�ed in all �nite structures, has a model M with �nitely
many but ≥ = elements. But then M � Δ′ ∪Λ′. By compactness, Δ∪Λ has an in�nite
model, contradicting the assumption that Λ is satis�ed only in �nite structures.

7.10 A Direct Proof of the Compactness �eorem

We can prove the Compactness �eorem directly, without appealing to the Complete-
ness �eorem, using the same ideas as in the proof of the completeness theorem. In
the proof of the Completeness �eorem we started with a consistent set Γ of sentences,
expanded it to a consistent, saturated, and complete set Γ∗ of sentences, and then
showed that in the term model M(Γ∗) constructed from Γ∗, all sentences of Γ are
true, so Γ is satis�able.

We can use the same method to show that a �nitely satis�able set of sentences is
satis�able. We just have to prove the corresponding versions of the results leading to
the truth lemma where we replace “consistent” with “�nitely satis�able.”

Proposition 7.25. Suppose Γ is complete and �nitely satis�able. �en:

1. (i ∧k ) ∈ Γ i� both i ∈ Γ andk ∈ Γ.

2. (i ∨k ) ∈ Γ i� either i ∈ Γ ork ∈ Γ.

3. (i→k ) ∈ Γ i� either i ∉ Γ ork ∈ Γ.

Lemma 7.26. Every �nitely satis�able set Γ can be extended to a saturated �nitely
satis�able set Γ′.
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Proposition 7.27. Suppose Γ is complete, �nitely satis�able, and saturated.

1. ∃G i (G) ∈ Γ i� i (C) ∈ Γ for at least one closed term C .

2. ∀G i (G) ∈ Γ i� i (C) ∈ Γ for all closed terms C .

Lemma 7.28. Every �nitely satis�able set Γ can be extended to a complete and �nitely
satis�able set Γ∗.

�eorem 7.29 (Compactness). Γ is satis�able if and only if it is �nitely satis�able.

Proof. If Γ is satis�able, then there is a structure M such that M � i for all i ∈ Γ. Of
course, this M also satis�es every �nite subset of Γ, so Γ is �nitely satis�able.

Now suppose that Γ is �nitely satis�able. By Lemma 7.26, there is a �nitely
satis�able, saturated set Γ′ ⊇ Γ. By Lemma 7.28, Γ′ can be extended to a complete and
�nitely satis�able set Γ∗, and Γ∗ is still saturated. Construct the term model M(Γ∗)
as in De�nition 7.9. Note that Proposition 7.10 did not rely on the fact that Γ∗ is
consistent (or complete or saturated, for that ma�er), but just on the fact that M(Γ∗)
is covered. �e proof of the Truth Lemma (Lemma 7.11) goes through if we replace
references to Proposition 7.2 and Proposition 7.7 by references to Proposition 7.25
and Proposition 7.27 �

7.11 �e Löwenheim-Skolem �eorem

�e Löwenheim-Skolem �eorem says that if a theory has an in�nite model, then it
also has a model that is at most countably in�nite. An immediate consequence of this
fact is that �rst-order logic cannot express that the size of a structure is uncountable:
any sentence or set of sentences satis�ed in all uncountable structures is also satis�ed
in some countable structure.

�eorem 7.30. If Γ is consistent then it has a countable model, i.e., it is satis�able in a
structure whose domain is either �nite or countably in�nite.

Proof. If Γ is consistent, the structure M delivered by the proof of the completeness
theorem has a domain |M | that is no larger than the set of the terms of the languageL.
So M is at most countably in�nite. �

�eorem 7.31. If Γ is a consistent set of sentences in the language of �rst-order logic
without identity, then it has a countably in�nite model, i.e., it is satis�able in a structure
whose domain is in�nite and countable.

Proof. If Γ is consistent and contains no sentences in which identity appears, then
the structure M delivered by the proof of the completness theorem has a domain
|M | identical to the set of terms of the language L ′. So M is countably in�nite, since
Trm(L ′) is. �

Example 7.32 (Skolem’s Paradox). Zermelo-Fraenkel set theory ZFC is a very
powerful framework in which practically all mathematical statements can be ex-
pressed, including facts about the sizes of sets. So for instance, ZFC can prove that the
set R of real numbers is uncountable, it can prove Cantor’s �eorem that the power
set of any set is larger than the set itself, etc. If ZFC is consistent, its models are all
in�nite, and moreover, they all contain elements about which the theory says that
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they are uncountable, such as the element that makes true the theorem of ZFC that
the power set of the natural numbers exists. By the Löwenheim-Skolem �eorem,
ZFC also has countable models—models that contain “uncountable” sets but which
themselves are countable.

Problems

Problem 7.1. Complete the proof of Proposition 7.2.

Problem 7.2. Complete the proof of Proposition 7.13.

Problem 7.3. Use Corollary 7.19 to prove �eorem 7.18, thus showing that the two
formulations of the completeness theorem are equivalent.

Problem 7.4. In order for a derivation system to be complete, its rules must be strong
enough to prove every unsatis�able set inconsistent. Which of the rules of derivation
were necessary to prove completeness? Are any of these rules not used anywhere
in the proof? In order to answer these questions, make a list or diagram that shows
which of the rules of derivation were used in which results that lead up to the proof
of �eorem 7.18. Be sure to note any tacit uses of rules in these proofs.

Problem 7.5. Prove (1) of �eorem 7.21.

Problem 7.6. In the standard model of arithmetic N, there is no element : ∈ |N |
which satis�es every formula = < G (where = is 0′...′ with = ′’s). Use the compactness
theorem to show that the set of sentences in the language of arithmetic which are true
in the standard model of arithmetic N are also true in a structure N′ that contains
an element which does satisfy every formula = < G .

Problem 7.7. Prove Proposition 7.25. Avoid the use of `.

Problem 7.8. Prove Lemma 7.26. (Hint: �e crucial step is to show that if Γ= is
�nitely satis�able, so is Γ= ∪ {\=}, without any appeal to derivations or consistency.)

Problem 7.9. Prove Proposition 7.27.

Problem 7.10. Prove Lemma 7.28. (Hint: the crucial step is to show that if Γ= is
�nitely satis�able, then either Γ= ∪ {i=} or Γ= ∪ {¬i=} is �nitely satis�able.)

Problem 7.11. Write out the complete proof of the Truth Lemma (Lemma 7.11) in
the version required for the proof of �eorem 7.29.
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Chapter 8

Basics of Model �eory

8.1 Reducts and Expansions

O�en it is useful or necessary to compare languages which have symbols in common,
as well as structures for these languages. �e most comon case is when all the symbols
in a language L are also part of a language L ′, i.e., L ⊆ L ′. An L-structure M

can then always be expanded to an L ′-structure by adding interpretations of the
additional symbols while leaving the interpretations of the common symbols the
same. On the other hand, from an L ′-structure M′ we can obtain an L-structure
simply by “forge�ing” the interpretations of the symbols that do not occur in L.

De�nition 8.1. Suppose L ⊆ L ′, M is an L-structure and M′ is an L ′-structure.
M is the reduct of M′ to L, and M′ is an expansion of M to L ′ i�

1. |M | = |M′ |

2. For every constant symbol 2 ∈ L, 2M = 2M
′ .

3. For every function symbol 5 ∈ L, 5M = 5M
′ .

4. For every predicate symbol % ∈ L, %M = %M
′ .

Proposition 8.2. If an L-structure M is a reduct of an L ′-structure M′, then for all
L-sentences i ,

M � i i� M′ � i.

Proof. Exercise. �

De�nition 8.3. When we have anL-structure M, andL ′ = L∪{%} is the expansion
of L obtained by adding a single =-place predicate symbol % , and ' ⊆ |M |= is an
=-place relation, then we write (M, ') for the expansion M′ of M with %M′ = '.

8.2 Substructures

�e domain of a structure M may be a subset of another M′. But we should obviously
only consider M a “part” of M′ if not only |M | ⊆ |M′ |, but M and M′ “agree” in how
they interpret the symbols of the language at least on the shared part |M |.
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De�nition 8.4. Given structures M and M′ for the same language L, we say that
M is a substructure of M′, and M′ an extension of M, wri�en M ⊆ M′, i�

1. |M | ⊆ |M′ |,

2. For each constant 2 ∈ L, 2M = 2M
′ ;

3. For each =-place predicate symbol 5 ∈ L 5M (01, . . . , 0=) = 5M
′ (01, . . . , 0=) for

all 01, . . . , 0= ∈ |M |.

4. For each =-place predicate symbol ' ∈ L, 〈01, . . . , 0=〉 ∈ 'M i� 〈01, . . . , 0=〉 ∈
'M

′ for all 01, . . . , 0= ∈ |M |.

Remark 1. If the language contains no constant or function symbols, then any # ⊆
|M | determines a substructureN ofM with domain |N | = # by pu�ing'N = 'M∩#= .

8.3 Overspill

�eorem 8.5. If a set Γ of sentences has arbitrarily large �nite models, then it has an
in�nite model.

Proof. Expand the language of Γ by adding countably many new constants 20, 21,
. . . and consider the set Γ ∪ {28 ≠ 2 9 : 8 ≠ 9}. To say that Γ has arbitrarily large
�nite models means that for every < > 0 there is = ≥ < such that Γ has a model
of cardinality =. �is implies that Γ ∪ {28 ≠ 2 9 : 8 ≠ 9} is �nitely satis�able. By
compactness, Γ ∪ {28 ≠ 2 9 : 8 ≠ 9} has a model M whose domain must be in�nite,
since it satis�es all inequalities 28 ≠ 2 9 . �

Proposition 8.6. �ere is no sentence i of any �rst-order language that is true in a
structure M if and only if the domain |M | of the structure is in�nite.

Proof. If there were such a i , its negation ¬i would be true in all and only the �nite
structures, and it would therefore have arbitrarily large �nite models but it would
lack an in�nite model, contradicting �eorem 8.5. �

8.4 Isomorphic Structures

First-order structures can be alike in one of two ways. One way in which the can be
alike is that they make the same sentences true. We call such structures elementarily
equivalent. But structures can be very di�erent and still make the same sentences
true—for instance, one can be countable and the other not. �is is because there are
lots of features of a structure that cannot be expressed in �rst-order languages, either
because the language is not rich enough, or because of fundamental limitations of
�rst-order logic such as the Löwenheim-Skolem theorem. So another, stricter, aspect
in which structures can be alike is if they are fundamentally the same, in the sense
that they only di�er in the objects that make them up, but not in their structural
features. A way of making this precise is by the notion of an isomorphism.

De�nition 8.7. Given two structures M and M′ for the same language L, we say
that M is elementarily equivalent to M′, wri�en M ≡ M′, if and only if for every
sentence i of L, M � i i� M′ � i .
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De�nition 8.8. Given two structures M and M′ for the same language L, we say
that M is isomorphic to M′, wri�en M ' M′, if and only if there is a function
ℎ : |M | → |M′ | such that:

1. ℎ is injective: if ℎ(G) = ℎ(~) then G = ~;

2. ℎ is surjective: for every ~ ∈ |M′ | there is G ∈ |M | such that ℎ(G) = ~;

3. for every constant symbol 2: ℎ(2M) = 2M′ ;

4. for every =-place predicate symbol % :

〈01, . . . , 0=〉 ∈ %M i� 〈ℎ(01), . . . , ℎ(0=)〉 ∈ %M
′ ;

5. for every =-place function symbol 5 :

ℎ(5M (01, . . . , 0=)) = 5M
′ (ℎ(01), . . . , ℎ(0=)) .

�eorem 8.9. If M 'M′ then M ≡M′.

Proof. Let ℎ be an isomorphism of M onto M′. For any assignment B , ℎ ◦ B is the
composition of ℎ and B , i.e., the assignment in M′ such that (ℎ ◦ B) (G) = ℎ(B (G)). By
induction on C and i one can prove the stronger claims:

a. ℎ(ValMB (C)) = ValM′
ℎ◦B (C).

b. M, B � i i� M′, ℎ ◦ B � i .

�e �rst is proved by induction on the complexity of C .

1. If C ≡ 2 , then ValMB (2) = 2M and ValM′
ℎ◦B (2) = 2M

′ . �us, ℎ(ValMB (C)) = ℎ(2M) =
2M

′ (by (3) of De�nition 8.8) = ValM′
ℎ◦B (C).

2. If C ≡ G , then ValMB (G) = B (G) and ValM′
ℎ◦B (G) = ℎ(B (G)). �us, ℎ(ValMB (G)) =

ℎ(B (G)) = ValM′
ℎ◦B (G).

3. If C ≡ 5 (C1, . . . , C=), then

ValMB (C) = 5M (ValMB (C1), . . . ,ValMB (C=)) and
ValM′

ℎ◦B (C) = 5
M (ValM′

ℎ◦B (C1), . . . ,ValM′
ℎ◦B (C=)) .

�e induction hypothesis is that for each 8 , ℎ(ValMB (C8 )) = ValM′
ℎ◦B (C8 ). So,

ℎ(ValMB (C)) = ℎ(5M (ValMB (C1), . . . ,ValMB (C=))
= ℎ(5M (ValM′

ℎ◦B (C1), . . . ,ValM′
ℎ◦B (C=)) (8.1)

= 5M
′ (ValM′

ℎ◦B (C1), . . . ,ValM′
ℎ◦B (C=)) (8.2)

= ValM′
ℎ◦B (C)

Here, eq. (8.1) follows by induction hypothesis and eq. (8.2) by (5) of De�ni-
tion 8.8.

Part (b) is le� as an exercise.
If i is a sentence, the assignments B and ℎ ◦ B are irrelevant, and we have M � i

i� M′ � i . �

De�nition 8.10. An automorphism of a structure M is an isomorphism of M onto
itself.
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8.5 �e �eory of a Structure

Every structure M makes some sentences true, and some false. �e set of all the
sentences it makes true is called its theory. �at set is in fact a theory, since anything
it entails must be true in all its models, including M.

De�nition 8.11. Given a structure M, the theory of M is the set �(M) of sentences
that are true in M, i.e., �(M) = {i | M � i}.

We also use the term “theory” informally to refer to sets of sentences having an
intended interpretation, whether deductively closed or not.

Proposition 8.12. For any M, �(M) is complete.

Proof. For any sentence i either M � i or M � ¬i , so either i ∈ �(M) or ¬i ∈
�(M). �

Proposition 8.13. If N |= i for every i ∈�(M), then M ≡ N.

Proof. Since N � i for all i ∈ �(M), �(M) ⊆ �(N). If N � i , then N 2 ¬i , so
¬i ∉ �(M). Since �(M) is complete, i ∈ �(M). So, �(N) ⊆ �(M), and we
have M ≡ N. �

Remark 2. Consider ℜ = 〈R, <〉, the structure whose domain is the set R of the real
numbers, in the language comprising only a 2-place predicate symbol interpreted
as the < relation over the reals. Clearly ℜ is uncountable; however, since �(ℜ) is
obviously consistent, by the Löwenheim-Skolem theorem it has a countable model,
say S, and by Proposition 8.13, ℜ ≡S. Moreover, since ℜ and S are not isomorphic,
this shows that the converse of �eorem 8.9 fails in general.

8.6 Models of Arithmetic

�e standard model of aritmetic is the structure N with |N | = N in which 0, ′, +, ×,
and < are interpreted as you would expect. �at is, 0 is 0, ′ is the successor function,
+ is interpeted as addition and × as multiplication of the numbers in N. Speci�cally,

0N = 0
′N (=) = = + 1

+N (=,<) = = +<
×N (=,<) = =<

Of course, there are structures for L� that have domains other than N. For instance,
we can take M with domain |M | = {0}∗ (the �nite sequences of the single symbol 0,
i.e., ∅, 0, 00, 000, . . . ), and interpretations

0M = ∅
′M (B) = B ⌢ 0

+M (=,<) = 0=+<

×M (=,<) = 0=<
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�ese two structures are “essentially the same” in the sense that the only di�erence
is the elements of the domains but not how the elements of the domains are related
among each other by the interpretation functions. We say that the two structures are
isomorphic.

It is an easy consequence of the compactness theorem that any theory true in N

also has models that are not isomorphic to N. Such structures are called non-standard.
�e interesting thing about them is that while the elements of a standard model (i.e.,
N, but also all structures isomorphic to it) are exhausted by the values of the standard
numerals =, i.e.,

|N | = {ValN (=) | = ∈ N}
that isn’t the case in non-standard models: if M is non-standard, then there is at least
one G ∈ |M | such that G ≠ ValM (=) for all =.

De�nition 8.14. �e theory of true arithmetic is the set of sentences satis�ed in the
standard model of arithmetic, i.e.,

TA = {i | N � i}.

De�nition 8.15. �e theory Q axiomatized by the following sentences is known as
“Robinson’s Q” and is a very simple theory of arithmetic.

∀G ∀~ (G ′ = ~ ′→ G = ~) (&1)
∀G 0 ≠ G ′ (&2)
∀G (G ≠ 0→∃~ G = ~ ′) (&3)
∀G (G + 0) = G (&4)
∀G ∀~ (G + ~ ′) = (G + ~) ′ (&5)
∀G (G × 0) = 0 (&6)
∀G ∀~ (G × ~ ′) = ((G × ~) + G) (&7)
∀G ∀~ (G < ~↔∃I (I ′ + G) = ~) (&8)

�e set of sentences {&1, . . . , &8} are the axioms of Q, so Q consists of all sentences
entailed by them:

Q = {i | {&1, . . . , &8} � i}.

De�nition 8.16. Suppose i (G) is a formula in L� with free variables G and ~1, . . . ,
~= . �en any sentence of the form

∀~1 . . .∀~= ((i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G))

is an instance of the induction schema.
Peano arithmetic PA is the theory axiomatized by the axioms of Q together with

all instances of the induction schema.

8.7 Standard Models of Arithmetic

�e language of arithmetic L� is obviously intended to be about numbers, speci�cally,
about natural numbers. So, “the” standard model N is special: it is the model we want
to talk about. But in logic, we are o�en just interested in structural properties, and
any two structures that are isomorphic share those. So we can be a bit more liberal,
and consider any structure that is isomorphic to N “standard.”
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De�nition 8.17. A structure for L� is standard if it is isomorphic to N.

Proposition 8.18. If a structure M standard, its domain is the set of values of the
standard numerals, i.e.,

|M | = {ValM (=) | = ∈ N}

Proof. Clearly, every ValM (=) ∈ |M |. We just have to show that every G ∈ |M | is
equal to ValM (=) for some =. Since M is standard, it is isomorphic to N. Suppose
6 : N→ |M | is an isomorphism. �en 6(=) = 6(ValN (=)) = ValM (=). But for every
G ∈ |M |, there is an = ∈ N such that 6(=) = G , since 6 is surjective. �

If a structure M for L� is standard, the elements of its domain can all be named
by the standard numerals 0, 1, 2, . . . , i.e., the terms 0, 0′, 0′′, etc. Of course, this does
not mean that the elements of |M | are the numbers, just that we can pick them out
the same way we can pick out the numbers in |N |.

Proposition 8.19. If M � Q, and |M | = {ValM (=) | = ∈ N}, then M is standard.

Proof. We have to show thatM is isomorphic toN. Consider the function6 : N→ |M |
de�ned by 6(=) = ValM (=). By the hypothesis, 6 is surjective. It is also injective:
Q ` = ≠< whenever = ≠<. �us, since M � Q, M � = ≠<, whenever = ≠<. �us,
if = ≠<, then ValM (=) ≠ ValM (<), i.e., 6(=) ≠ 6(<).

We also have to verify that 6 is an isomorphism.

1. We have 6(0N) = 6(0) since, 0N = 0. By de�nition of 6, 6(0) = ValM (0). But
0 is just 0, and the value of a term which happens to be a constant symbol is
given by what the structure assigns to that constant symbol, i.e., ValM (0) = 0M .
So we have 6(0N) = 0M as required.

2. 6(′N (=)) = 6(=+1), since ′ in N is the successor function onN. �en, 6(=+1) =
ValM (= + 1) by de�nition of6. But= + 1 is the same term as=′, so ValM (= + 1) =
ValM (=′). By the de�nition of the value function, this is = ′M (ValM (=)). Since
ValM (=) = 6(=) we get 6(′N (=)) = ′M (6(=)).

3. 6(+N (=,<)) = 6(= +<), since + in N is the addition function on N. �en,
6(= + <) = ValM (= +<) by de�nition of 6. But Q ` = +< = (= + <), so
ValM (= +<) = ValM (= +<). By the de�nition of the value function, this is
= +M (ValM (=),ValM (<)). Since ValM (=) = 6(=) and ValM (<) = 6(<), we get
6(+N (=,<)) = +M (6(=), 6(<)).

4. 6(×N (=,<)) = ×M (6(=), 6(<)): Exercise.

5. 〈=,<〉 ∈ <N i� = < <. If = < <, then Q ` = < <, and also M � = < <. �us
〈ValM (=),ValM (<)〉 ∈ <M , i.e., 〈6(=), 6(<)〉 ∈ <M . If= ≮ <, then Q ` ¬= < <,
and consequently M 2 = < <. �us, as before, 〈6(=), 6(<)〉 ∉ <M . Together,
we get: 〈=,<〉 ∈ <N i� 〈6(=), 6(<)〉 ∈ <M . �

�e function 6 is the most obvious way of de�ning a mapping from N to the
domain of any other structure M for L�, since every such M contains elements
named by 0, 1, 2, etc. So it isn’t surprising that if M makes at least some basic
statements about the =’s true in the same way that N does, and 6 is also bijective,
then 6 will turn into an isomorphism. In fact, if |M | contains no elements other than
what the =’s name, it’s the only one.
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Proposition 8.20. If M is standard, then 6 from the proof of Proposition 8.19 is the
only isomorphism from N to M.

Proof. Suppose ℎ : N → |M | is an isomorphism between N and M. We show that
6 = ℎ by induction on =. If = = 0, then 6(0) = 0M by de�nition of 6. But since ℎ is an
isomorphism, ℎ(0) = ℎ(0N) = 0M , so 6(0) = ℎ(0).

Now consider the case for = + 1. We have

6(= + 1) = ValM (= + 1) by de�nition of 6
= ValM (=′) since = + 1 ≡ =′

= ′M (ValM (=)) by de�nition of ValM (C ′)
= ′M (6(=)) by de�nition of 6
= ′M (ℎ(=)) by induction hypothesis
= ℎ(′N (=)) since ℎ is an isomorphism
= ℎ(= + 1) �

For any countably in�nite set " , there’s a bijection between N and " , so every
such set " is potentially the domain of a standard model M. In fact, once you pick
an object I ∈ " and a suitable function B as 0M and ′M , the interpretations of +, ×,
and < is already �xed. Only functions B : " → " \ {I} that are both injective and
surjective are suitable in a standard model as ′M . �e range of B cannot contain I,
since otherwise ∀G 0 ≠ G ′ would be false. �at sentence is true in N, and so M also
has to make it true. �e function B has to be injective, since the successor function ′N
in N is, and that ′N is injective is expressed by a sentence true in N. It has to be
surjective because otherwise there would be some G ∈ " \ {I} not in the domain of B ,
i.e., the sentence ∀G (G = 0 ∨ ∃~ ~ ′ = G) would be false in M—but it is true in N.

8.8 Non-Standard Models

We call a structure for L� standard if it is isomorphic to N. If a structure isn’t
isomorphic to N, it is called non-standard.

De�nition 8.21. A structure M for L� is non-standard if it is not isomorphic to N.
�e elements G ∈ |M | which are equal to ValM (=) for some = ∈ N are called standard
numbers (of M), and those not, non-standard numbers.

By Proposition 8.18, any standard structure for L� contains only standard ele-
ments. Consequently, a non-standard structure must contain at least one non-standard
element. In fact, the existence of a non-standard element guarantees that the structure
is non-standard.

Proposition 8.22. If a structure M for L� contains a non-standard number, M is
non-standard.

Proof. Suppose not, i.e., suppose M standard but contains a non-standard number G .
Let 6 : N → |M | be an isomorphism. It is easy to see (by induction on =) that
6(ValN (=)) = ValM (=). In other words, 6 maps standard numbers of N to standard
numbers of M. If M contains a non-standard number, 6 cannot be surjective, contrary
to hypothesis. �
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It is easy enough to specify non-standard structures for L�. For instance, take the
structure with domain Z and interpret all non-logical symbols as usual. Since negative
numbers are not values of = for any =, this structure is non-standard. Of course, it will
not be a model of arithmetic in the sense that it makes the same sentences true as N.
For instance, ∀G G ′ ≠ 0 is false. However, we can prove that non-standard models of
arithmetic exist easily enough, using the compactness theorem.

Proposition 8.23. Let TA = {i | N � i} be the theory of N. TA has a countable
non-standard model.

Proof. Expand L� by a new constant symbol 2 and consider the set of sentences

Γ = TA ∪ {2 ≠ 0, 2 ≠ 1, 2 ≠ 2, . . . }

Any model M2 of Γ would contain an element G = 2M which is non-standard, since
G ≠ ValM (=) for all = ∈ N. Also, obviously, M2 � TA, since TA ⊆ Γ. If we turn M2

into a structure M for L� simply by forge�ing about 2 , its domain still contains the
non-standard G , and also M � TA. �e la�er is guaranteed since 2 does not occur
in TA. So, it su�ces to show that Γ has a model.

We use the compactness theorem to show that Γ has a model. If every �nite
subset of Γ is satis�able, so is Γ. Consider any �nite subset Γ0 ⊆ Γ. Γ0 includes some
sentences of TA and some of the form 2 ≠ =, but only �nitely many. Suppose : is
the largest number so that 2 ≠ : ∈ Γ0. De�ne N: by expanding N to include the
interpretation 2N: = : + 1. N: � Γ0: if i ∈ TA, N: � i since N: is just like N in
all respects except 2 , and 2 does not occur in i . And N: � 2 ≠ =, since = ≤ : , and
ValN: (2) = : + 1. �us, every �nite subset of Γ is satis�able. �

Problems

Problem 8.1. Prove Proposition 8.2.

Problem 8.2. Carry out the proof of (b) of �eorem 8.9 in detail. Make sure to note
where each of the �ve properties characterizing isomorphisms of De�nition 8.8 is
used.

Problem 8.3. Show that for any structure M, if - is a de�nable subset of M, and ℎ
is an automorphism of M, then - = {ℎ(G) | G ∈ - } (i.e., - is �xed under ℎ).

Problem 8.4. Show that the converse of Proposition 8.18 is false, i.e., give an example
of a structure M with |M | = {ValM (=) | = ∈ N} that is not isomorphic to N.

Problem 8.5. Recall that Q contains the axioms

∀G ∀~ (G ′ = ~ ′→ G = ~) (&1)
∀G 0 ≠ G ′ (&2)
∀G (G = 0 ∨ ∃~ G = ~ ′) (&3)

Give structures M1, M2, M3 such that

1. M1 � &1, M1 � &2, M1 2 &3;

2. M2 � &1, M2 2 &2, M2 � &3; and
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3. M3 2 &1, M3 � &2, M3 � &3;

Obviously, you just have to specify 0M8 and ′M8 for each.
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Part III

Second-order Logic

Chapter 9

Syntax and Semantics

9.1 Introduction

In �rst-order logic, we combine the non-logical symbols of a given language, i.e.,
its constant symbols, function symbols, and predicate symbols, with the logical
symbols to express things about �rst-order structures. �is is done using the notion of
satisfaction, which relates a structure M, together with a variable assignment B , and
a formula i : M, B � i holds i� what i expresses when its constant symbols, function
symbols, and predicate symbols are interpreted as M says, and its free variables
are interpreted as B says, is true. �e interpretation of the identity predicate = is
built into the de�nition of M, B � i , as is the interpretation of ∀ and ∃. �e former
is always interpreted as the identity relation on the domain |M | of the structure,
and the quanti�ers are always interpreted as ranging over the entire domain. But,
crucially, quanti�cation is only allowed over elements of the domain, and so only
object variables are allowed to follow a quanti�er.

In second-order logic, both the language and the de�nition of satisfaction are
extended to include free and bound function and predicate variables, and quanti�-
cation over them. �ese variables are related to function symbols and predicate
symbols the same way that object variables are related to constant symbols. �ey
play the same role in the formation of terms and formulas of second-order logic, and
quanti�cation over them is handled in a similar way. In the standard semantics, the
second-order quanti�ers range over all possible objects of the right type (=-place
functions from |M | to |M | for function variables, =-place relations for predicate
variables). For instance, while ∀E0 (%1

0 (E0) ∨ ¬%1
0 (E0)) is a formula in both �rst- and

second-order logic, in the la�er we can also consider ∀+ 1
0 ∀E0 (+ 1

0 (E0) ∨ ¬+ 1
0 (E0)) and

∃+ 1
0 ∀E0 (+ 1

0 (E0) ∨ ¬+ 1
0 (E0)). Since these contain no free varaibles, they are sentences

of second-order logic. Here, + 1
0 is a second-order 1-place predicate variable. �e

allowable interpretations of + 1
0 are the same that we can assign to a 1-place predicate

symbol like %1
0 , i.e., subsets of |M |. �anti�cation over them then amounts to saying

that ∀E0 (+ 1
0 (E0) ∨ ¬+ 1

0 (E0)) holds for all ways of assigning a subset of |M | as the
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value of + 1
0 , or for at least one. Since every set either contains or fails to contain a

given object, both are true in any structure.

9.2 Terms and Formulas

Like in �rst-order logic, expressions of second-order logic are built up from a basic
vocabulary containing variables, constant symbols, predicate symbols and sometimes
function symbols. From them, together with logical connectives, quanti�ers, and
punctuation symbols such as parentheses and commas, terms and formulas are formed.
�e di�erence is that in addition to variables for objects, second-order logic also
contains variables for relations and functions, and allows quanti�cation over them.
So the logical symbols of second-order logic are those of �rst-order logic, plus:

1. A countably in�nite set of second-order relation variables of every arity =: + =0 ,
+ =1 , + =2 , . . .

2. A countably in�nite set of second-order function variables: D=0 , D=1 , D=2 , . . .

Just as we use G , ~, I as meta-variables for �rst-order variables E8 , we’ll use - , . ,
/ , etc., as metavariables for + =8 and D, E , etc., as meta-variables for D=8 .

�e non-logical symbols of a second-order language are speci�ed the same way a
�rst-order language is: by listing its constant symbols, function symbols, and predicate
symbols.

In �rst-order logic, the identity predicate = is usually included. In �rst-order logic,
the non-logical symbols of a language L are crucial to allow us to express anything
interesting. �ere are of course sentences that use no non-logical symbols, but with
only = it is hard to say anything interesting. In second-order logic, since we have an
unlimited supply of relation and function variables, we can say anything we can say
in a �rst-order language even without a special supply of non-logical symbols.

De�nition 9.1 (Second-order Terms). �e set of second-order terms ofL, Trm2 (L),
is de�ned by adding to De�nition 4.4 the clause

1. If D is an =-place function variable and C1, . . . , C= are terms, then D (C1, . . . , C=) is
a term.

So, a second-order term looks just like a �rst-order term, except that where a
�rst-order term contains a function symbol 5 =8 , a second-order term may contain a
function variable D=8 in its place.

De�nition 9.2 (Second-order formula). �e set of second-order formulas Frm2 (L)
of the language L is de�ned by adding to De�nition 4.4 the clauses

1. If - is an =-place predicate variable and C1, . . . , C= are second-order terms of L,
then - (C1, . . . , C=) is an atomic formula.

2. If i is a formula and D is a function variable, then ∀D i is a formula.

3. If i is a formula and - is a predicate variable, then ∀- i is a formula.

4. If i is a formula and D is a function variable, then ∃D i is a formula.

5. If i is a formula and - is a predicate variable, then ∃- i is a formula.
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9.3 Satisfaction

To de�ne the satisfaction relation M, B � i for second-order formulas, we have to
extend the de�nitions to cover second-order variables. �e notion of a structure is
the same for second-order logic as it is for �rst-order logic. �ere is only a di�ence
for variable assignments B : these now must not just provide values for the �rst-order
variables, but also for the second-order variables.

De�nition 9.3 (Variable Assignment). A variable assignment B for a structure M

is a function which maps each

1. object variable E8 to an element of |M |, i.e., B (E8 ) ∈ |M |

2. =-place relation variable + =8 to an =-place relation on |M |, i.e., B (+ =8 ) ⊆ |M |
= ;

3. =-place function variable D=8 to an =-place function from |M | to |M |, i.e.,
B (D=8 ) : |M |

= → |M |;

A structure assigns a value to each constant symbol and function symbol, and
a second-order variable assigns objects and functions to each object and function
variable. Together, they let us assign a value to every term.

De�nition 9.4 (Value of a Term). If C is a term of the language L, M is a structure
for L, and B is a variable assignment for M, the value ValMB (C) is de�ned as for
�rst-order terms, plus the following clause:

C ≡ D (C1, . . . , C=):

ValMB (C) = B (D) (ValMB (C1), . . . ,ValMB (C=)).

De�nition 9.5 (G-Variant). If B is a variable assignment for a structure M, then any
variable assignment B ′ for M which di�ers from B at most in what it assigns to G
is called an G-variant of B . If B ′ is an G-variant of B we write B ∼G B ′. (Similarly for
second-order variables - or D.)

De�nition 9.6 (Satisfaction). For second-order formulas i , the de�nition of satis-
faction is like De�nition 4.35 with the addition of:

1. i ≡ -= (C1, . . . , C=): M, B � i i� 〈ValMB (C1), . . . ,ValMB (C=)〉 ∈ B (-=).

2. i ≡ ∀- k : M, B � i i� for every - -variant B ′ of B , M, B ′ � k .

3. i ≡ ∃- k : M, B � i i� there is an - -variant B ′ of B so that M, B ′ � k .

4. i ≡ ∀Dk : M, B � i i� for every D-variant B ′ of B , M, B ′ � k .

5. i ≡ ∃Dk : M, B � i i� there is an D-variant B ′ of B so that M, B ′ � k .

Example 9.7. Consider the formula ∀I (- (I)↔¬. (I)). It contains no second-order
quanti�ers, but does contain the second-order variables - and . (here understood to
be one-place). �e corresponding �rst-order sentence ∀I (% (I) ↔ ¬'(I)) says that
whatever falls under the interpretation of % does not fall under the interpretation
of ' and vice versa. In a structure, the interpretation of a predicate symbol % is
given by the interpretation %M . But for second-order variables like - and . , the
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interpretation is provided, not by the structure itself, but by a variable assignment.
Since the second-order formula is not a sentence (in includes free variables - and . ),
it is only satis�ed relative to a structure M together with a variable assignment B .

M, B � ∀I (- (I) ↔ ¬. (I)) whenever the elements of B (- ) are not elements
of B (. ), and vice versa, i.e., i� B (. ) = |M | \ B (- ). So for instance, take |M | = {1, 2, 3}.
Since no predicate symbols, function symbols, or constant symbols are involved, the
domain of M is all that is relevant. Now for B1 (- ) = {1, 2} and B1 (. ) = {3}, we have
M, B1 � ∀I (- (I) ↔ ¬. (I)).

By contrast, if we have B2 (- ) = {1, 2} and B2 (. ) = {2, 3}, M, B2 2 ∀I (- (I) ↔
¬. (I)). �at’s because there is a I-variant B ′2 of B2 with B ′2 (I) = 2 where M, B ′2 � - (I)
(since 2 ∈ B ′2 (- )) but M, B ′2 2 ¬. (I) (since also B ′2 (I) ∈ B ′2 (. )).

Example 9.8. M, B � ∃. (∃~ . (~) ∧ ∀I (- (I) ↔ ¬. (I))) if there is an B ′ ∼. B such
that M, B ′ � (∃~ . (~) ∧ ∀I (- (I) ↔ ¬. (I))). And that is the case i� B ′(. ) ≠ ∅ (so
that M, B ′ � ∃~ . (~)) and, as in the previous example, B ′(. ) = |M | \ B ′(- ). In other
words, M, B � ∃. (∃~ . (~) ∧ ∀I (- (I) ↔ ¬. (I))) i� |M | \ B (- ) is non-empty, i.e.,
B (- ) ≠ |M |. So, the formula is satis�ed, e.g., if |M | = {1, 2, 3} and B (- ) = {1, 2}, but
not if B (- ) = {1, 2, 3} = |M |.

Since the formula is not satis�ed whenever B (- ) = |M |, the sentence

∀- ∃. (∃~ . (~) ∧ ∀I (- (I) ↔ ¬. (I)))

is never satis�ed: For any structure M, the assignment B (- ) = |M | will make the
sentence false. On the other hand, the sentence

∃- ∃. (∃~ . (~) ∧ ∀I (- (I) ↔ ¬. (I)))

is satis�ed relative to any assignment B , since we can always �nd an - -variant B ′ of B
with B ′(- ) ≠ |M |.

9.4 Semantic Notions

�e central logical notions of validity, entailment, and satis�ability are de�ned the
same way for second-order logic as they are for �rst-order logic, except that the
underlying satisfaction relation is now that for second-order formulas. A second-
order sentence, of course, is a formula in which all variables, including predicate and
function variables, are bound.

De�nition 9.9 (Validity). A sentencei is valid, � i , i�M � i for every structureM.

De�nition 9.10 (Entailment). A set of sentences Γ entails a sentence i , Γ � i , i�
for every structure M with M � Γ, M � i .

De�nition 9.11 (Satis�ability). A set of sentences Γ is satis�able if M � Γ for some
structure M. If Γ is not satis�able it is called unsatis�able.

9.5 Expressive Power

�anti�cation over second-order variables is responsible for an immense increase
in the expressive power of the language over that of �rst-order logic. Second-order
existential quanti�cation lets us say that functions or relations with certain properties
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exists. In �rst-order logic, the only way to do that is to specify a non-logical symbol
(i.e., a function symbol or predicate symbol) for this purpose. Second-order universal
quanti�cation lets us say that all subsets of, relations on, or functions from the domain
to the domain have a property. In �rst-order logic, we can only say that the subsets,
relations, or functions assigned to one of the non-logical symbols of the language
have a property. And when we say that subsets, relations, functions exist that have
a property, or that all of them have it, we can use second-order quanti�cation in
specifying this property as well. �is lets us de�ne relations not de�nable in �rst-order
logic, and express properties of the domain not expressible in �rst-order logic.

De�nition 9.12. If M is a structure for a languageL, a relation ' ⊆ |M |2 is de�nable
in L if there is some formula i' (G,~) with only the variables G and ~ free, such that
'(0, 1) holds (i.e., 〈0, 1〉 ∈ ') i� M, B � i' (G,~) for B (G) = 0 and B (~) = 1.

Example 9.13. In �rst-order logic we can de�ne the identity relation Id |M | (i.e.,
{〈0, 0〉 | 0 ∈ |M |}) by the formula G = ~. In second-order logic, we can de�ne this
relation without =. For if 0 and 1 are the same element of |M |, then they are elements
of the same subsets of |M | (since sets are determined by their elements). Conversely,
if 0 and 1 are di�erent, then they are not elements of the same subsets: e.g., 0 ∈ {0}
but 1 ∉ {0} if 0 ≠ 1. So “being elements of the same subsets of |M |” is a relation that
holds of 0 and 1 i� 0 = 1. It is a relation that can be expressed in second-order logic,
since we can quantify over all subsets of |M |. Hence, the following formula de�nes
Id |M | :

∀- (- (G) ↔ - (~))

Example 9.14. If ' is a two-place predicate symbol, 'M is a two-place relation
on |M |. Perhaps somewhat confusingly, we’ll use ' as the predicate symbol for '
and for the relation 'M itself. �e transitive closure '∗ of ' is the relation that holds
between 0 and 1 i� for some 21, . . . , 2: , '(0, 21), '(21, 22), . . . , '(2: , 1) holds. �is
includes the case if : = 0, i.e., if '(0, 1) holds, so does '∗ (0, 1). �is means that
' ⊆ '∗. In fact, '∗ is the smallest relation that includes ' and that is transitive. We
can say in second-order logic that - is a transitive relation that includes ':

k' (- ) ≡ ∀G ∀~ ('(G,~) → - (G,~)) ∧
∀G ∀~ ∀I ((- (G,~) ∧ - (~, I)) → - (G, I)).

�e �rst conjunct says that ' ⊆ - and the second that - is transitive.
To say that - is the smallest such relation is to say that it is itself included in

every relation that includes ' and is transitive. So we can de�ne the transitive closure
of ' by the formula

'∗ (- ) ≡ k' (- ) ∧ ∀. (k' (. ) → ∀G ∀~ (- (G,~) → . (G,~))).

We have M, B � '∗ (- ) i� B (- ) = '∗. �e transitive closure of ' cannot be expressed
in �rst-order logic.

9.6 Describing In�nite and Countable Domains

A set " is (Dedekind) in�nite i� there is an injective function 5 : " → " which is
not surjective, i.e., with dom(5 ) ≠ " . In �rst-order logic, we can consider a one-place
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function symbol 5 and say that the function 5M assigned to it in a structure M is
injective and ran(5 ) ≠ |M |:

∀G ∀~ (5 (G) = 5 (~) → G = ~) ∧ ∃~ ∀G ~ ≠ 5 (G).

If M satis�es this sentence, 5M : |M | → |M | is injective, and so |M | must be in�nite.
If |M | is in�nite, and hence such a function exists, we can let 5M be that function and
M will satisfy the sentence. However, this requires that our language contains the
non-logical symbol 5 we use for this purpose. In second-order logic, we can simply
say that such a function exists. �is no-longer requires 5 , and we obtain the sentence
in pure second-order logic

Inf ≡ ∃D (∀G ∀~ (D (G) = D (~) → G = ~) ∧ ∃~ ∀G ~ ≠ D (G)) .

M � Inf i� |M | is in�nite. We can then de�ne Fin ≡ ¬Inf; M � Fin i� |M | is �nite.
No single sentence of pure �rst-order logic can express that the domain is in�nite
although an in�nite set of them can. �ere is no set of sentences of pure �rst-order
logic that is satis�ed in a structure i� its domain is �nite.

Proposition 9.15. M � Inf i� |M | is in�nite.

Proof. M � Inf i� M, B � ∀G ∀~ (D (G) = D (~) → G = ~) ∧ ∃~ ∀G ~ ≠ D (G) for some B .
If it does, B (D) is an injective function, and some ~ ∈ |M | is not in the domain of B (D).
Conversely, if there is an injective 5 : |M | → |M | with dom(5 ) ≠ |M |, then B (D) = 5
is such a variable assignment. �

A set " is countable if there is an enumeration

<0,<1,<2, . . .

of its elements (without repetitions but possibly �nite). Such an enumeration exists i�
there is an element I ∈ " and a function 5 : " → " such that I, 5 (I), 5 (5 (I)), . . . ,
are all the elements of " . For if the enumeration exists, I =<0 and 5 (<: ) =<:+1 (or
5 (<: ) =<: if<: is the last element of the enumeration) are the requisite element
and function. On the other hand, if such a I and 5 exist, then I, 5 (I), 5 (5 (I)), . . . , is
an enumeration of " , and " is countable. We can express the existence of I and 5
in second-order logic to produce a sentence true in a structure i� the structure is
countable:

Count ≡ ∃I ∃D ∀- ((- (I) ∧ ∀G (- (G) → - (D (G)))) → ∀G - (G))

Proposition 9.16. M � Count i� |M | is countable.

Proof. Suppose |M | is countable, and let<0,<1, . . . , be an enumeration. By removing
repetions we can guarantee that no<: appears twice. De�ne 5 (<: ) =<:+1 and let
B (I) =<0 and B (D) = 5 . We show that

M, B � ∀- ((- (I) ∧ ∀G (- (G) → - (D (G)))) → ∀G - (G))

Suppose B ′ ∼- B is arbitrary, and let " = B ′(- ). Suppose further that M, B ′ � (- (I) ∧
∀G (- (G) → - (D (G)))). �en B ′(I) ∈ " and whenever G ∈ " , also B ′(D) (G) ∈ " .
In other words, since B ′ ∼- B , <0 ∈ " and if G ∈ " then 5 (G) ∈ " , so <0 ∈ " ,
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<1 = 5 (<0) ∈ " ,<2 = 5 (5 (<0)) ∈ " , etc. �us, " = |M |, and so M, B ′ � ∀G - (G).
Since B ′ was an arbitrary - -variant of B , we are done: M � Count.

Now assume that M � Count, i.e.,

M, B � ∀- ((- (I) ∧ ∀G (- (G) → - (D (G)))) → ∀G - (G))

for some B . Let< = B (I) and 5 = B (D) and consider " = {<, 5 (<), 5 (5 (<)), . . . }. Let
B ′ be the - -variant of B with B (- ) = " . �en

M, B ′ � (- (I) ∧ ∀G (- (G) → - (D (G)))) → ∀G - (G)

by assumption. Also, M, B ′ � - (I) since B ′(- ) = " 3 < = B ′(I), and also M, B ′ �
∀G (- (G)→- (D (G))) since whenever G ∈ " also 5 (G) ∈ " . So, since both antecedent
and conditional are satis�ed, the consequent must also be: M, B ′ � ∀G - (G). But that
means that " = |M |, and so |M | is countable since " is, by de�nition. �

Problems

Problem 9.1. Show that ∀- (- (G) → - (~)) (note:→ not↔!) de�nes Id |M | .

Problem 9.2. �e sentence Inf ∧ Count is true in all and only countably in�nite
domains. Adjust the de�nition of Count so that it becomes a di�erent sentence that
directly expresses that the domain is countably in�nite, and prove that it does.
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Chapter 10

Metatheory of Second-order Logic

10.1 Introduction

First-order logic has a number of nice properties. We know it is not decidable, but at
least it is axiomatizable. �at is, there are proof systems for �rst-order logic which are
sound and complete, i.e., they give rise to a derivability relation ` with the property
that for any set of sentences Γ and sentence & , Γ � i i� Γ ` i . �is means in
particular that the validities of �rst-order logic are computably enumerable. �ere is
a computable function 5 : N→ Sent(L) such that the values of 5 are all and only the
valid sentences of L. �is is so because derivations can be enumerated, and those that
derive a single sentence are then mapped to that sentence. Second-order logic is more
expressive than �rst-order logic, and so it is in general more complicated to capture
its validities. In fact, we’ll show that second-order logic is not only undecidable, but
its validities are not even computably enumerable. �is means there can be no sound
and complete proof system for second-order logic (although sound, but incomplete
proof systems are available and in fact are important objects of research).

First-order logic also has two more properties: it is compact (if every �nite subset
of a set Γ of sentences is satis�able, Γ itself is satis�able) and the Löwenheim-Skolem
�eorem holds for it (if Γ has an in�nite model it has a countably in�nite model). Both
of these results fail for second-order logic. Again, the reason is that second-order
logic can express facts about the size of domains that �rst-order logic cannot.

10.2 Second-order Arithmetic

Recall that the theory PA of Peano arithmetic includes the eight axioms of Q,

∀G G ′ ≠ 0
∀G ∀~ (G ′ = ~ ′→ G = ~)
∀G (G = 0 ∨ ∃~ G = ~ ′)
∀G (G + 0) = G
∀G ∀~ (G + ~ ′) = (G + ~) ′

∀G (G × 0) = 0
∀G ∀~ (G × ~ ′) = ((G × ~) + G)
∀G ∀~ (G < ~↔∃I (I ′ + G) = ~)
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plus all sentences of the form

(i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G).

�e la�er is a “schema,” i.e., a pa�ern that generates in�nitely many sentences of
the language of arithmetic, one for each formula i (G). We call this schema the (�rst-
order) axiom schema of induction. In second-order Peano arithmetic PA2, induction
can be stated as a single sentence. PA2 consists of the �rst eight axioms above plus
the (second-order) induction axiom:

∀- (- (0) ∧ ∀G (- (G) → - (G ′))) → ∀G - (G) .

It says that if a subset - of the domain contains 0M and with any G ∈ |M | also
contains ′M (G) (i.e., it is “closed under successor”) it contains everything in the
domain (i.e., - = |M |).

�e induction axiom guarantees that any structure satisfying it contains only
those elements of |M | the axioms require to be there, i.e., the values of = for = ∈ N. A
model of PA2 contains no non-standard numbers.

�eorem 10.1. If M � PA2 then |M | = {ValM (=) | = ∈ N}.

Proof. Let # = {ValM (=) | = ∈ N}, and suppose M � PA2. Of course, for any = ∈ N,
ValM (=) ∈ |M |, so # ⊆ |M |.

Now for inclusion in the other direction. Consider a variable assignment B with
B (- ) = # . By assumption,

M � ∀- (- (0) ∧ ∀G (- (G) → - (G ′))) → ∀G - (G), thus
M, B � (- (0) ∧ ∀G (- (G) → - (G ′))) → ∀G - (G).

Consider the antecedent of this conditional. ValM (0) ∈ # , and so M, B � - (0). �e
second conjunct, ∀G (- (G)→- (G ′)) is also satis�ed. For suppose G ∈ # . By de�nition
of # , G = ValM (=) for some =. �at gives ′M (G) = ValM (= + 1) ∈ # . So, ′M (G) ∈ # .

We have that M, B � - (0) ∧ ∀G (- (G) → - (G ′)). Consequently, M, B � ∀G - (G).
But that means that for every G ∈ |M | we have G ∈ B (- ) = # . So, |M | ⊆ # . �

Corollary 10.2. Any two models of PA2 are isomorphic.

Proof. By �eorem 10.1, the domain of any model of PA2 is exhausted by ValM (=).
Any such model is also a model of Q. By Proposition 8.19, any such model is standard,
i.e., isomorphic to N. �

Above we de�ned PA2 as the theory that contains the �rst eight arithmetical
axioms plus the second-order induction axiom. In fact, thanks to the expressive power
of second-order logic, only the �rst two of the arithmetical axioms plus induction are
needed for second-order Peano arithmetic.

Proposition 10.3. Let PA2† be the second-order theory containing the �rst two arith-
metical axioms (the successor axioms) and the second-order induction axiom. �en ≤, +,
and × are de�nable in PA2†.
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Proof. To show that ≤ is de�nable, we have to �nd a formula i≤ (G,~) such that
N � i≤ (=,<) i� = ≤ <. Consider the formula

k (G,. ) ≡ . (G) ∧ ∀~ (. (~) → . (~ ′))

Clearly, k (=,. ) is satis�ed by a set . ⊆ N i� {< | = ≤ <} ⊆ . , so we can take
i≤ (G,~) ≡ ∀. (k (G,. ) → . (~)). �

Corollary 10.4. M � PA2 i� M � PA2†.

Proof. Immediate from Proposition 10.3. �

10.3 Second-order Logic is not Axiomatizable

�eorem 10.5. Second-order logic is undecidable.

Proof. A �rst-order sentence is valid in �rst-order logic i� it is valid in second-order
logic, and �rst-order logic is undecidable. �

�eorem 10.6. �ere is no sound and complete proof system for second-order logic.

Proof. Let i be a sentence in the language of arithmetic. N � i i� PA2 � i . Let % be
the conjunction of the nine axioms of PA2. PA2 � i i� � % → i , i.e., M � % → i .
Now consider the sentence ∀I ∀D ∀D ′∀D ′′∀! (% ′→ i ′) resulting by replacing 0 by I,
′ by the one-place function variable D, + and × by the two-place function-variables
D ′ and D ′′, respectively, and < by the two-place relation variable ! and universally
quantifying. It is a valid sentence of pure second-order logic i� the original sentence
was valid i� PA2 � i i� N � i . �us if there were a sound and complete proof
system for second-order logic, we could use it to de�ne a computable enumeration
5 : N→ Sent(L�) of the sentences true in N. �is function would be representable
in Q by some �rst-order formulak5 (G,~). �en the formula ∃G k5 (G,~) would de�ne
the set of true �rst-order sentences of N, contradicting Tarski’s �eorem. �

10.4 Second-order Logic is not Compact

Call a set of sentences Γ �nitely satis�able if every one of its �nite subsets is satis�able.
First-order logic has the property that if a set of sentences Γ is �nitely satis�able,
it is satis�able. �is property is called compactness. It has an equivalent version
involving entailment: if Γ � i , then already Γ0 � i for some �nite subset Γ0 ⊆ Γ. In
this version it is an immediate corollary of the completeness theorem: for if Γ � i , by
completeness Γ ` i . But a derivation can only make use of �nitely many sentences
of Γ.

Compactness is not true for second-order logic. �ere are sets of second-order
sentences that are �nitely satis�able but not satis�able, and that entail somei without
a �nite subset entailing i .

�eorem 10.7. Second-order logic is not compact.

Proof. Recall that

Inf ≡ ∃D (∀G ∀~ (D (G) = D (~) → G = ~) ∧ ∃~ ∀G ~ ≠ D (G))
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is satis�ed in a structure i� its domain is in�nite. Let i ≥= be a sentence that asserts
that the domain has at least = elements, e.g.,

i ≥= ≡ ∃G1 . . . ∃G= (G1 ≠ G2 ∧ G1 ≠ G3 ∧ · · · ∧ G=−1 ≠ G=).

Consider the set of sentences

Γ = {¬Inf, i ≥1, i ≥2, i ≥3, . . . }.

It is �nitely satis�able, since for any �nite subset Γ0 ⊆ Γ there is some : so that
i ≥: ∈ Γ but no i ≥= ∈ Γ for = > : . If |M | has : elements, M � Γ0. But, Γ is not
satis�able: if M � ¬Inf, |M | must be �nite, say, of size : . �en M 2 i ≥:+1. �

10.5 �e Löwenheim-Skolem �eorem Fails for Second-order
Logic

�e (Downward) Löwenheim-Skolem �eorem states that every set of sentences with
an in�nite model has a countable model. It, too, is a consequence of the completene-
ness theorem: the proof of completeness generates a model for any consistent set of
sentences, and that model is countable. �ere is also an Upward Löwenheim-Skolem
�eorem, which guarantees that if a set of sentences has a countably in�nite model it
also has an uncountable model. Both theorems fail in second-order logic.

�eorem 10.8. �e Löwenheim-Skolem �eorem fails for second-order logic: �ere are
sentences with in�nite models but no countable models.

Proof. Recall that

Count ≡ ∃I ∃D ∀- ((- (I) ∧ ∀G (- (G) → - (D (G)))) → ∀G - (G))

is true in a structure M i� |M | is countable, so ¬Count is true in M i� |M | is un-
countable. �ere are such structures—take any uncountable set as the domain, e.g.,
℘(N) or R. So ¬Count has in�nite models but no countable models. �

�eorem 10.9. �ere are sentences with countably in�nite but no uncountable models.

Proof. Count ∧ Inf is true in N but not in any structure M with |M | uncountable. �

Problems

Problem 10.1. Complete the proof of Proposition 10.3.

Problem 10.2. Give an example of a set Γ and a sentence i so that Γ � i but for
every �nite subset Γ0 ⊆ Γ, Γ0 2 i .
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Part IV

Intuitionistic Logic

Chapter 11

Introduction

11.1 Constructive Reasoning

In constrast to extensions of classical logic by modal operators or second-order
quanti�ers, intuitionistic logic is “non-classical” in that it restricts classical logic.
Classical logic is non-constructive in various ways. Intuitionistic logic is intended to
capture a more “constructive” kind of reasoning characteristic of a kind of constructive
mathematics. �e following examples may serve to illustrate some of the underlying
motivations.

Suppose someone claimed that they had determined a natural number = with
the property that if = is even, the Riemann hypothesis is true, and if = is odd, the
Riemann hypothesis is false. Great news! Whether the Riemann hypothesis is true or
not is one of the big open questions of mathematics, and they seem to have reduced
the problem to one of calculation, that is, to the determination of whether a speci�c
number is even or not.

What is the magic value of =? �ey describe it as follows: = is the natural number
that is equal to 2 if the Riemann hypothesis is true, and 3 otherwise.

Angrily, you demand your money back. From a classical point of view, the
description above does in fact determine a unique value of =; but what you really
want is a value of = that is given explicitly.

To take another, perhaps less contrived example, consider the following question.
We know that it is possible to raise an irrational number to a rational power, and
get a rational result. For example,

√
22

= 2. What is less clear is whether or not it is
possible to raise an irrational number to an irrational power, and get a rational result.
�e following theorem answers this in the a�rmative:

�eorem 11.1. �ere are irrational numbers 0 and 1 such that 01 is rational.
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Proof. Consider
√

2
√

2. If this is rational, we are done: we can let 0 = 1 =
√

2.
Otherwise, it is irrational. �en we have

(
√

2
√

2)
√

2 =
√

2
√

2·
√

2
=
√

22
= 2,

which is rational. So, in this case, let 0 be
√

2
√

2, and let 1 be
√

2. �

Does this constitute a valid proof? Most mathematicians feel that it does. But
again, there is something a li�le bit unsatisfying here: we have proved the existence
of a pair of real numbers with a certain property, without being able to say which pair
of numbers it is. It is possible to prove the same result, but in such a way that the
pair 0, 1 is given in the proof: take 0 =

√
3 and 1 = log3 4. �en

01 =
√

3log3 4
= 31/2·log3 4 = (3log3 4)1/2 = 41/2 = 2,

since 3log3 G = G .
Intuitionistic logic is designed to capture a kind of reasoning where moves like

the one in the �rst proof are disallowed. Proving the existence of an G satisfying i (G)
means that you have to give a speci�c G , and a proof that it satis�es i , like in the
second proof. Proving that i ork holds requires that you can prove one or the other.

Formally speaking, intuitionistic logic is what you get if you restrict a proof
system for classical logic in a certain way. From the mathematical point of view, these
are just formal deductive systems, but, as already noted, they are intended to capture
a kind of mathematical reasoning. One can take this to be the kind of reasoning
that is justi�ed on a certain philosophical view of mathematics (such as Brouwer’s
intuitionism); one can take it to be a kind of mathematical reasoning which is more
“concrete” and satisfying (along the lines of Bishop’s constructivism); and one can
argue about whether or not the formal description captures the informal motivation.
But whatever philosophical positions we may hold, we can study intuitionistic logic
as a formally presented logic; and for whatever reasons, many mathematical logicians
�nd it interesting to do so.

11.2 Syntax of Intuitionistic Logic

�e syntax of intuitionistic logic is the same as that for propositional logic. In classical
propositional logic it is possible to de�ne connectives by others, e.g., one can de�ne
i → k by ¬i ∨ k , or i ∨ k by ¬(¬i ∧ ¬k ). �us, presentations of classical logic
o�en introduce some connectives as abbreviations for these de�nitions. �is is not so
in intuitionistic logic, with two exceptions: ¬i can be—and o�en is—de�ned as an
abbreviation for i→⊥. �en, of course, ⊥ must not itself be de�ned! Also, i↔k

can be de�ned, as in classical logic, as (i→k ) ∧ (k → i).
Formulas of propositional intuitionistic logic are built up from propositional vari-

ables and the propositional constant ⊥ using logical connectives. We have:

1. A countably in�nite set At0 of propositional variables ?0, ?1, . . .

2. �e propositional constant for falsity ⊥.

3. �e logical connectives: ∧ (conjunction), ∨ (disjunction),→ (conditional)

4. Punctuation marks: (, ), and the comma.
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De�nition 11.2 (Formula). �e set Frm(L0) of formulas of propositional intuition-
istic logic is de�ned inductively as follows:

1. ⊥ is an atomic formula.

2. Every propositional variable ?8 is an atomic formula.

3. If i andk are formulas, then (i ∧k ) is a formula.

4. If i andk are formulas, then (i ∨k ) is a formula.

5. If i andk are formulas, then (i→k ) is a formula.

6. Nothing else is a formula.

In addition to the primitive connectives introduced above, we also use the follow-
ing de�ned symbols: ¬ (negation) and↔ (biconditional). Formulas constructed using
the de�ned operators are to be understood as follows:

1. ¬i abbreviates i→⊥.

2. i↔k abbreviates (i→k ) ∧ (k → i).

Although ¬ is o�cially treated as an abbreviation, we will sometimes give explicit
rules and clauses in de�nitions for ¬ as if it were primitive. �is is mostly so we can
state practice problems.

11.3 �e Brouwer-Heyting-Kolmogorov Interpretation

�ere is an informal constructive interpretation of the intuitionist connectives, usually
known as the Brouwer-Heyting-Kolmogorov interpretation. It uses the notion of a
“construction,” which you may think of as a constructive proof. (We don’t use “proof”
in the BHK interpretation so as not to get confused with the notion of a derivation
in a formal proof system.) Based on this intuitive notion, the BHK interpretation
explains the meanings of the intuitionistic connectives.

1. We assume that we know what constitutes a construction of an atomic state-
ment.

2. A construction of i1 ∧ i2 is a pair 〈"1, "2〉 where "1 is a construction of i1
and "2 is a construction of �2.

3. A construction of i1 ∨ i2 is a pair 〈B, "〉 where B is 1 and " is a construction
of i1, or B is 2 and " is a construction of i2.

4. A construction of i→k is a function that converts a construction of i into a
construction ofk .

5. �ere is no construction for ⊥ (absurdity).

6. ¬i is de�ned as synonym for i→⊥. �at is, a construction of ¬i is a function
converting a construction of i into a construction of ⊥.

129



11. Introduction

Example 11.3. Take ¬⊥ for example. A construction of it is a function which, given
any construction of ⊥ as input, provides a construction of ⊥ as output. Obviously, the
identity function Id is such a construction: given a construction " of ⊥, Id (") = "
yields a construction of ⊥.

Generally speaking, ¬i means “A construction of i is impossible”.

Example 11.4. Let us prove i→¬¬i for any proposition i , which is i→ ((i→
⊥) → ⊥). �e construction should be a function 5 that, given a construction "

of i , returns a construction 5 (") of (i →⊥) → ⊥. Here is how 5 constructs the
construction of (i→⊥) →⊥: We have to de�ne a function 6 which, when given a
construction ℎ of i →⊥ as input, outputs a construction of ⊥. We can de�ne 6 as
follows: apply the input ℎ to the construction " of i (that we received earlier). Since
the output ℎ(") of ℎ is a construction of ⊥, 5 (") (ℎ) = ℎ(") is a construction of ⊥
if " is a construction of i .

Example 11.5. Let us give a construction for ¬(i ∧ ¬i), i.e., (i ∧ (i →⊥)) → ⊥.
�is is a function 5 which, given as input a construction " of i ∧ (i→⊥), yields a
construction of ⊥. A construction of a conjunctionk1 ∧k2 is a pair 〈#1, #2〉 where
#1 is a construction ofk1 and #2 is a construction ofk2. We can de�ne functions ?1
and ?2 which recover from a construction ofk1 ∧k2 the constructions ofk1 andk2,
respectively:

?1 (〈#1, #2〉) = #1

?2 (〈#1, #2〉) = #2

Here is what 5 does: First it applies ?1 to its input " . �at yields a construction of i .
�en it applies ?2 to" , yielding a construction of i→⊥. Such a construction, in turn,
is a function ?2 (") which, if given as input a construction of i , yields a construction
of ⊥. In other words, if we apply ?2 (") to ?1 ("), we get a construction of ⊥. �us,
we can de�ne 5 (") = ?2 (") (?1 (")).

Example 11.6. Let us give a construction of ((i ∧k ) → j) → (i→ (k → j)), i.e.,
a function 5 which turns a construction 6 of (i ∧ k ) → j into a construction of
(i→ (k → j)). �e construction 6 is itself a function (from constructions of i ∧k
to constructions of �). And the output 5 (6) is a function ℎ6 from constructions of i
to functions from constructions ofk to constructions of j .

Ok, this is confusing. We have to construct a certain function ℎ6, which will be
the output of 5 for input 6. �e input of ℎ6 is a construction " of i . �e output of
ℎ6 (") should be a function :" from constructions # ofk to constructions of j . Let
:6," (# ) = 6(〈", # 〉). Remember that 〈", # 〉 is a construction of i ∧k . So :6," is
a construction of k → j : it maps constructions # of k to constructions of j . Now
let ℎ6 (") = :6," . �at’s a function that maps constructions " of i to constructions
:6," of k → j . Now let 5 (6) = ℎ6. �at’s a function that maps constructions 6 of
(i ∧k ) → j to constructions of i→ (k → j). Whew!

�e statement i ∨ ¬i is called the Law of Excluded Middle. We can prove it for
some speci�c i (e.g., ⊥ ∨ ¬⊥), but not in general. �is is because the intuitionistic
disjunction requires a construction of one of the disjuncts, but there are statements
which currently can neither be proved nor refuted (say, Goldbach’s conjecture).
However, you can’t refute the law of excluded middle either: that is, ¬¬(i ∨ ¬i)
holds.

130



11.4. Natural Deduction

Example 11.7. To prove ¬¬(i ∨ ¬i), we need a function 5 that transforms a con-
struction of ¬(i ∨ ¬i), i.e., of (i ∨ (i→⊥)) →⊥, into a construction of ⊥. In other
words, we need a function 5 such that 5 (6) is a construction of ⊥ if 6 is a construction
of ¬(i ∨ ¬i).

Suppose 6 is a construction of ¬(i ∨ ¬i), i.e., a function that transforms a con-
struction of i ∨¬i into a construction of ⊥. A construction of i ∨¬i is a pair 〈B, "〉
where either B = 1 and " is a construction of i , or B = 2 and " is a construction
of ¬i . Let ℎ1 be the function mapping a construction "1 of i to a construction of
i ∨ ¬i : it maps "1 to 〈1, "2〉. And let ℎ2 be the function mapping a construction "2
of ¬i to a construction of i ∨ ¬i : it maps "2 to 〈2, "2〉.

Let : be 6 ◦ ℎ1: it is a function which, if given a construction of i , returns a
construction of ⊥, i.e., it is a construction of i→⊥ or ¬i . Now let ; be 6 ◦ ℎ2. It is a
function which, given a construction of ¬i , provides a construction of ⊥. Since : is a
construction of ¬i , ; (:) is a construction of ⊥.

Together, what we’ve done is describe how we can turn a construction 6 of
¬(i ∨ ¬i) into a construction of ⊥, i.e., the function 5 mapping a construction 6 of
¬(i ∨ ¬i) to the construction ; (:) of ⊥ is a construction of ¬¬(i ∨ ¬i).

As you can see, using the BHK interpretation to show the intuitionistic validity
of formulas quickly becomes cumbersome and confusing. Luckily, there are be�er
derivation systems for intuitionistic logic, and more precise semantic interpreta-
tions.

11.4 Natural Deduction

Natural deduction without the RAA rules is a standard derivation system for intu-
itionistic logic. We repeat the rules here and indicate the motivation using the BHK
interpretation. In each case, we can think of a rule which allows us to conclude that
if the premises have constructions, so does the conclusion.

Since natural deduction derivations have undischarged assumptions, we should
consider such a derivation, say, of i from undischarged assumptions Γ, as a function
that turns constructions of allk ∈ Γ into a construction of i . If there is a derivation
of i from no undischarged assumptions, then there is a construction of i in the sense
of the BHK interpretation. For the purpose of the discussion, however, we’ll suppress
the Γ when not needed.

An assumption i by itself is a derivation of i from the undischarged assumption i .
�is agrees with the BHK-interpretation: the identity function on constructions turns
any construction of i into a construction of i .

Conjunction

i k
∧I

i ∧k

i ∧k
∧Ei

i ∧k
∧E

k
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11. Introduction

Suppose we have constructions #1, #2 of i1 and i2, respectively. �en we also have
a construction i1 ∧ i2, namely the pair 〈#1, #2〉.

A construction of i1 ∧ i1 on the BHK interpretation is a pair 〈#1, #2〉. So assume
we have such a pair. �en we also have a construction of each conjunct: #1 is a
construction of i1 and #2 is a construction of i2.

Conditional

[i]D

k →ID
i→k

i→k i
→E

k

If we have a derivation ofk from undischarged assumption i , then there is a func-
tion 5 that turns constructions of i into constructions ofk . �at same function is a
construction of i→k . So, if the premise of→I has a construction conditional on a
construction of i , the conclusion i→k has a construction.

On the other hand, suppose there are constructions # of i and 5 of i →k . A
construction of i→k is a function that turns constructions of i into constructions
ofk . So, 5 (# ) is a construction ofk , i.e., the conclusion of→E has a construction.

Disjunction

i
∨I

i ∨k
k

∨I
i ∨k i ∨k

[i]=

j

[k ]=

j ∨E=j

If we have a construction #8 of i8 we can turn it into a construction 〈8, #8〉 of i1 ∨i2.
On the other hand, suppose we have a construction of i1 ∨ i2, i.e., a pair 〈8, #8〉
where #8 is a construction of i8 , and also functions 51, 52, which turn constructions
of i1, i2, respectively, into constructions of j . �en 58 (#8 ) is a construction of j , the
conclusion of ∨E.

Absurdity

⊥ ⊥Ei

If we have a derivation of ⊥ from undischarged assumptionsk1, . . . ,k= , then there is
a function 5 ("1, . . . , "=) that turns constructions of k1, . . . , k= into a construction
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11.4. Natural Deduction

of ⊥. Since ⊥ has no construction, there cannot be any constructions of all ofk1, . . . ,
k= either. Hence, 5 also has the property that if "1, . . . , "= are constructions ofk1,
. . . ,k= , respectively, then 5 ("1, . . . , "=) is a construction of i .

Rules for ¬
Since ¬i is de�ned as i→⊥, we strictly speaking do not need rules for ¬. But if we
did, this is what they’d look like:

[i]=

⊥ ¬I=¬i

¬i i
¬E⊥

Examples of Derivations

1. ` i→ (¬i→⊥), i.e., ` i→ ((i→⊥) →⊥)

[i]2 [i→⊥]1
→E⊥ →I1(i→⊥) →⊥ →I2

i→ (i→⊥) →⊥

2. ` ((i ∧k ) → j) → (i→ (k → j))

[(i ∧k ) → j]3
[i]2 [k ]1

∧I
i ∧k

→Ej →I1
k → j →I2

i→ (k → j) →I3((i ∧k ) → j) → (i→ (k → j))

3. ` ¬(i ∧ ¬i), i.e., ` (i ∧ (i→⊥)) → ⊥

[i ∧ (i→⊥)]1
∧Ei→⊥

[i ∧ (i→⊥)]1
∧Ei

→E⊥ →I1(i ∧ (i→⊥)) → ⊥

4. ` ¬¬(i ∨ ¬i), i.e., ` ((i ∨ (i→⊥)) → ⊥) →⊥

[(i ∨ (i→⊥)) → ⊥]2

[(i ∨ (i→⊥)) → ⊥]2
[i]1

∨I
i ∨ (i→⊥)

→E⊥ →I1i→⊥
∨I

i ∨ (i→⊥)
→E⊥ →I2((i ∨ (i→⊥)) → ⊥) →⊥
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11. Introduction

Proposition 11.8. If Γ ` i in intuitionistic logic, Γ ` i in classical logic. In particular,
if i is an intuitionistic theorem, it is also a classical theorem.

Proof. Every natural deduction rule is also a rule in classical natural deduction, so
every derivation in intuitionistic logic is also a derivation in classical logic. �

Problems

Problem 11.1. Give derivations in intutionistic logic of the following.

1. (¬i ∨k ) → (i→k )

2. ¬¬¬i→¬i

3. ¬¬(i ∧k ) ↔ (¬¬i ∧ ¬¬k )
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Chapter 12

Semantics

12.1 Introduction

No logic is satisfactorily described without a semantics, and intuitionistic logic is no
exception. Whereas for classical logic, the semantics based on valuations is canonical,
there are several competing semantics for intuitionistic logic. None of them are
completely satisfactory in the sense that they give an intuitionistically acceptable
account of the meanings of the connectives.

�e semantics based on relational models, similar to the semantics for modal
logics, is perhaps the most popular one. In this semantics, propositional variables
are assigned to worlds, and these worlds are related by an accessibility relation. �at
relation is always a partial order, i.e., it is re�exive, antisymmetric, and transitive.

Intuitively, you might think of these worlds as states of knowledge or “evidentiary
situations.” A stateF ′ is accessible fromF i�, for all we know,F ′ is a possible (future)
state of knowledge, i.e., one that is compatible with what’s known at F . Once a
proposition is known, it can’t become un-known, i.e., whenever i is known atF and
'FF ′, i is known at F ′ as well. So “knowledge” is monotonic with respect to the
accessibility relation.

If we de�ne “i is known” as in epistemic logic as “true in all epistemic alternatives,”
then i ∧k is known atF if in all epistemic alternatives, both i andk are known. But
since knowledge is monotonic and ' is re�exive, that means that i ∧k is known atF
i� i andk are known atF . For the same reason, i ∨k is known atF i� at least one
of them is known. So for ∧ and ∨, the truth conditions of the connectives coincide
with those in classical logic.

�e truth conditions for the conditional, however, di�er from classical logic. i→k
is known atF i� at noF ′ with 'FF ′, i is known withoutk also being known. �is
is not the same as the condition that i is unknown or k is known at F . For if we
know neither i nor k at F , there might be a future epistemic state F ′ with 'FF ′
such that atF ′, i is known without also coming to knowk .

We know¬i only if there is no possible future epistemic state in which we knowi .
Here the idea is that ifi were knowable, then in some possible future epistemic statei
becomes known. Since we can’t know ⊥, in that future epistemic state, we would
know i but not know ⊥.

On this interpretation the principle of excluded middle fails. For there are some i
which we don’t yet know, but which we might come to know. For such an i , both i
and ¬i are unknown, so i ∨ ¬i is not known. But we do know, e.g., that ¬(i ∧ ¬i).
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12. Semantics

For no future state in which we know both i and ¬i is possible, and we know this
independently of whether or not we know i or ¬i .

Relational models are not the only available semantics for intuitionistic logic. �e
topological semantics is another: here propositions are interpreted as open sets in
a topological space, and the connectives are interpreted as operations on these sets
(e.g., ∧ corresponds to intersection).

12.2 Relational models

In order to give a precise semantics for intuitionistic propositional logic, we have to
give a de�nition of what counts as a model relative to which we can evaluate formulas.
On the basis of such a de�nition it is then also possible to de�ne semantics notions
such as validity and entailment. One such semantics is given by relational models.

De�nition 12.1. A relational model for intuitionistic propositional logic is a triple
M = 〈,,',+ 〉, where

1. , is a non-empty set,

2. ' is a partial order (i.e., a re�exive, antisymmetric, and transitive binary relation)
on, , and

3. + is a function assigning to each propositional variable ? a subset of, , such
that

4. + is monotone with respect to ', i.e., ifF ∈ + (?) and 'FF ′, thenF ′ ∈ + (?).

De�nition 12.2. We de�ne the notion of i being true atF in M, M,F 
 i , induc-
tively as follows:

1. i ≡ ?: M,F 
 i i�F ∈ + (?).

2. i ≡ ⊥: not M,F 
 i .

3. i ≡ ¬k : M,F 
 i i� for noF ′ such that 'FF ′, M,F ′ 
 k .

4. i ≡ k ∧ j : M,F 
 i i� M,F 
 k and M,F 
 j .

5. i ≡ k ∨ j : M,F 
 i i� M,F 
 k or M,F 
 j (or both).

6. i ≡ k → j : M,F 
 i i� for every F ′ such that 'FF ′, not M,F ′ 
 k or
M,F ′ 
 j (or both).

We write M,F 1 i if not M,F 
 i . If Γ is a set of formulas, M,F 
 Γ means
M,F 
 k for allk ∈ Γ.

Proposition 12.3. Truth at worlds is monotonic with respect to ', i.e., if M,F 
 i and
'FF ′, then M,F ′ 
 i .

Proof. Exercise. �
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12.3 Semantic Notions

De�nition 12.4. We say i is true in the model M = 〈,,',+ 〉, M 
 i , i� M,F 
 i
for all F ∈, . i is valid, � i , i� it is true in all models. We say a set of formulas Γ
entails i , Γ � i , i� for every model M and everyF such that M,F 
 Γ, M,F 
 i .

Proposition 12.5. 1. If M,F 
 Γ and Γ � i , then M,F 
 i .

2. If M 
 Γ and Γ � i , then M 
 i .

Proof. 1. Suppose M 
 Γ. Since Γ � i , we know that if M,F 
 Γ, then M,F 
 i .
Since M, D 
 Γ for all every D ∈, , M,F 
 Γ. Hence M,F 
 i .

2. Follows immediately from (1). �

Problems

Problem 12.1. Show that according to De�nition 12.2, M,F 
 ¬i i� M,F 
 i→⊥.

Problem 12.2. Prove Proposition 12.3.
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Chapter 13

Soundness and Completeness

13.1 Soundness of Natural Deduction

�eorem 13.1 (Soundness). If Γ ` i , then Γ � i .

Proof. We prove that if Γ ` i , then Γ � i . �e proof is by induction on the derivation
of i from Γ.

1. If the derivation consists of just the assumption i , we have i ` i , and want
to show that i � i . Consider any model M such that M 
 i . �en trivially
M 
 i .

2. �e derivation ends in ∧I: �e derivations of the premisesk from undischarged
assumptions Γ and of j from undischarged assumptions Δ show that Γ ` k
and Δ ` j . By induction hypothesis we have that Γ � k and Δ � j . We have
to show that Γ ∪ Δ � i ∧k , since the undischarged assumptions of the entire
derivation are Γ together with Δ. So suppose M 
 Γ ∪ Δ. �en also M 
 Γ.
Since Γ � k , M 
 k . Similarly, M 
 j . So M 
 k ∧ j .

3. �e derivation ends in ∧E: �e derivation of the premise k ∧ j from undis-
charged assumptions Γ shows that Γ ` k∧j . By induction hypothesis, Γ � k∧j .
We have to show that Γ � k . So suppose M 
 Γ. Since Γ � k ∧ j , M 
 k ∧ j .
�en also M 
 k . Similarly if ∧E ends in j , then Γ � j .

4. �e derivation ends in ∨I: Suppose the premise is k , and the undischarged
assumptions of the derivation ending ink are Γ. �en we have Γ ` k and by
inductive hypothesis, Γ � k . We have to show that Γ � k ∨ j . Suppose M 
 Γ.
Since Γ � k , M 
 k . But then also M 
 k ∨ j . Similarly, if the premise is j , we
have that Γ � j .

5. �e derivation ends in ∨E: �e derivations ending in the premises are of
k ∨ j from undischarged assumptions Γ, of \ from undischarged assumptions
Δ1 ∪ {k }, and of \ from undischarged assumptions Δ2 ∪ {j}. So we have
Γ ` k ∨ j , Δ1 ∪ {k } ` \ , and Δ2 ∪ {j} ` \ . By induction hypothesis, Γ � k ∨ j ,
Δ1 ∪ {k } � \ , and Δ2 ∪ {j} � \ . We have to prove that Γ ∪ Δ1 ∪ Δ2 � \ .
Suppose M 
 Γ ∪ Δ1 ∪ Δ2. �en M 
 Γ and since Γ � k ∨ j , M 
 k ∨ j . By
de�nition of M 
, either M 
 k or M 
 j . So we distinguish cases: (a) M 
 k .
�en M 
 Δ1 ∪ {k }. Since Δ1 ∪ k � \ , we have M 
 \ . (b) M 
 j . �en
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M 
 Δ2 ∪ {j}. Since Δ2 ∪ j � \ , we have M 
 \ . So in either case, M 
 \ , as
we wanted to show.

6. �e derivation ends with→I concludingk→ j . �en the premise is j , and the
derivation ending in the premise has undischarged assumptions Γ ∪ {k }. So
we have that Γ ∪ {k } ` j , and by induction hypothesis that Γ ∪ {k } � j . We
have to show that Γ � k → j .
Suppose M,F 
 Γ. We want to show that for allF ′ such that 'FF ′, if M,F ′ 

k , then M,F ′ 
 j . So assume that 'FF ′ and M,F ′ 
 k . By Proposition 12.3,
M,F ′ 
 Γ. Since Γ ∪ {k } � j , M,F ′ 
 j , which is what we wanted to show.

7. �e derivation ends in→E and conclusion j . �e premises arek → j andk ,
with derivations from undischarged assumptions Γ, Δ. So we have Γ ` k → j

and Δ ` k . By inductive hypothesis, Γ � k → j and Δ � k . We have to show
that Γ ∪ Δ � j .
Suppose M,F 
 Γ ∪ Δ. Since M,F 
 Γ and Γ � k → j , M,F 
 k → j .
By de�nition, this means that for all F ′ such that 'FF ′, if M,F ′ 
 k then
M,F ′ 
 j . Since ' is re�exive, F is among the F ′ such that 'FF ′, i.e., we
have that if M,F 
 k then M,F 
 j . Since M,F 
 Δ and Δ � k , M,F 
 k .
So, M,F 
 j , as we wanted to show.

8. �e derivation ends in⊥E, concludingi . �e premise is⊥ and the undischarged
assumptions of the derivation of the premise are Γ. �en Γ ` ⊥. By inductive
hypothesis, Γ � ⊥. We have to show Γ � i .
We proceed indirectly. If Γ 2 i there is a model M and world F such that
M,F 
 Γ and M,F 1 i . Since Γ � ⊥, M,F 
 ⊥. But that’s impossible, since
by de�nition, M,F 1 ⊥. So Γ � i .

9. �e derivation ends in ¬I: Exercise.

10. �e derivation ends in ¬E: Exercise. �

13.2 Lindenbaum’s Lemma

De�nition 13.2. A set of formulas Γ is prime i�

1. Γ is consistent.

2. If Γ ` i then i ∈ Γ, and

3. If i ∨k ∈ Γ then i ∈ Γ ork ∈ Γ.

Lemma 13.3 (Lindenbaum’s Lemma). If Γ 0 i , there is a Γ∗ ⊇ Γ such that Γ∗ is
prime and Γ∗ 0 i .

Proof. Letk1 ∨ j1,k2 ∨ j2, . . . , be an enumeration of all formulas of the formk ∨ j .
We’ll de�ne an increasing sequence of sets of formulas Γ= , where each Γ=+1 is de�ned
as Γ= together with one new formula. Γ∗ will be the union of all Γ= . �e new formulas
are selected so as to ensure that Γ∗ is prime and still Γ∗ 0 i . �is means that at each
step we should �nd the �rst disjunctionk8 ∨ j8 such that:
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1. Γ= ` k8 ∨ j8

2. k8 ∉ Γ= and j8 ∉ Γ=

We add to Γ= eitherk8 if Γ= ∪ {k8 } 0 i , or j8 otherwise. We’ll have to show that this
works. For now, let’s de�ne 8 (=) as the least 8 such that (1) and (2) hold.

De�ne Γ0 = Γ and

Γ=+1 =

{
Γ= ∪ {k8 (=) } if Γ= ∪ {k8 (=) } 0 i
Γ= ∪ {j8 (=) } otherwise

If 8 (=) is unde�ned, i.e., whenever Γ= ` k ∨ j , eitherk ∈ Γ= or j ∈ Γ= , we let Γ=+1 = Γ= .
Now let Γ∗ =

⋃∞
==0 Γ=

First we show that for all =, Γ= 0 i . We proceed by induction on =. For = = 0 the
claim holds by the hypothesis of the theorem, i.e., Γ 0 i . If = > 0, we have to show
that if Γ= 0 i then Γ=+1 0 i . If 8 (=) is unde�ned, Γ=+1 = Γ= and there is nothing to
prove. So suppose 8 (=) is de�ned. For simplicity, let 8 = 8 (=).

We’ll prove the contrapositive of the claim. Suppose Γ=+1 ` i . By construction,
Γ=+1 = Γ= ∪ {k8 } if Γ= ∪ {k8 } 0 i , or else Γ=+1 = Γ= ∪ {j8 }. It clearly can’t be the �rst,
since then Γ=+1 0 i . Hence, Γ= ∪ {k8 } ` i and Γ=+1 = Γ= ∪ {j8 }. By de�nition of 8 (=),
we have that Γ= ` k8 ∨ j8 . We have Γ= ∪ {k8 } ` i . We also have Γ=+1 = Γ= ∪ {j8 } ` i .
Hence, Γ= ` i , which is what we wanted to show.

If Γ∗ ` i , there would be some �nite subset Γ′ ⊆ Γ∗ such that Γ′ ` i . Each \ ∈ Γ′
must be in Γ8 for some 8 . Let = be the largest of these. Since Γ8 ⊆ Γ= if 8 ≤ =, Γ′ ⊆ Γ= .
But then Γ= ` i , contrary to our proof above that Γ= 0 i .

Lastly, we show that Γ∗ is prime, i.e., satis�es conditions (1), (2), and (3) of De�ni-
tion 13.2.

First, Γ∗ 0 i , so Γ∗ is consistent, so (1) holds.
We now show that if Γ∗ ` k ∨ j , then either k ∈ Γ∗ or j ∈ Γ∗. �is proves (3),

since ifk ∈ Γ∗ then also Γ∗ ` k , and similarly for j . So assume Γ∗ ` k ∨ j butk ∉ Γ∗

and j ∉ Γ∗. Since Γ∗ ` k ∨ j , Γ= ` k ∨ j for some =. k ∨ j appears on the enumeration
of all disjunctions, say as k 9 ∨ j 9 . k 9 ∨ j 9 satis�es the properties in the de�nition
of 8 (=), namely we have Γ= ` k 9 ∨ j 9 , while k 9 ∉ Γ= and j 9 ∉ Γ= . At each stage, at
least one fewer disjunctionk8 ∨ j8 satis�es the conditions (since at each stage we add
eitherk8 or j8 ), so at some stage< we will have 9 = 8 (Γ<). But then eitherk ∈ Γ<+1
or j ∈ Γ<+1, contrary to the assumption thatk ∉ Γ∗ and j ∉ Γ∗.

Now suppose Γ∗ ` i . �en Γ∗ ` i ∨ i . But we’ve just proved that if Γ∗ ` i ∨ i
then i ∈ Γ∗. Hence, Γ∗ satis�es (2) of De�nition 13.2. �

13.3 �e Canonical Model

�e worlds in our model will be �nite sequences f of natural numbers, i.e., f ∈ N∗.
Note that N∗ is inductively de�ned by:

1. Λ ∈ N∗.

2. If f ∈ N∗ and = ∈ N, then f.= ∈ N∗ (where f.= is f ⌢ 〈=〉 and f ⌢ f ′ is the
concatenation if f and f ′).

3. Nothing else is in N∗.
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13. Soundness and Completeness

So we can use N∗ to give inductive de�nitions.
Let 〈k1, j1〉, 〈k2, jB〉, . . . , be an enumeration of all pairs of formulas. Given a set

of formulas Δ, de�ne Δ(f) by induction as follows:

1. Δ(Λ) = Δ

2. Δ(f.=) = {
(Δ(f) ∪ {k=})∗ if Δ(f) ∪ {k=} 0 j=
Δ(f) otherwise

Here by (Δ(f)∪{k=})∗ we mean the prime set of formulas which exists by Lemma 13.3
applied to the set Δ(f) ∪ {k=} and the formula j= . Note that by this de�nition, if
Δ(f) ∪ {k=} 0 j= , then Δ(f.=) ` k= and Δ(f.=) 0 j= . Note also that Δ(f) ⊆ Δ(f.=)
for any =. If Δ is prime, then Δ(f) is prime for all f .

De�nition 13.4. Suppose Δ is prime. �en the canonical model M(Δ) for Δ is de�ned
by:

1. , = N∗, the set of �nite sequences of natural numbers.

2. ' is the partial order according to which 'ff ′ i� f is an initial segment of f ′
(i.e., f ′ = f ⌢ f ′′ for some sequence f ′′).

3. + (?) = {f | ? ∈ Δ(f)}.

It is easy to verify that ' is indeed a partial order. Also, the monotonicity condition
on + is satis�ed. Since Δ(f) ⊆ Δ(f.=) we get Δ(f) ⊆ Δ(f ′) whenever 'ff ′ by
induction on f .

13.4 �e Truth Lemma

Lemma 13.5. If Δ is prime, then M(Δ), f 
 i i� Δ(f) ` i .

Proof. By induction on i .

1. i ≡ ⊥: Since Δ(f) is prime, it is consistent, so Δ(f) 0 i . By de�nition,
M(Δ), f 1 i .

2. i ≡ ?: By de�nition of 
, M(Δ), f 
 i i� f ∈ + (?), i.e., Δ(f) ` i .

3. i ≡ ¬k : exercise.

4. i ≡ k ∧ j : M(Δ), f 
 i i� M(Δ), f 
 k and M(Δ), f 
 j . By induction
hypothesis, M(Δ), f 
 k i� Δ(f) ` k , and similarly for j . But Δ(f) ` k and
Δ(f) ` j i� Δ(f) ` i .

5. i ≡ k ∨ j : M(Δ), f 
 i i� M(Δ), f 
 k or M(Δ), f 
 j . By induction
hypothesis, this holds i� Δ(f) ` k of Δ(f) ` j . We have to show that this in
turn holds i� Δ(f) ` i . �e le�-to-right direction is clear. �e right-to-le�
direction follows since Δ(f) is prime.
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6. i ≡ k → j : First the contrapositive of the le�-to-right direction: Assume
Δ(f) 0 k → j . �en also Δ(f) ∪ {k } 0 j . Since 〈k, j〉 is 〈k=, j=〉 for some =,
we have Δ(f.=) = (Δ(f) ∪ {k })∗, and Δ(f.=) ` k but Δ(f.=) 0 j . By inductive
hypothesis, M(Δ), f .= 
 k and M(Δ), f .= 1 j . Since 'f (f.=), this means that
M(Δ), f 1 i .
Now assume Δ(f) ` k → j , and let 'ff ′. Since Δ(f) ⊆ Δ(f ′), we have: if
Δ(f ′) ` k , then Δ(f ′) ` j . In other words, for every f ′ such that 'ff ′, either
Δ(f ′) 0 k or Δ(f ′) ` j . By induction hypothesis, this means that whenever
'ff ′, either M(Δ), f ′ 1 k or M(Δ), f ′ 
 j , i.e., M(Δ), f 
 i . �

13.5 �e Completeness �eorem

�eorem 13.6. If Γ � i then Γ ` i .

Proof. We prove the contrapositive: Suppose Γ 0 i . �en by Lemma 13.3, there is a
prime set Γ∗ ⊇ Γ such that Γ∗ 0 i . Consider the canonical model M(Γ∗) for Γ∗ as
de�ned in De�nition 13.4. For anyk ∈ Γ, Γ∗ ` k . Note that Γ∗ (Λ) = Γ∗. By the Truth
Lemma (Lemma 13.5), we have M(Γ∗),Λ 
 k for all k ∈ Γ and M(Γ∗),Λ 1 i . �is
shows that Γ 2 i . �

Problems

Problem 13.1. Complete the proof of �eorem 13.1. For the cases for ¬I and ¬E,
use the de�nition of M,F 
 ¬i in De�nition 12.2, i.e., don’t treat ¬i as de�ned by
i→⊥.
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Part V

Computability and Incompleteness

Chapter 14

Turing Machine Computations

14.1 Introduction

What does it mean for a function, say, from N to N to be computable? Among the
�rst answers, and the most well known one, is that a function is computable if it
can be computed by a Turing machine. �is notion was set out by Alan Turing
in 1936. Turing machines are an example of a model of computation—they are a
mathematically precise way of de�ning the idea of a “computational procedure.”
What exactly that means is debated, but it is widely agreed that Turing machines
are one way of specifying computational procedures. Even though the term “Turing
machine” evokes the image of a physical machine with moving parts, strictly speaking
a Turing machine is a purely mathematical construct, and as such it idealizes the
idea of a computational procedure. For instance, we place no restriction on either the
time or memory requirements of a Turing machine: Turing machines can compute
something even if the computation would require more storage space or more steps
than there are atoms in the universe.

It is perhaps best to think of a Turing machine as a program for a special kind of
imaginary mechanism. �is mechanism consists of a tape and a read-write head. In
our version of Turing machines, the tape is in�nite in one direction (to the right), and
it is divided into squares, each of which may contain a symbol from a �nite alphabet.
Such alphabets can contain any number of di�erent symbols, say, but we will mainly
make do with three: ⊲, 0, and 1. When the mechanism is started, the tape is empty (i.e.,
each square contains the symbol 0) except for the le�most square, which contains ⊲,
and a �nite number of squares which contain the input. At any time, the mechanism
is in one of a �nite number of states. At the outset, the head scans the le�most square
and in a speci�ed initial state. At each step of the mechanism’s run, the content of the
square currently scanned together with the state the mechanism is in and the Turing
machine program determine what happens next. �e Turing machine program is
given by a partial function which takes as input a state @ and a symbol f and outputs
a triple 〈@′, f ′, �〉. Whenever the mechanism is in state @ and reads symbol f , it

145



14. Turing Machine Computations

Figure 14.1: A Turing machine executing its program.

replaces the symbol on the current square with f ′, the head moves le�, right, or stays
put according to whether � is !, ', or # , and the mechanism goes into state @′.

For instance, consider the situation in Figure 14.1. �e visible part of the tape
of the Turing machine contains the end-of-tape symbol ⊲ on the le�most square,
followed by three 1’s, a 0, and four more 1’s. �e head is reading the third square
from the le�, which contains a 1, and is in state @1—we say “the machine is reading a
1 in state @1.” If the program of the Turing machine returns, for input 〈@1, 1〉, the triple
〈@2, 0, # 〉, the machine would now replace the 1 on the third square with a 0, leave
the read/write head where it is, and switch to state @2. If then the program returns
〈@3, 0, '〉 for input 〈@2, 0〉, the machine would now overwrite the 0 with another 0
(e�ectively, leaving the content of the tape under the read/write head unchanged),
move one square to the right, and enter state @3. And so on.

We say that the machine halts when it encounters some state, @= , and symbol,
f such that there is no instruction for 〈@=, f〉, i.e., the transition function for input
〈@=, f〉 is unde�ned. In other words, the machine has no instruction to carry out, and
at that point, it ceases operation. Halting is sometimes represented by a speci�c halt
state ℎ. �is will be demonstrated in more detail later on.

�e beauty of Turing’s paper, “On computable numbers,” is that he presents not
only a formal de�nition, but also an argument that the de�nition captures the intuitive
notion of computability. From the de�nition, it should be clear that any function
computable by a Turing machine is computable in the intuitive sense. Turing o�ers
three types of argument that the converse is true, i.e., that any function that we
would naturally regard as computable is computable by such a machine. �ey are (in
Turing’s words):

1. A direct appeal to intuition.

2. A proof of the equivalence of two de�nitions (in case the new de�nition has a
greater intuitive appeal).

3. Giving examples of large classes of numbers which are computable.

Our goal is to try to de�ne the notion of computability “in principle,” i.e., without
taking into account practical limitations of time and space. Of course, with the broad-
est de�nition of computability in place, one can then go on to consider computation
with bounded resources; this forms the heart of the subject known as “computational
complexity.”

Historical Remarks Alan Turing invented Turing machines in 1936. While his
interest at the time was the decidability of �rst-order logic, the paper has been de-
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scribed as a de�nitive paper on the foundations of computer design. In the paper,
Turing focuses on computable real numbers, i.e., real numbers whose decimal ex-
pansions are computable; but he notes that it is not hard to adapt his notions to
computable functions on the natural numbers, and so on. Notice that this was a full
�ve years before the �rst working general purpose computer was built in 1941 (by
the German Konrad Zuse in his parent’s living room), seven years before Turing
and his colleagues at Bletchley Park built the code-breaking Colossus (1943), nine
years before the American ENIAC (1945), twelve years before the �rst British general
purpose computer—the Manchester Small-Scale Experimental Machine—was built in
Manchester (1948), and thirteen years before the Americans �rst tested the BINAC
(1949). �e Manchester SSEM has the distinction of being the �rst stored-program
computer—previous machines had to be rewired by hand for each new task.

14.2 Representing Turing Machines

Turing machines can be represented visually by state diagrams. �e diagrams are
composed of state cells connected by arrows. Unsurprisingly, each state cell represents
a state of the machine. Each arrow represents an instruction that can be carried out
from that state, with the speci�cs of the instruction wri�en above or below the
appropriate arrow. Consider the following machine, which has only two internal
states, @0 and @1, and one instruction:

@0start @1
0, 1, '

Recall that the Turing machine has a read/write head and a tape with the input wri�en
on it. �e instruction can be read as if reading a 0 in state @0, write a 1, move right,
and move to state @1. �is is equivalent to the transition function mapping 〈@0, 0〉 to
〈@1, 1, '〉.

Example 14.1. Even Machine: �e following Turing machine halts if, and only if,
there are an even number of 1’s on the tape (under the assumption that all 1’s come
before the �rst 0 on the tape).

@0start @1

1, 1, '
0, 0, '

1, 1, '

�e state diagram corresponds to the following transition function:

X (@0, 1) = 〈@1, 1, '〉,
X (@1, 1) = 〈@0, 1, '〉,
X (@1, 0) = 〈@1, 0, '〉

�e above machine halts only when the input is an even number of strokes.
Otherwise, the machine (theoretically) continues to operate inde�nitely. For any
machine and input, it is possible to trace through the con�gurations of the machine in
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order to determine the output. We will give a formal de�nition of con�gurations later.
For now, we can intuitively think of con�gurations as a series of diagrams showing
the state of the machine at any point in time during operation. Con�gurations show
the content of the tape, the state of the machine and the location of the read/write
head.

Let us trace through the con�gurations of the even machine if it is started with
an input of four 1’s. In this case, we expect that the machine will halt. We will then
run the machine on an input of three 1’s, where the machine will run forever.

�e machine starts in state @0, scanning the le�most 1. We can represent the
initial state of the machine as follows:

⊲101110 . . .

�e above con�guration is straightforward. As can be seen, the machine starts in
state one, scanning the le�most 1. �is is represented by a subscript of the state name
on the �rst 1. �e applicable instruction at this point is X (@0, 1) = 〈@1, 1, '〉, and so
the machine moves right on the tape and changes to state @1.

⊲111110 . . .

Since the machine is now in state @1 scanning a 1, we have to “follow” the instruction
X (@1, 1) = 〈@0, 1, '〉. �is results in the con�guration

⊲111010 . . .

As the machine continues, the rules are applied again in the same order, resulting in
the following two con�gurations:

⊲111110 . . .

⊲111100 . . .

�e machine is now in state @0 scanning a 0. Based on the transition diagram, we
can easily see that there is no instruction to be carried out, and thus the machine has
halted. �is means that the input has been accepted.

Suppose next we start the machine with an input of three 1’s. �e �rst few
con�gurations are similar, as the same instructions are carried out, with only a small
di�erence of the tape input:

⊲10110 . . .
⊲11110 . . .
⊲11100 . . .
⊲11101 . . .

�e machine has now traversed past all the 1’s, and is reading a 0 in state @1. As
shown in the diagram, there is an instruction of the form X (@1, 0) = 〈@1, 0, '〉. Since
the tape is �lled with 0 inde�nitely to the right, the machine will continue to execute
this instruction forever, staying in state @1 and moving ever further to the right. �e
machine will never halt, and does not accept the input.

It is important to note that not all machines will halt. If halting means that the
machine runs out of instructions to execute, then we can create a machine that never
halts simply by ensuring that there is an outgoing arrow for each symbol at each
state. �e even machine can be modi�ed to run inde�nitely by adding an instruction
for scanning a 0 at @0.
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Example 14.2.

@0start @1

1, 1, '
0, 0, ' 0, 0, '

1, 1, '

Machine tables are another way of representing Turing machines. Machine tables
have the tape alphabet displayed on the G-axis, and the set of machine states across
the ~-axis. Inside the table, at the intersection of each state and symbol, is wri�en
the rest of the instruction—the new state, new symbol, and direction of movement.
Machine tables make it easy to determine in what state, and for what symbol, the
machine halts. Whenever there is a gap in the table is a possible point for the machine
to halt. Unlike state diagrams and instruction sets, where the points at which the
machine halts are not always immediately obvious, any halting points are quickly
identi�ed by �nding the gaps in the machine table.

Example 14.3. �e machine table for the even machine is:

0 1
@0 1, @1, '
@1 0, @1, 0 1, @0, '

As we can see, the machine halts when scanning a blank in state @0.

So far we have only considered machines that read and accept input. However,
Turing machines have the capacity to both read and write. An example of such a
machine (although there are many, many examples) is a doubler. A doubler, when
started with a block of = 1’s on the tape, outputs a block of 2= 1’s.

Example 14.4. Before building a doubler machine, it is important to come up with a
strategy for solving the problem. Since the machine (as we have formulated it) cannot
remember how many 1’s it has read, we need to come up with a way to keep track of
all the 1’s on the tape. One such way is to separate the output from the input with
a 0. �e machine can then erase the �rst 1 from the input, traverse over the rest of
the input, leave a 0, and write two new 1’s. �e machine will then go back and �nd
the second 1 in the input, and double that one as well. For each one 1 of input, it will
write two 1’s of output. By erasing the input as the machine goes, we can guarantee
that no 1 is missed or doubled twice. When the entire input is erased, there will be 2=
1’s le� on the tape. �e state diagram of the resulting Turing machine is depicted in
Figure 14.2.

14.3 Turing Machines

�e formal de�nition of what constitutes a Turing machine looks abstract, but is
actually simple: it merely packs into one mathematical structure all the information
needed to specify the workings of a Turing machine. �is includes (1) which states
the machine can be in, (2) which symbols are allowed to be on the tape, (3) which
state the machine should start in, and (4) what the instruction set of the machine is.
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@0start @1 @2

@3@4@5

1, 0, '

1, 1, '

0, 0, '

1, 1, '

0, 1, '

0, 1, !

1, 1, !

1, 1, !

0, 0, !

1, 1, !

0, 0, '

Figure 14.2: A doubler machine

De�nition 14.5 (Turing machine). A Turing machine " is a tuple 〈&, Σ, @0, X〉 con-
sisting of

1. a �nite set of states & ,

2. a �nite alphabet Σ which includes ⊲ and 0,

3. an initial state @0 ∈ & ,

4. a �nite instruction set X : & × Σ ↦→ & × Σ × {!, ', # }.

�e partial function X is also called the transition function of " .

We assume that the tape is in�nite in one direction only. For this reason it is useful
to designate a special symbol ⊲ as a marker for the le� end of the tape. �is makes it
easier for Turing machine programs to tell when they’re “in danger” of running o�
the tape.

Example 14.6. Even Machine: �e even machine is formally the quadruple 〈&, Σ, @0, X〉
where

& = {@0, @1}
Σ = {⊲, 0, 1},

X (@0, 1) = 〈@1, 1, '〉,
X (@1, 1) = 〈@0, 1, '〉,
X (@1, 0) = 〈@1, 0, '〉.

14.4 Con�gurations and Computations

Recall tracing through the con�gurations of the even machine earlier. �e imaginary
mechanism consisting of tape, read/write head, and Turing machine program is really
just an intuitive way of visualizing what a Turing machine computation is. Formally,
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we can de�ne the computation of a Turing machine on a given input as a sequence of
con�gurations—and a con�guration in turn is a sequence of symbols (corresponding
to the contents of the tape at a given point in the computation), a number indicating
the position of the read/write head, and a state. Using these, we can de�ne what the
Turing machine " computes on a given input.

De�nition 14.7 (Con�guration). A con�guration of Turing machine" = 〈&, Σ, @0, X〉
is a triple 〈�,<,@〉 where

1. � ∈ Σ∗ is a �nite sequence of symbols from Σ,

2. < ∈ N is a number < len(�), and

3. @ ∈ &

Intuitively, the sequence � is the content of the tape (symbols of all squares from the
le�most square to the last non-blank or previously visited square),< is the number
of the square the read/write head is scanning (beginning with 0 being the number of
the le�most square), and @ is the current state of the machine.

�e potential input for a Turing machine is a sequence of symbols, usually a
sequence that encodes a number in some form. �e initial con�guration of the Turing
machine is that con�guration in which we start the Turing machine to work on
that input: the tape contains the tape end marker immediately followed by the input
wri�en on the squares to the right, the read/write head is scanning the le�most square
of the input (i.e., the square to the right of the le� end marker), and the mechanism is
in the designated start state @0.

De�nition 14.8 (Initial con�guration). �e initial con�guration of " for input
� ∈ Σ∗ is

〈⊲ ⌢ � , 1, @0〉.

�e ⌢ symbol is for concatenation—we want to ensure that there are no blanks
between the le� end marker and the beginning of the input.

De�nition 14.9. We say that a con�guration 〈�,<,@〉 yields the con�guration 〈� ′,<′, @′〉
in one step (according to "), i�

1. the<-th symbol of � is f ,

2. the instruction set of " speci�es X (@, f) = 〈@′, f ′, �〉,

3. the<-th symbol of � ′ is f ′, and

4. a) � = ! and<′ =< − 1 if< > 0, otherwise<′ = 0, or
b) � = ' and<′ =< + 1, or
c) � = # and<′ =<,

5. if<′ = len(�), then len(� ′) = len(�) + 1 and the<′-th symbol of � ′ is 0.

6. for all 8 such that 8 < len(� ′) and 8 ≠<, � ′(8) = � (8),
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De�nition 14.10. A run of " on input � is a sequence �8 of con�gurations of " ,
where �0 is the initial con�guration of " for input � , and each �8 yields �8+1 in one
step.

We say that " halts on input � a�er : steps if �: = 〈�,<,@〉, the<th symbol of �
is f , and X (@, f) is unde�ned. In that case, the output of " for input � is $ , where $
is a string of symbols not beginning or ending in 0 such that � = ⊲ ⌢ 08 ⌢ $ ⌢ 09
for some 8, 9 ∈ N.

According to this de�nition, the output$ of" always begins and ends in a symbol
other than 0, or, if at time : the entire tape is �lled with 0 (except for the le�most ⊲),
$ is the empty string.

14.5 Unary Representation of Numbers

Turing machines work on sequences of symbols wri�en on their tape. Depending
on the alphabet a Turing machine uses, these sequences of symbols can represent
various inputs and outputs. Of particular interest, of course, are Turing machines
which compute arithmetical functions, i.e., functions of natural numbers. A simple
way to represent positive integers is by coding them as sequences of a single symbol 1.
If = ∈ N, let 1= be the empty sequence if = = 0, and otherwise the sequence consisting
of exactly = 1’s.

De�nition 14.11 (Computation). A Turing machine " computes the function
5 : N= → N i� " halts on input

1:1 01:2 0 . . . 01:=

with output 15 (:1,...,:=) .

Example 14.12. Addition: Build a machine that, when given an input of two non-
empty strings of 1’s of length = and<, computes the function 5 (=,<) = = +<.

We want to come up with a machine that starts with two blocks of strokes on the
tape and halts with one block of strokes. We �rst need a method to carry out. �e
input strokes are separated by a blank, so one method would be to write a stroke on
the square containing the blank, and erase the �rst (or last) stroke. �is would result
in a block of = +< 1’s. Alternatively, we could proceed in a similar way to the doubler
machine, by erasing a stroke from the �rst block, and adding one to the second block
of strokes until the �rst block has been removed completely. We will proceed with
the former example.

@0start @1 @2
0, 1, '

1, 1, ' 1, 1, '

0, 0, !

1, 0, #

14.6 Halting States

Although we have de�ned our machines to halt only when there is no instruction
to carry out, common representations of Turing machines have a dedicated halting
state, ℎ, such that ℎ ∈ & .
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�e idea behind a halting state is simple: when the machine has �nished operation
(it is ready to accept input, or has �nished writing the output), it goes into a state ℎ
where it halts. Some machines have two halting states, one that accepts input and
one that rejects input.

Example 14.13. Halting States. To elucidate this concept, let us begin with an alter-
ation of the even machine. Instead of having the machine halt in state @0 if the input
is even, we can add an instruction to send the machine into a halt state.

@0start @1

ℎ

1, 1, '

0, 0, #

0, 0, '

1, 1, '

Let us further expand the example. When the machine determines that the input
is odd, it never halts. We can alter the machine to include a reject state by replacing
the looping instruction with an instruction to go to a reject state A .

@0start @1

ℎ A

1, 1, '

0, 0, # 0, 0, #

1, 1, '

Adding a dedicated halting state can be advantageous in cases like this, where
it makes explicit when the machine accepts/rejects certain inputs. However, it is
important to note that no computing power is gained by adding a dedicated halting
state. Similarly, a less formal notion of halting has its own advantages. �e de�nition
of halting used so far in this chapter makes the proof of the Halting Problem intuitive
and easy to demonstrate. For this reason, we continue with our original de�nition.

14.7 Combining Turing Machines

�e examples of Turing machines we have seen so far have been fairly simple in
nature. But in fact, any problem that can be solved with any modern programming
language can also be solved with Turing machines. To build more complex Turing
machines, it is important to convince ourselves that we can combine them, so we
can build machines to solve more complex problems by breaking the procedure into
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simpler parts. If we can �nd a natural way to break a complex problem down into
constituent parts, we can tackle the problem in several stages, creating several simple
Turing machines and combining them into one machine that can solve the problem.
�is point is especially important when tackling the Halting Problem in the next
section.

Example 14.14. Combining Machines: Design a machine that computes the function
5 (<,=) = 2(< + =).

In order to build this machine, we can combine two machines we are already
familiar with: the addition machine, and the doubler. We begin by drawing a state
diagram for the addition machine.

@0start @1 @2
0, 1, '

1, 1, ' 1, 1, '

0, 0, !

1, 0, #

Instead of halting at state @2, we want to continue operation in order to double the
output. Recall that the doubler machine erases the �rst stroke in the input and writes
two strokes in a separate output. Let’s add an instruction to make sure the tape head
is reading the �rst stroke of the output of the addition machine.

@0start @1 @2

@3

@4

0, 1, '

1, 1, ' 1, 1, '

0, 0, !

1, 0, !

1, 1, !

⊲, ⊲, '

It is now easy to double the input—all we have to do is connect the doubler machine
onto state @4. �is requires renaming the states of the doubler machine so that they
start at @4 instead of @0—this way we don’t end up with two starting states. �e �nal
diagram should look as in Figure 14.3.

14.8 Variants of Turing Machines

�ere are in fact many possible ways to de�ne Turing machines, of which ours is
only one. In some ways, our de�nition is more liberal than others. We allow arbitrary
�nite alphabets, a more restricted de�nition might allow only two tape symbols, 1
and 0. We allow the machine to write a symbol to the tape and move at the same
time, other de�nitions allow either writing or moving. We allow the possibility of
writing without moving the tape head, other de�nitions leave out the # “instruction.”
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@0start @1 @2

@3

@4 @5 @6

@7@8@9

0, 1, '

1, 1, ' 1, 1, '

0, 0, !

1, 0, !

1, 1, !

⊲, ⊲, '

1, 0, '

1, 1, '

0, 0, '

1, 1, '

0, 1, '

0, 1, !

1, 1, !

1, 1, !

0, 0, !

1, 1, !

0, 0, '

Figure 14.3: Combining adder and doubler machines

In other ways, our de�nition is more restrictive. We assumed that the tape is in�nite
in one direction only, other de�nitions allow the tape to be in�nite both to the le�
and the right. In fact, one can even allow any number of separate tapes, or even an
in�nite grid of squares. We represent the instruction set of the Turing machine by a
transition function; other de�nitions use a transition relation where the machine has
more than one possible instruction in any given situation.

�is last relaxation of the de�nition is particularly interesting. In our de�nition,
when the machine is in state @ reading symbol f , X (@, f) determines what the new
symbol, state, and tape head position is. But if we allow the instruction set to be a
relation between current state-symbol pairs 〈@, f〉 and new state-symbol-direction
triples 〈@′, f ′, �〉, the action of the Turing machine may not be uniquely determined—
the instruction relation may contain both 〈@, f, @′, f ′, �〉 and 〈@, f, @′′, f ′′, � ′〉. In this
case we have a non-deterministic Turing machine. �ese play an important role in
computational complexity theory.

�ere are also di�erent conventions for when a Turing machine halts: we say it
halts when the transition function is unde�ned, other de�nitions require the machine
to be in a special designated halting state. Since the tapes of our Turing machines are
in�nite in one direction only, there are cases where a Turing machine can’t properly
carry out an instruction: if it reads the le�most square and is supposed to move le�.
According to our de�nition, it just stays put instead, but we could have de�ned it so
that it halts when that happens.
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�ere are also di�erent ways of representing numbers (and hence the input-output
function computed by a Turing machine): we use unary representation, but you can
also use binary representation. �is requires two symbols in addition to 0 and ⊲.

Now here is an interesting fact: none of these variations ma�ers as to which
functions are Turing computable. If a function is Turing computable according to one
de�nition, it is Turing computable according to all of them.

14.9 �e Church-Turing �esis

Turing machines are supposed to be a precise replacement for the concept of an
e�ective procedure. Turing thought that anyone who grasped both the concept of an
e�ective procedure and the concept of a Turing machine would have the intuition
that anything that could be done via an e�ective procedure could be done by Turing
machine. �is claim is given support by the fact that all the other proposed precise
replacements for the concept of an e�ective procedure turn out to be extensionally
equivalent to the concept of a Turing machine —that is, they can compute exactly the
same set of functions. �is claim is called the Church-Turing thesis.

De�nition 14.15 (Church-Turing thesis). �e Church-Turing �esis states that
anything computable via an e�ective procedure is Turing computable.

�e Church-Turing thesis is appealed to in two ways. �e �rst kind of use of the
Church-Turing thesis is an excuse for laziness. Suppose we have a description of an
e�ective procedure to compute something, say, in “pseudo-code.” �en we can invoke
the Church-Turing thesis to justify the claim that the same function is computed by
some Turing machine, even if we have not in fact constructed it.

�e other use of the Church-Turing thesis is more philosophically interesting. It
can be shown that there are functions which cannot be computed by Turing machines.
From this, using the Church-Turing thesis, one can conclude that it cannot be e�ec-
tively computed, using any procedure whatsoever. For if there were such a procedure,
by the Church-Turing thesis, it would follow that there would be a Turing machine.
So if we can prove that there is no Turing machine that computes it, there also can’t
be an e�ective procedure. In particular, the Church-Turing thesis is invoked to claim
that the so-called halting problem not only cannot be solved by Turing machines, it
cannot be e�ectively solved at all.

Problems

Problem 14.1. Choose an arbitary input and trace through the con�gurations of the
doubler machine in Example 14.4.

Problem 14.2. �e double machine in Example 14.4 writes its output to the right
of the input. Come up with a new method for solving the doubler problem which
generates its output immediately to the right of the end-of-tape marker. Build a
machine that executes your method. Check that your machine works by tracing
through the con�gurations.

Problem 14.3. Design a Turing-machine with alphabet {⊲, 0, �, �} that accepts, i.e.,
halts on, any string of �’s and �’s where the number of�’s is the same as the number
of �’s and all the �’s precede all the �’s, and rejects, i.e., does not halt on, any string
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where the number of �’s is not equal to the number of �’s or the �’s do not precede
all the �’s. (E.g., the machine should accept����, and������, but reject both���
and ��������.)

Problem 14.4. Design a Turing-machine with alphabet {⊲, 0, �, �} that takes as input
any string U of �’s and �’s and duplicates them to produce an output of the form UU .
(E.g. input ���� should result in output ��������).

Problem 14.5. Alphabetical?: Design a Turing-machine with alphabet {⊲, 0, �, �}
that when given as input a �nite sequence of �’s and �’s checks to see if all the �’s
appear to the le� of all the �’s or not. �e machine should leave the input string on
the tape, and either halt if the string is “alphabetical”, or loop forever if the string is
not.

Problem 14.6. Alphabetizer: Design a Turing-machine with alphabet {⊲, 0, �, �} that
takes as input a �nite sequence of �’s and �’s rearranges them so that all the �’s
are to the le� of all the �’s. (e.g., the sequence ����� should become the sequence
�����, and the sequence ������ should become the sequence ������).

Problem 14.7. Trace through the con�gurations of the machine for input 〈3, 5〉.

Problem 14.8. Subtraction: Design a Turing machine that when given an input of
two non-empty strings of strokes of length = and <, where = > <, computes the
function 5 (=,<) = = −<.

Problem 14.9. Equality: Design a Turing machine to compute the following function:

equality(G,~) =
{

1 if G = ~

0 if G ≠ ~

where G and ~ are integers greater than 0.

Problem 14.10. Design a Turing machine to compute the function min(G,~) where
G and ~ are positive integers represented on the tape by strings of 1’s separated by a
0. You may use additional symbols in the alphabet of the machine.

�e function min selects the smallest value from its arguments, so min(3, 5) = 3,
min(20, 16) = 16, and min(4, 4) = 4, and so on.

157





Chapter 15

Undecidability

15.1 Introduction

It might seem obvious that not every function, even every arithmetical function,
can be computable. �ere are just too many, whose behavior is too complicated.
Functions de�ned from the decay of radioactive particles, for instance, or other
chaotic or random behavior. Suppose we start counting 1-second intervals from a
given time, and de�ne the function 5 (=) as the number of particles in the universe
that decay in the =-th 1-second interval a�er that initial moment. �is seems like a
candidate for a function we cannot ever hope to compute.

But it is one thing to not be able to imagine how one would compute such functions,
and quite another to actually prove that they are uncomputable. In fact, even functions
that seem hopelessly complicated may, in an abstract sense, be computable. For
instance, suppose the universe is �nite in time—some day, in the very distant future
the universe will contract into a single point, as some cosmological theories predict.
�en there is only a �nite (but incredibly large) number of seconds from that initial
moment for which 5 (=) is de�ned. And any function which is de�ned for only �nitely
many inputs is computable: we could list the outputs in one big table, or code it in
one very big Turing machine state transition diagram.

We are o�en interested in special cases of functions whose values give the answers
to yes/no questions. For instance, the question “is = a prime number?” is associated
with the function

isprime(=) =
{

1 if = is prime
0 otherwise.

We say that a yes/no question can be e�ectively decided, if the associated 1/0-valued
function is e�ectively computable.

To prove mathematically that there are functions which cannot be e�ectively
computed, or problems that cannot e�ectively decided, it is essential to �x a speci�c
model of computation, and show about it that there are functions it cannot compute
or problems it cannot decide. We can show, for instance, that not every function can
be computed by Turing machines, and not every problem can be decided by Turing
machines. We can then appeal to the Church-Turing thesis to conclude that not only
are Turing machines not powerful enough to compute every function, but no e�ective
procedure can.

�e key to proving such negative results is the fact that we can assign numbers
to Turing machines themselves. �e easiest way to do this is to enumerate them,
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perhaps by �xing a speci�c way to write down Turing machines and their programs,
and then listing them in a systematic fashion. Once we see that this can be done,
then the existence of Turing-uncomputable functions follows by simple cardinality
considerations: the set of functions from N to N (in fact, even just from N to {0, 1})
are uncountable, but since we can enumerate all the Turing machines, the set of
Turing-computable functions is only countably in�nite.

We can also de�ne speci�c functions and problems which we can prove to be
uncomputable and undecidable, respectively. One such problem is the so-called
Halting Problem. Turing machines can be �nitely described by listing their instructions.
Such a description of a Turing machine, i.e., a Turing machine program, can of course
be used as input to another Turing machine. So we can consider Turing machines that
decide questions about other Turing machines. One particularly interesting question
is this: “Does the given Turing machine eventually halt when started on input =?” It
would be nice if there were a Turing machine that could decide this question: think
of it as a quality-control Turing machine which ensures that Turing machines don’t
get caught in in�nite loops and such. �e interesting fact, which Turing proved, is
that there cannot be such a Turing machine. �ere cannot be a single Turing machine
which, when started on input consisting of a description of a Turing machine " and
some number =, will always halt with either output 1 or 0 according to whether "
machine would have halted when started on input = or not.

Once we have examples of speci�c undecidable problems we can use them to show
that other problems are undecidable, too. For instance, one celebrated undecidable
problem is the question, “Is the �rst-order formula i valid?”. �ere is no Turing
machine which, given as input a �rst-order formula i , is guaranteed to halt with
output 1 or 0 according to whether i is valid or not. Historically, the question of
�nding a procedure to e�ectively solve this problem was called simply “the” decision
problem; and so we say that the decision problem is unsolvable. Turing and Church
proved this result independently at around the same time, so it is also called the
Church-Turing �eorem.

15.2 Enumerating Turing Machines

We can show that the set of all Turing machines is countable. �is follows from the
fact that each Turing machine can be �nitely described. �e set of states and the tape
vocabulary are �nite sets. �e transition function is a partial function from & × Σ
to & × Σ × {!, ', # }, and so likewise can be speci�ed by listing its values for the
�nitely many argument pairs for which it is de�ned. Of course, strictly speaking,
the states and vocabulary can be anything; but the behavior of the Turing machine
is independent of which objects serve as states and vocabulary. So we may assume,
for instance, that the states and vocabulary symbols are natural numbers, or that the
states and vocabulary are all strings of le�ers and digits.

Suppose we �x a countably in�nite vocabulary for specifying Turing machines:
f0 = ⊲, f1 = 0, f2 = 1, f3, . . . , ', !, # , @0, @1, . . . . �en any Turing machine can be
speci�ed by some �nite string of symbols from this alphabet (though not every �nite
string of symbols speci�es a Turing machine). For instance, suppose we have a Turing
machine " = 〈&, Σ, @, X〉 where

& = {@′0, . . . , @′=} ⊆ {@0, @1, . . . } and
Σ = {⊲, f ′1, f ′2, . . . , f ′<} ⊆ {f0, f1, . . . }.
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We could specify it by the string

@′0@
′
1 . . . @

′
= ⊲ f

′
1 . . . f

′
< ⊲ @ ⊲ ( (f ′0, @′0) ⊲ . . . ⊲ ( (f ′<, @′=)

where ( (f ′8 , @′9 ) is the string f ′8@′9X (f ′8 , @′9 ) if X (f ′8 , @′9 ) is de�ned, and f ′8@′9 otherwise.

�eorem 15.1. �ere are functions from N to N which are not Turing computable.

Proof. We know that the set of �nite strings of symbols from a countably in�nite
alphabet is countable. �is gives us that the set of descriptions of Turing machines, as
a subset of the �nite strings from the countable vocabulary {@0, @1, . . . , ⊲, f1, f2, . . . },
is itself enumerable. Since every Turing computable function is computed by some
(in fact, many) Turing machines, this means that the set of all Turing computable
functions from N to N is also enumerable.

On the other hand, the set of all functions from N to N is not countable. �is
follows immediately from the fact that not even the set of all functions of one argument
from N to the set {0, 1} is countable. If all functions were computable by some Turing
machine we could enumerate the set of all functions. So there are some functions
that are not Turing computable. �

15.3 �e Halting Problem

Assume we have �xed some �nite descriptions of Turing machines. Using these,
we can enumerate Turing machines via their descriptions, say, ordered by the lex-
icographic ordering. Each Turing machine thus receives an index: its place in the
enumeration "1, "2, "3, . . . of Turing machine descriptions.

We know that there must be non-Turing-computable functions: the set of Turing
machine descriptions—and hence the set of Turing machines—is enumerable, but
the set of all functions from N to N is not. But we can �nd speci�c examples of
non-computable function as well. One such function is the halting function.

De�nition 15.2 (Halting function). �e halting function ℎ is de�ned as

ℎ(4, =) =
{

0 if machine "4 does not halt for input =
1 if machine "4 halts for input =

De�nition 15.3 (Halting problem). �e Halting Problem is the problem of deter-
mining (for any 4 , =) whether the Turing machine "4 halts for an input of = strokes.

We show that ℎ is not Turing-computable by showing that a related function, B ,
is not Turing-computable. �is proof relies on the fact that anything that can be
computed by a Turing machine can be computed using just two symbols: 0 and 1, and
the fact that two Turing machines can be hooked together to create a single machine.

De�nition 15.4. �e function B is de�ned as

B (4) =
{

0 if machine "4 does not halt for input 4
1 if machine "4 halts for input 4

Lemma 15.5. �e function B is not Turing computable.
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Proof. We suppose, for contradiction, that the function B is Turing computable. �en
there would be a Turing machine ( that computes B . We may assume, without loss of
generality, that when ( halts, it does so while scanning the �rst square. �is machine
can be “hooked up” to another machine � , which halts if it is started on a blank tape
(i.e., if it reads 0 in the initial state while scanning the square to the right of the
end-of-tape symbol), and otherwise wanders o� to the right, never halting. ( ⌢ � ,
the machine created by hooking ( to � , is a Turing machine, so it is "4 for some 4
(i.e., it appears somewhere in the enumeration). Start "4 on an input of 4 1s. �ere
are two possibilities: either "4 halts or it does not halt.

1. Suppose "4 halts for an input of 4 1s. �en B (4) = 1. So ( , when started on 4 ,
halts with a single 1 as output on the tape. �en � starts with a 1 on the tape. In
that case � does not halt. But "4 is the machine ( ⌢ � , so it should do exactly
what ( followed by � would do. So "4 cannot halt for an input of 4 1’s.

2. Now suppose "4 does not halt for an input of 4 1s. �en B (4) = 0, and ( , when
started on input 4 , halts with a blank tape. � , when started on a blank tape,
immediately halts. Again, "4 does what ( followed by � would do, so "4 must
halt for an input of 4 1’s.

�is shows there cannot be a Turing machine ( : B is not Turing computable. �

�eorem 15.6 (Unsolvability of the Halting Problem). �e halting problem is
unsolvable, i.e., the function ℎ is not Turing computable.

Proof. Suppose ℎ were Turing computable, say, by a Turing machine � . We could
use � to build a Turing machine that computes B: First, make a copy of the input
(separated by a blank). �en move back to the beginning, and run � . We can clearly
make a machine that does the former, and if� existed, we would be able to “hook it up”
to such a modi�ed doubling machine to get a new machine which would determine if
"4 halts on input 4 , i.e., computes B . But we’ve already shown that no such machine
can exist. Hence, ℎ is also not Turing computable. �

15.4 �e Decision Problem

We say that �rst-order logic is decidable i� there is an e�ective method for determining
whether or not a given sentence is valid. As it turns out, there is no such method: the
problem of deciding validity of �rst-order sentences is unsolvable.

In order to establish this important negative result, we prove that the decision
problem cannot be solved by a Turing machine. �at is, we show that there is no
Turing machine which, whenever it is started on a tape that contains a �rst-order
sentence, eventually halts and outputs either 1 or 0 depending on whether the sentence
is valid or not. By the Church-Turing thesis, every function which is computable is
Turing computable. So if this “validity function” were e�ectively computable at all, it
would be Turing computable. If it isn’t Turing computable, then, it also cannot be
e�ectively computable.

Our strategy for proving that the decision problem is unsolvable is to reduce
the halting problem to it. �is means the following: We have proved that the func-
tion ℎ(4,F) that halts with output 1 if the Turing machine described by 4 halts on
input F and outputs 0 otherwise, is not Turing computable. We will show that if
there were a Turing machine that decides validity of �rst-order sentences, then there

162



15.5. Representing Turing Machines

is also Turing machine that computes ℎ. Since ℎ cannot be computed by a Turing
machine, there cannot be a Turing machine that decides validity either.

�e �rst step in this strategy is to show that for every inputF and a Turing ma-
chine " , we can e�ectively describe a sentence g (",F) representing the instruction
set of " and the input F and a sentence U (",F) expressing “" eventually halts”
such that:

� g (",F) → U (",F) i� " halts for inputF .

�e bulk of our proof will consist in describing these sentences g (",F) and U (",F)
and verifying that g (",F) → U (",F) is valid i� " halts on inputF .

15.5 Representing Turing Machines

In order to represent Turing machines and their behavior by a sentence of �rst-order
logic, we have to de�ne a suitable language. �e language consists of two parts:
predicate symbols for describing con�gurations of the machine, and expressions for
numbering execution steps (“moments”) and positions on the tape.

We introduce two kinds of predicate symbols, both of them 2-place: For each
state @, a predicate symbol &@ , and for each tape symbol f , a predicate symbol (f .
�e former allow us to describe the state of " and the position of its tape head, the
la�er allow us to describe the contents of the tape.

In order to express the positions of the tape head and the number of steps executed,
we need a way to express numbers. �is is done using a constant symbol 0, and a 1-
place function ′, the successor function. By convention it is wri�en a�er its argument
(and we leave out the parentheses). So 0 names the le�most position on the tape as
well as the time before the �rst execution step (the initial con�guration), 0′ names
the square to the right of the le�most square, and the time a�er the �rst execution
step, and so on. We also introduce a predicate symbol < to express both the ordering
of tape positions (when it means “to the le� of”) and execution steps (then it means
“before”).

Once we have the language in place, we list the “axioms” of g (",F), i.e., the
sentences which, taken together, describe the behavior of " when run on inputF .
�ere will be sentences which lay down conditions on 0, ′, and <, sentences that
describes the input con�guration, and sentences that describe what the con�guration
of " is a�er it executes a particular instruction.

De�nition 15.7. Given a Turing machine " = 〈&, Σ, @0, X〉, the language L" con-
sists of:

1. A two-place predicate symbol &@ (G,~) for every state @ ∈ & . Intuitively,
&@ (<,=) expresses “a�er = steps, " is in state @ scanning the<th square.”

2. A two-place predicate symbol (f (G,~) for every symbol f ∈ Σ. Intuitively,
(f (<,=) expresses “a�er = steps, the<th square contains symbol f .”

3. A constant symbol 0

4. A one-place function symbol ′

5. A two-place predicate symbol <
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For each number = there is a canonical term =, the numeral for =, which represents
it in L" . 0 is 0, 1 is 0′, 2 is 0′′, and so on. More formally:

0 = 0
= + 1 = =′

�e sentences describing the operation of the Turing machine " on input F =

f81 . . . f8: are the following:

1. Axioms describing numbers:

a) A sentence that says that the successor function is injective:

∀G ∀~ (G ′ = ~ ′→ G = ~)

b) A sentence that says that every number is less than its successor:

∀G G < G ′

c) A sentence that ensures that < is transitive:

∀G ∀~ ∀I ((G < ~ ∧ ~ < I) → G < I)

d) A sentence that connects < and =:

∀G ∀~ (G < ~→ G ≠ ~)

2. Axioms describing the input con�guration:

a) A�er 0 steps—before the machine starts—" is in the inital state @0, scan-
ning square 1:

&@0 (1, 0)
b) �e �rst : + 1 squares contain the symbols ⊲, f81 , . . . , f8: :

(⊲ (0, 0) ∧ (f81 (1, 0) ∧ · · · ∧ (f8: (:, 0)

c) Otherwise, the tape is empty:

∀G (: < G → (0 (G, 0))

3. Axioms describing the transition from one con�guration to the next:
For the following, let i (G,~) be the conjunction of all sentences of the form

∀I (((I < G ∨ G < I) ∧ (f (I,~)) → (f (I,~ ′))

where f ∈ Σ. We use i (<,=) to express “other than at square<, the tape a�er
= + 1 steps is the same as a�er = steps.”

a) For every instruction X (@8 , f) = 〈@ 9 , f ′, '〉, the sentence:

∀G ∀~ ((&@8 (G,~) ∧ (f (G,~)) →
(&@ 9 (G ′, ~ ′) ∧ (f′ (G,~ ′) ∧ i (G,~)))

�is says that if, a�er ~ steps, the machine is in state @8 scanning square G
which contains symbol f , then a�er ~ + 1 steps it is scanning square G + 1,
is in state @ 9 , square G now contains f ′, and every square other than G
contains the same symbol as it did a�er ~ steps.
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b) For every instruction X (@8 , f) = 〈@ 9 , f ′, !〉, the sentence:

∀G ∀~ ((&@8 (G ′, ~) ∧ (f (G ′, ~)) →
(&@ 9 (G,~ ′) ∧ (f′ (G ′, ~ ′) ∧ i (G,~))) ∧

∀~ ((&@8 (0, ~) ∧ (f (0, ~)) →
(&@ 9 (0, ~ ′) ∧ (f′ (0, ~ ′) ∧ i (0, ~)))

Take a moment to think about how this works: now we don’t start with
“if scanning square G . . . ” but: “if scanning square G + 1 . . . ” A move to the
le� means that in the next step the machine is scanning square G . But the
square that is wri�en on is G + 1. We do it this way since we don’t have
subtraction or a predecessor function.
Note that numbers of the form G + 1 are 1, 2, . . . , i.e., this doesn’t cover the
case where the machine is scanning square 0 and is supposed to move le�
(which of course it can’t—it just stays put). �at special case is covered
by the second conjunction: it says that if, a�er ~ steps, the machine is
scanning square 0 in state @8 and square 0 contains symbol f , then a�er
~ + 1 steps it’s still scanning square 0, is now in state @ 9 , the symbol
on square 0 is f ′, and the squares other than square 0 contain the same
symbols they contained o�er ~ steps.

c) For every instruction X (@8 , f) = 〈@ 9 , f ′, # 〉, the sentence:

∀G ∀~ ((&@8 (G,~) ∧ (f (G,~)) →
(&@ 9 (G,~ ′) ∧ (f′ (G,~ ′) ∧ i (G,~)))

Let g (",F) be the conjunction of all the above sentences for Turing machine " and
inputF .

In order to express that " eventually halts, we have to �nd a sentence that says
“a�er some number of steps, the transition function will be unde�ned.” Let - be the
set of all pairs 〈@, f〉 such that X (@, f) is unde�ned. Let U (",F) then be the sentence

∃G ∃~ (
∨
〈@,f 〉∈-

(&@ (G,~) ∧ (f (G,~)))

If we use a Turing machine with a designated halting state ℎ, it is even easier:
then the sentence U (",F)

∃G ∃~ &ℎ (G,~)

expresses that the machine eventually halts.

Proposition 15.8. If< < : , then g (",F) �< < :

Proof. Exercise. �

15.6 Verifying the Representation

In order to verify that our representation works, we have to prove two things. First,
we have to show that if " halts on inputF , then g (",F) → U (",F) is valid. �en,
we have to show the converse, i.e., that if g (",F) → U (",F) is valid, then " does
in fact eventually halt when run on inputF .
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�e strategy for proving these is very di�erent. For the �rst result, we have to
show that a sentence of �rst-order logic (namely, g (",F) → U (",F)) is valid. �e
easiest way to do this is to give a derivation. Our proof is supposed to work for all
" andF , though, so there isn’t really a single sentence for which we have to give a
derivation, but in�nitely many. So the best we can do is to prove by induction that,
whatever " andF look like, and however many steps it takes " to halt on inputF ,
there will be a derivation of g (",F) → U (",F).

Naturally, our induction will proceed on the number of steps " takes before it
reaches a halting con�guration. In our inductive proof, we’ll establish that for each
step = of the run of " on inputF , g (",F) � j (",F,=), where j (",F,=) correctly
describes the con�guration of " run onF a�er = steps. Now if " halts on inputF
a�er, say, = steps, j (",F,=) will describe a halting con�guration. We’ll also show
that j (",F,=) � U (",F), whenever j (",F,=) describes a halting con�guration. So,
if" halts on inputF , then for some=," will be in a halting con�guration a�er= steps.
Hence, g (",F) � j (",F,=) where j (",F,=) describes a halting con�guration, and
since in that case j (",F,=) � U (",F), we get that ) (",F) � U (",F), i.e., that
� g (",F) → U (",F).

�e strategy for the converse is very di�erent. Here we assume that � g (",F) →
U (",F) and have to prove that " halts on inputF . From the hypothesis we get that
g (",F) � U (",F), i.e., U (",F) is true in every structure in which g (",F) is true.
So we’ll describe a structure M in which g (",F) is true: its domain will be N, and
the interpretation of all the&@ and (f will be given by the con�gurations of" during
a run on input F . So, e.g., M � &@ (<,=) i� ) , when run on input F for = steps, is
in state @ and scanning square<. Now since g (",F) � U (",F) by hypothesis, and
since M � g (",F) by construction, M � U (",F). But M � U (",F) i� there is some
= ∈ |M | = N so that " , run on inputF , is in a halting con�guration a�er = steps.

De�nition 15.9. Let j (",F,=) be the sentence

&@ (<,=) ∧ (f0 (0, =) ∧ · · · ∧ (f: (:, =) ∧ ∀G (: < G → (0 (G, =))

where @ is the state of" at time =," is scanning square< at time =, square 8 contains
symbol f8 at time = for 0 ≤ 8 ≤ : and : is the right-most non-blank square of the tape
at time 0, or the right-most square the tape head has visited a�er = steps, whichever
is greater.

Lemma 15.10. If " run on input F is in a halting con�guration a�er = steps, then
j (",F,=) � U (",F).

Proof. Suppose that " halts for inputF a�er = steps. �ere is some state @, square<,
and symbol f such that:

1. A�er = steps, " is in state @ scanning square< on which f appears.

2. �e transition function X (@, f) is unde�ned.

j (",F,=) is the description of this con�guration and will include the clauses&@ (<,=)
and (f (<,=). �ese clauses together imply U (",F):

∃G ∃~ (
∨
〈@,f 〉∈-

(&@ (G,~) ∧ (f (G,~)))

since &@′ (<,=) ∧ (f′ (<,=) �
∨
〈@,f 〉∈- (&@ (<,=) ∧ (f (<,=)), as 〈@′, f ′〉 ∈ - . �
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So if " halts for input F , then there is some = such that j (",F,=) � U (",F).
We will now show that for any time =, g (",F) � j (",F,=).

Lemma 15.11. For each =, if " has not halted a�er = steps, g (",F) � j (",F,=).

Proof. Induction basis: If = = 0, then the conjuncts of j (",F, 0) are also conjuncts
of g (",F), so entailed by it.

Inductive hypothesis: If " has not halted before the =th step, then g (",F) �
j (",F,=). We have to show that (unless j (",F,=) describes a halting con�guration),
g (",F) � j (",F,= + 1).

Suppose = > 0 and a�er = steps, " started onF is in state @ scanning square<.
Since" does not halt a�er= steps, there must be an instruction of one of the following
three forms in the program of " :

1. X (@, f) = 〈@′, f ′, '〉

2. X (@, f) = 〈@′, f ′, !〉

3. X (@, f) = 〈@′, f ′, # 〉

We will consider each of these three cases in turn.

1. Suppose there is an instruction of the form (1). By De�nition 15.7(3a), this
means that

∀G ∀~ ((&@ (G,~) ∧ (f (G,~)) →
(&@′ (G ′, ~ ′) ∧ (f′ (G,~ ′) ∧ i (G,~)))

is a conjunct of g (",F). �is entails the following sentence (universal instanti-
ation,< for G and = for ~):

(&@ (<,=) ∧ (f (<,=)) →
(&@′ (<′, =′) ∧ (f′ (<,=′) ∧ i (<,=)) .

By induction hypothesis, g (",F) � j (",F,=), i.e.,

&@ (<,=) ∧ (f0 (0, =) ∧ · · · ∧ (f: (:, =) ∧ ∀G (: < G → (0 (G, =))

Since a�er = steps, tape square < contains f , the corresponding conjunct
is (f (<,=), so this entails:

&@ (<,=) ∧ (f (<,=))

We now get

&@′ (<′, =′) ∧ (f′ (<,=′) ∧
(f0 (0, =′) ∧ · · · ∧ (f: (:, =′) ∧
∀G (: < G → (0 (G, =′))

as follows: �e �rst line comes directly from the consequent of the preced-
ing conditional, by modus ponens. Each conjunct in the middle line—which
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excludes (f< (<,=′)—follows from the corresponding conjunct in j (",F,=)
together with i (<,=).
If < < : , g (",F) ` < < : (Proposition 15.8) and by transitivity of <, we
have ∀G (: < G →< < G). If < = : , then ∀G (: < G →< < G) by logic
alone. �e last line then follows from the corresponding conjunct in j (",F,=),
∀G (: < G →< < G), and i (<,=). If< < : , this already is j (",F,= + 1).
Now suppose< = : . In that case, a�er = + 1 steps, the tape head has also visited
square : + 1, which now is the right-most square visited. So j (",F,= + 1) has
a new conjunct, (0 (:

′
, =′), and the last conjuct is ∀G (: ′ < G → (0 (G, =′)). We

have to verify that these two sentences are also implied.

We already have ∀G (: < G → (0 (G, =′)). In particular, this gives us : <

:
′→ (0 (:

′
, =′). From the axiom ∀G G < G ′ we get : < :

′
. By modus ponens,

(0 (:
′
, =′) follows.

Also, since g (",F) ` : < :
′
, the axiom for transitivity of < gives us ∀G (: ′ <

G → (0 (G, =′)). (We leave the veri�cation of this as an exercise.)

2. Suppose there is an instruction of the form (2). �en, by De�nition 15.7(3b),

∀G ∀~ ((&@ (G ′, ~) ∧ (f (G ′, ~)) →
(&@′ (G,~ ′) ∧ (f′ (G ′, ~ ′) ∧ i (G,~))) ∧

∀~ ((&@8 (0, ~) ∧ (f (0, ~)) →
(&@ 9 (0, ~ ′) ∧ (f′ (0, ~ ′) ∧ i (0, ~)))

is a conjunct of g (",F). If< > 0, then let ; =< − 1 (i.e.,< = ; + 1). �e �rst
conjunct of the above sentence entails the following:

(&@ (;
′
, =) ∧ (f (;

′
, =)) →

(&@′ (;, =′) ∧ (f′ (;
′
, =′) ∧ i (;, =))

Otherwise, let ; =< = 0 and consider the following sentence entailed by the
second conjunct:

((&@8 (0, =) ∧ (f (0, =)) →
(&@ 9 (0, =′) ∧ (f′ (0, =′) ∧ i (0, =)))

Either sentence implies

&@′ (;, =′) ∧ (f′ (<,=′) ∧
(f0 (0, =′) ∧ · · · ∧ (f: (:, =′) ∧
∀G (: < G → (0 (G, =′))

as before. (Note that in the �rst case, ;
′ ≡ ; + 1 ≡ < and in the second case

; ≡ 0.) But this just is j (",F,= + 1).

3. Case (3) is le� as an exercise.
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We have shown that for any =, g (",F) � j (",F,=). �

Lemma 15.12. If " halts on inputF , then g (",F) → U (",F) is valid.

Proof. By Lemma 15.11, we know that, for any time =, the description j (",F,=) of
the con�guration of " at time = is entailed by g (",F). Suppose " halts a�er : steps.
It will be scanning square<, say. �en j (",F, :) describes a halting con�guration
of " , i.e., it contains as conjuncts both &@ (<,:) and (f (<,:) with X (@, f) unde�ned.
�us, by Lemma 15.10, j (",F, :) � U (",F). But since g (",F) � j (",F, :), we
have g (",F) � U (",F) and therefore g (",F) → U (",F) is valid. �

To complete the veri�cation of our claim, we also have to establish the reverse
direction: if g (",F) → U (",F) is valid, then " does in fact halt when started on
input<.

Lemma 15.13. If � g (",F) → U (",F), then " halts on inputF .

Proof. Consider the L" -structure M with domain N which interprets 0 as 0, ′ as the
successor function, and < as the less-than relation, and the predicates &@ and (f as
follows:

&M
@ = {〈<,=〉 | started onF , a�er = steps,

" is in state @ scanning square< }

(Mf = {〈<,=〉 | started onF , a�er = steps,
square< of " contains symbol f }

In other words, we construct the structure M so that it describes what " started on
input F actually does, step by step. Clearly, M � g (",F). If � g (",F) → U (",F),
then also M � U (",F), i.e.,

M � ∃G ∃~ (
∨
〈@,f 〉∈-

(&@ (G,~) ∧ (f (G,~))).

As |M | = N, there must be<, = ∈ N so that M � &@ (<,=) ∧ (f (<,=) for some @ and
f such that X (@, f) is unde�ned. By the de�nition of M, this means that " started on
inputF a�er = steps is in state @ and reading symbol f , and the transition function is
unde�ned, i.e., " has halted. �

15.7 �e Decision Problem is Unsolvable

�eorem 15.14. �e decision problem is unsolvable.

Proof. Suppose the decision problem were solvable, i.e., suppose there were a Turing
machine � of the following sort. Whenever � is started on a tape that contains a
sentencek of �rst-order logic as input, � eventually halts, and outputs 1 i�k is valid
and 0 otherwise. �en we could solve the halting problem as follows. We construct a
Turing machine � that, given as input the number 4 of Turing machine"4 and inputF ,
computes the corresponding sentence g ("4 ,F) → U ("4 ,F) and halts, scanning the
le�most square on the tape. �e machine � ⌢ � would then, given input 4 and F ,
�rst compute g ("4 ,F) → U ("4 ,F) and then run the decision problem machine �
on that input. � halts with output 1 i� g ("4 ,F) → U ("4 ,F) is valid and outputs 0
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15. Undecidability

otherwise. By Lemma 15.13 and Lemma 15.12, g ("4 ,F) → U ("4 ,F) is valid i� "4

halts on inputF . �us, � ⌢ � , given input 4 andF halts with output 1 i� "4 halts
on input F and halts with output 0 otherwise. In other words, � ⌢ � would solve
the halting problem. But we know, by �eorem 15.6, that no such Turing machine
can exist. �

Problems

Problem 15.1. �e �ree Halting (3-Halt) problem is the problem of giving a decision
procedure to determine whether or not an arbitrarily chosen Turing Machine halts for
an input of three strokes on an otherwise blank tape. Prove that the 3-Halt problem
is unsolvable.

Problem 15.2. Show that if the halting problem is solvable for Turing machine and
input pairs "4 and = where 4 ≠ =, then it is also solvable for the cases where 4 = =.

Problem 15.3. We proved that the halting problem is unsolvable if the input is a
number 4 , which identi�es a Turing machine "4 via an enumaration of all Turing
machines. What if we allow the description of Turing machines from section 15.2
directly as input? (�is would require a larger alphabet of course.) Can there be a
Turing machine which decides the halting problem but takes as input descriptions of
Turing machines rather than indices? Explain why or why not.

Problem 15.4. Prove Proposition 15.8. (Hint: use induction on : −<).

Problem 15.5. Complete case (3) of the proof of Lemma 15.11.

Problem 15.6. Give a derivation of (f8 (8, =′) from (f8 (8, =) and i (<,=) (assuming
8 ≠<, i.e., either 8 < < or< < 8).

Problem 15.7. Give a derivation of ∀G (: ′ < G → (0 (G, =′)) from ∀G (: < G →
(0 (G, =′)), ∀G G < G ′, and ∀G ∀~ ∀I ((G < ~ ∧ ~ < I) → G < I).)
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Chapter 16

Recursive Functions

16.1 Introduction

In order to develop a mathematical theory of computability, one has to, �rst of all,
develop a model of computability. We now think of computability as the kind of thing
that computers do, and computers work with symbols. But at the beginning of the de-
velopment of theories of computability, the paradigmatic example of computation was
numerical computation. Mathematicians were always interested in number-theoretic
functions, i.e., functions 5 : N= → N that can be computed. So it is not surprising
that at the beginning of the theory of computability, it was such functions that were
studied. �e most familiar examples of computable numerical functions, such as
addition, multiplication, exponentiation (of natural numbers) share an interesting
feature: they can be de�ned recursively. It is thus quite natural to a�empt a general
de�nition of computable function on the basis of recursive de�nitions. Among the
many possible ways to de�ne number-theoretic functions recursively, one particulalry
simple pa�ern of de�nition here becomes central: so-called primitive recursion.

In addition to computable functions, we might be interested in computable sets
and relations. A set is computable if we can compute the answer to whether or
not a given number is an element of the set, and a relation is computable i� we
can compute whether or not a tuple 〈=1, . . . , =:〉 is an element of the relation. By
considering the characteristic function of a set or relation, discussion of computable
sets and relations can be subsumed under that of computable functions. �us we can
de�ne primitive recursive relations as well, e.g., the relation “= evenly divides<” is a
primitive recursive relation.

Primitive recursive functions—those that can be de�ned using just primitive
recursion—are not, however, the only computable number-theoretic functions. Many
generalizations of primitive recursion have been considered, but the most powerful
and widely-accepted additional way of computing functions is by unbounded search.
�is leads to the de�nition of partial recursive functions, and a related de�nition to
general recursive functions. General recursive functions are computable and total, and
the de�nition characterizes exactly the partial recursive functions that happen to be
total. Recursive functions can simulate every other model of computation (Turing
machines, lambda calculus, etc.) and so represent one of the many accepted models
of computation.
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16. Recursive Functions

16.2 Primitive Recursion

A characteristic of the natural numbers is that every natural number can be reached
from 0 by applying the successor operation +1 �nitely many times—any natural
number is either 0 or the successor of . . . the successor of 0. One way to specify a
function 5 : N→ N that makes use of this fact is this: (a) specify what the value of
5 is for argument 0, and (b) also specify how to, given the value of 5 (G), compute
the value of 5 (G + 1). For (a) tells us directly what 5 (0) is, so 5 is de�ned for 0. Now,
using the instruction given by (b) for G = 0, we can compute 5 (1) = 5 (0 + 1) from
5 (0). Using the same instructions for G = 1, we compute 5 (2) = 5 (1 + 1) from 5 (1),
and so on. For every natural number G , we’ll eventually reach the step where we
de�ne 5 (G) from 5 (G + 1), and so 5 (G) is de�ned for all G ∈ N.

For instance, suppose we specify ℎ : N→ N by the following two equations:

ℎ(0) = 1
ℎ(G + 1) = 2 · ℎ(G)

If we already know how to multiply, then these equations give us the information
required for (a) and (b) above. Successively the second equation, we get that

ℎ(1) = 2 · ℎ(0) = 2,
ℎ(2) = 2 · ℎ(1) = 2 · 2,
ℎ(3) = 2 · ℎ(2) = 2 · 2 · 2,

...

We see that the function ℎ we have speci�ed is ℎ(G) = 2G .
�e characteristic feature of the natural numbers guarantees that there is only

one function 3 that meets these two criteria. A pair of equations like these is called a
de�nition by primitive recursion of the function 3 . It is so-called because we de�ne
5 “recursively,” i.e., the de�nition, speci�cally the second equation, involves 5 itself
on the right-hand-side. It is “primitive” because in de�ning 5 (G + 1) we only use the
value 5 (G), i.e., the immediately preceding value. �is is the simplest way of de�ning
a function on N recursively.

We can de�ne even more fundamental functions like addition and multiplication
by primitive recursion. In these cases, however, the functions in question are 2-place.
We �x one of the argument places, and use the other for the recursion. E.g, to de�ne
add(G,~) we can �x G and de�ne the value �rst for ~ = 0 and then for ~ + 1 in terms
of ~. Since G is �xed, it will appear on the le� and on the right side of the de�ning
equations.

add(G, 0) = G
add(G,~ + 1) = add(G,~) + 1

�ese equations specify the value of add for all G and ~. To �nd add(2, 3), for instance,
we apply the de�ning equations for G = 2, using the �rst to �nd add(2, 0) = 2, then
using the second to successively �nd add(2, 1) = 2 + 1 = 3, add(2, 2) = 3 + 1 = 4,
add(2, 3) = 4 + 1 = 5.

In the de�nition of add we used + on the right-hand-side of the second equation,
but only to add 1. In other words, we used the successor function succ(I) = I + 1 and
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applied it to the previous value add(G,~) to de�ne add(G,~ + 1). So we can think of
the recursive de�nition as given in terms of a single function which we apply to the
previous value. However, it doesn’t hurt—and sometimes is necessary—to allow the
function to depend not just on the previous value but also on G and ~. Consider:

mult(G, 0) = 0
mult(G,~ + 1) = add(mult(G,~), G)

�is is a primitive recursive de�nition of a function mult by applying the function add
to both the preceding value mult(G,~) and the �rst argument G . It also de�nes the
function mult(G,~) for all arguments G and ~. For instance, mult(2, 3) is determined
by successively computing mult(2, 0), mult(2, 1), mult(2, 2), and mult(2, 3):

mult(2, 0) = 0
mult(2, 1) = mult(2, 0 + 1) = add(mult(2, 0), 2) = add(0, 2) = 2
mult(2, 2) = mult(2, 1 + 1) = add(mult(2, 1), 2) = add(2, 2) = 4
mult(2, 3) = mult(2, 2 + 1) = add(mult(2, 2), 2) = add(4, 2) = 6

�e general pa�ern then is this: to give a primitive recursive de�nition of a
function ℎ(G0, . . . , G:−1, ~), we provide two equations. �e �rst de�nes the value of
ℎ(G0, . . . , G:−1, 0)without reference to 5 . �e second de�nes the value ofℎ(G0, . . . , G:−1, ~+
1) in terms of ℎ(G0, . . . , G:−1, ~), the other arguments G0, . . . , G:−1, and ~. Only the
immediately preceding value of ℎ may be used in that second equation. If we think of
the operations given by the right-hand-sides of these two equations as themselves
being functions 5 and 6, then the pa�ern to de�ne a new function ℎ by primitive
recursion is this:

ℎ(G0, . . . , G:−1, 0) = 5 (G0, . . . , G:−1)
ℎ(G0, . . . , G:−1, ~ + 1) = 6(G0, . . . , G:−1, ~, ℎ(G0, . . . , G:−1, ~))

In the case of add, we have : = 0 and 5 (G0) = G0 (the identity function), and
6(G0, ~, I) = I+1 (the 3-place function that returns the successor of its third argument):

add(G0, 0) = 5 (G0) = G0

add(G0, ~ + 1) = 6(G0, ~, add(G0, ~)) = succ(add(G0, ~))

In the case of mult, we have 5 (G0) = 0 (the constant function always returning 0) and
6(G0, ~, I) = add(I, G0) (the 3-place function that returns the sum of its last and �rst
argument):

mult(G0, 0) = 5 (G0) = 0
mult(G0, ~ + 1) = 6(G0, ~,mult(G0, ~)) = add(mult(G0, ~), G0)

16.3 Composition

If 5 and 6 are two one-place functions of natural numbers, we can compose them:
ℎ(G) = 6(5 (G)). �e new function ℎ(G) is then de�ned by composition from the
functions 5 and 6. We’d like to generalize this to functions of more than one argument.
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Here’s one way of doing this: suppose 5 is a :-place function, and 60, . . . , 6:−1 are
: functions which are all =-place. �en we can de�ne a new =-place function ℎ as
follows:

ℎ(G0, . . . , G=−1) = 5 (60 (G0, . . . , G=−1), . . . , 6:−1 (G0, . . . , G=−1))

If 5 and all 68 are computable, so is ℎ: To compute ℎ(G0, . . . , G=−1), �rst compute the
values ~8 = 68 (G0, . . . , G=−1) for each 8 = 0, . . . , : − 1. �en feed these values into 5 to
compute ℎ(G0, . . . , G:−1) = 5 (~0, . . . , ~:−1).

�is may seem like an overly restrictive characterization of what happens when
we compute a new function using some existing ones. For one thing, sometimes we
do not use all the arguments of a function, as when we de�ned 6(G,~, I) = succ(I)
for use in the primitive recursive de�nition of add. Suppose we are allowed use of
the following functions:

%=8 (G0, . . . , G=−1) = G8
�e functions %:8 are called projection functions: %=8 is an =-place function. �en 6 can
be de�ned by

6(G,~, I) = succ(%3
2 ).

Here the role of 5 is played by the 1-place function succ, so : = 1. And we have one
3-place function %3

2 which plays the role of 60. �e result is a 3-place function that
returns the successor of the third argument.

�e projection functions also allow us to de�ne new functions by reordering or
identifying arguments. For instance, the function ℎ(G) = add(G, G) can be de�ned by

ℎ(G0) = add(%1
0 (G0), %1

0 (G0)) .

Here : = 2, = = 1, the role of 5 (~0, ~1) is played by add, and the roles of 60 (G0) and
61 (G0) are both played by %1

0 (G0), the one-place projection function (aka the identity
function).

If 5 (~0, ~1) is a function we already have, we can de�ne the function ℎ(G0, G1) =
5 (G1, G0) by

ℎ(G0, G1) = 5 (%2
1 (G0, G1), %2

0 (G0, G1)) .

Here : = 2, = = 2, and the roles of 60 and 61 are played by %2
1 and %2

0 , respectively.
You may also worry that 60, . . . , 6:−1 are all required to have the same arity =.

(Remember that the arity of a function is the number of arguments; an=-place function
has arity =.) But adding the projection functions provides the desired �exibility. For
example, suppose 5 and 6 are 3-place functions and ℎ is the 2-place function de�ned
by

ℎ(G,~) = 5 (G, 6(G, G,~), ~).

�e de�nition of ℎ can be rewri�en with the projection functions, as

ℎ(G,~) = 5 (%2
0 (G,~), 6(%2

0 (G,~), %2
0 (G,~), %2

1 (G,~)), %2
1 (G,~)) .

�en ℎ is the composition of 5 with %2
0 , ; , and %2

1 , where

; (G,~) = 6(%2
0 (G,~), %2

0 (G,~), %2
1 (G,~)),

i.e., ; is the composition of 6 with %2
0 , %2

0 , and %2
1 .
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16.4 Primitive Recursion Functions

Let us record again how we can de�ne new functions from existing ones using
primitive recursion and composition.

De�nition 16.1. Suppose 5 is a :-place function (: ≥ 1) and 6 is a (: + 2)-place
function. �e function de�ned by primitive recursion from 5 and 6 is the (: + 1)-place
function ℎ de�ned by the equations

ℎ(G0, . . . , G:−1, 0) = 5 (G0, . . . , G:−1)
ℎ(G0, . . . , G:−1, ~ + 1) = 6(G0, . . . , G:−1, ~, ℎ(G0, . . . , G:−1, ~))

De�nition 16.2. Suppose 5 is a :-place function, and 60, . . . , 6:−1 are : functions
which are all =-place. �e function de�ned by composition from 5 and 60, . . . , 6:−1 is
the =-place function ℎ de�ned by

ℎ(G0, . . . , G=−1) = 5 (60 (G0, . . . , G=−1), . . . , 6:−1 (G0, . . . , G=−1)).

In addition to succ and the projection functions

%=8 (G0, . . . , G=−1) = G8 ,

for each natural number = and 8 < =, we will include among the primitive recursive
functions the function zero(G) = 0.

De�nition 16.3. �e set of primitive recursive functions is the set of functions from
N= to N, de�ned inductively by the following clauses:

1. zero is primitive recursive.

2. succ is primitive recursive.

3. Each projection function %=8 is primitive recursive.

4. If 5 is a:-place primitive recursive function and60, . . . ,6:−1 are=-place primitive
recursive functions, then the composition of 5 with 60, . . . , 6:−1 is primitive
recursive.

5. If 5 is a :-place primitive recursive function and 6 is a : + 2-place primitive
recursive function, then the function de�ned by primitive recursion from 5 and
6 is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest set
containing zero, succ, and the projection functions %=9 , and which is closed under
composition and primitive recursion.

Another way of describing the set of primitive recursive functions is by de�ning
it in terms of “stages.” Let (0 denote the set of starting functions: zero, succ, and the
projections. �ese are the primitive recursive functions of stage 0. Once a stage (8 has
been de�ned, let (8+1 be the set of all functions you get by applying a single instance
of composition or primitive recursion to functions already in (8 . �en

( =
⋃
8∈N

(8

is the set of all primitive recursive functions
Let us verify that add is a primitive recursive function.
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Proposition 16.4. �e addition function add(G,~) = G + ~ is primitive recursive.

Proof. We already have a primitive recursive de�nition of add in terms of two func-
tions 5 and 6 which matches the format of De�nition 16.1:

add(G0, 0) = 5 (G0) = G0

add(G0, ~ + 1) = 6(G0, ~, add(G0, ~)) = succ(add(G0, ~))

So add is primitive recursive provided 5 and 6 are as well. 5 (G0) = G0 = %
1
0 (G0), and

the projection functions count as primitive recursive, so 5 is primitive recursive. �e
function 6 is the three-place function 6(G0, ~, I) de�ned by

6(G0, ~, I) = succ(I).

�is does not yet tell us that 6 is primitive recursive, since 6 and succ are not quite
the same function: succ is one-place, and 6 has to be three-place. But we can de�ne 6
“o�cially” by composition as

6(G0, ~, I) = succ(%3
2 (G0, ~, I))

Since succ and %3
2 count as primitive recursive functions, 6 does as well, since it can

be de�ned by composition from primitive recursive functions. �

Proposition 16.5. �e multiplication function mult(G,~) = G ·~ is primitive recursive.

Proof. Exercise. �

Example 16.6. Here’s our very �rst example of a primitive recursive de�nition:

ℎ(0) = 1
ℎ(~ + 1) = 2 · ℎ(~).

�is function cannot �t into the form required by De�nition 16.1, since : = 0. �e
de�nition also involves the constants 1 and 2. To get around the �rst problem, let’s
introduce a dummy argument and de�ne the function ℎ′:

ℎ′(G0, 0) = 5 (G0) = 1
ℎ′(G0, ~ + 1) = 6(G0, ~, ℎ

′(G0, ~)) = 2 · ℎ′(G0, ~).

�e function 5 (G0) = 1 can be de�ned from succ and zero by composition: 5 (G0) =
succ(zero(G0)). �e function 6 can be de�ned by composition from 6′(I) = 2 · I and
projections:

6(G0, ~, I) = 6′(%3
2 (G0, ~, I))

and 6′ in turn can be de�ned by composition as

6′(I) = mult(6′′(I), %1
0 (I))

and

6′′(I) = succ(5 (I)),

where 5 is as above: 5 (I) = succ(zero(I)). Now that we have ℎ′ we can use composi-
tion again to let ℎ(~) = ℎ′(%1

0 (~), %1
0 (~)). �is shows that ℎ can be de�ned from the

basic functions using a sequence of compositions and primitive recursions, so ℎ is
primitive recursive.
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16.5 Primitive Recursion Notations

One advantage to having the precise inductive description of the primitive recursive
functions is that we can be systematic in describing them. For example, we can assign
a “notation” to each such function, as follows. Use symbols zero, succ, and %=8 for
zero, successor, and the projections. Now suppose 5 is de�ned by composition from a
:-place function ℎ and =-place functions 60, . . . , 6:−1, and we have assigned notations
� , �0, . . . , �:−1 to the la�er functions. �en, using a new symbol Comp:,= , we can
denote the function 5 by Comp:,= [�,�0, . . . ,�:−1]. For the functions de�ned by
primitive recursion, we can use analogous notations of the form Rec: [�,� ], where
: + 1 is the arity of the function being de�ned. With this setup, we can denote the
addition function by

Rec2 [%1
0 ,Comp1,3 [succ, %3

2 ]] .

Having these notations sometimes proves useful.

16.6 Primitive Recursive Functions are Computable

Suppose a function ℎ is de�ned by primitive recursion

ℎ( ®G, 0) = 5 ( ®G)
ℎ( ®G,~ + 1) = 6( ®G,~, ℎ( ®G,~))

and suppose the functions 5 and 6 are computable. (We use ®G to abbreviate G0, . . . ,
G:−1.) �en ℎ( ®G, 0) can obviously be computed, since it is just 5 ( ®G) which we assume
is computable. ℎ( ®G, 1) can then also be computed, since 1 = 0 + 1 and so ℎ( ®G, 1) is just

ℎ( ®G, 1) = 6( ®G, 0, ℎ( ®G, 0)) = 6( ®G, 0, 5 ( ®G)) .

We can go on in this way and compute

ℎ( ®G, 2) = 6( ®G, 1, ℎ( ®G, 1)) = 6( ®G, 1, 6( ®G, 0, 5 ( ®G)))
ℎ( ®G, 3) = 6( ®G, 2, ℎ( ®G, 2)) = 6( ®G, 2, 6( ®G, 1, 6( ®G, 0, 5 ( ®G))))
ℎ( ®G, 4) = 6( ®G, 3, ℎ( ®G, 3)) = 6( ®G, 3, 6( ®G, 2, 6( ®G, 1, 6( ®G, 0, 5 ( ®G)))))

...

�us, to compute ℎ( ®G,~) in general, successively compute ℎ( ®G, 0), ℎ( ®G, 1), . . . , until
we reach ℎ( ®G,~).

�us, a primitive recursive de�nition yields a new computable function if the func-
tions 5 and 6 are computable. Composition of functions also results in a computable
function if the functions 5 and 68 are computable.

Since the basic functions zero, succ, and %=8 are computable, and composition
and primitive recursion yield computable functions from computable functions, this
means that every primitive recursive function is computable.

16.7 Examples of Primitive Recursive Functions

We already have some examples of primitive recursive functions: the addition and
multiplication functions add and mult. �e identity function id(G) = G is primitive
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recursive, since it is just %1
0 . �e constant functions const= (G) = = are primitive

recursive since they can be de�ned from zero and succ by successive composition.
�is is useful when we want to use constants in primitive recursive de�nitions, e.g.,
if we want to de�ne the function 5 (G) = 2 · G can obtain it by composition from
const= (G) and multiplication as 5 (G) = mult(const2 (G), %1

0 (G)). We’ll make use of
this trick from now on.

Proposition 16.7. �e exponentiation function exp(G,~) = G~ is primitive recursive.

Proof. We can de�ne exp primitive recursively as

exp(G, 0) = 1
exp(G,~ + 1) = mult(G, exp(G,~)).

Strictly speaking, this is not a recursive de�nition from primitive recursive functions.
O�cially, though, we have:

exp(G, 0) = 5 (G)
exp(G,~ + 1) = 6(G,~, exp(G,~)) .

where

5 (G) = succ(zero(G)) = 1
6(G,~, I) = mult(%3

0 (G,~, I), %3
2 (G,~, I)) = G · I

and so 5 and 6 are de�ned from primitive recursive functions by composition. �

Proposition 16.8. �e predecessor function pred(~) de�ned by

pred(~) =
{

0 if ~ = 0
~ − 1 otherwise

is primitive recursive.

Proof. Note that

pred(0) = 0 and
pred(~ + 1) = ~.

�is is almost a primitive recursive de�nition. It does not, strictly speaking, �t into
the pa�ern of de�nition by primitive recursion, since that pa�ern requires at least
one extra argument G . It is also odd in that it does not actually use pred(~) in the
de�nition of pred(~ + 1). But we can �rst de�ne pred′(G,~) by

pred′(G, 0) = zero(G) = 0,
pred′(G,~ + 1) = %3

1 (G,~, pred′(G,~)) = ~.

and then de�ne pred from it by composition, e.g., as pred(G) = pred′(zero(G), %1
0 (G)).�

Proposition 16.9. �e factorial function fac(G) = G ! = 1 · 2 · 3 · · · · · G is primitive
recursive.
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Proof. �e obvious primitive recursive de�nition is

fac(0) = 1
fac(~ + 1) = fac(~) · (~ + 1).

O�cially, we have to �rst de�ne a two-place function ℎ

ℎ(G, 0) = const1 (G)
ℎ(G,~) = 6(G,~, ℎ(G,~))

where 6(G,~, I) = mult(%3
2 (G,~, I), succ(%3

1 (G,~, I))) and then let

fac(~) = ℎ(%1
0 (~), %1

0 (~))

From now on we’ll be a bit more laissez-faire and not give the o�cial de�nitions by
composition and primitive recursion. �

Proposition 16.10. Truncated subtraction, G ¤− ~, de�ned by

G ¤− ~ =

{
0 if G > ~

G − ~ otherwise

is primitive recursive.

Proof. We have:

G ¤− 0 = G

G ¤− (~ + 1) = pred(G ¤− ~) �

Proposition 16.11. �e distance between G and ~, |G − ~ |, is primitive recursive.

Proof. We have |G − ~ | = (G ¤−~)+(~ ¤−G), so the distance can be de�ned by composition
from + and ¤−, which are primitive recursive. �

Proposition 16.12. �e maximum of G and ~, max(G,~), is primitive recursive.

Proof. We can de�ne max(G,~) by composition from + and ¤− by

max(G,~) = G + (~ ¤− G).

If G is the maximum, i.e., G ≥ ~, then ~ ¤− G = 0, so G + (~ ¤− G) = G + 0 = G . If ~ is the
maximum, then ~ ¤− G = ~ − G , and so G + (~ ¤− G) = G + (~ − G) = ~. �

Proposition 16.13. �e minimum of G and ~, min(G,~), is primitive recursive.

Proof. Exercise. �

Proposition 16.14. �e set of primitive recursive functions is closed under the following
two operations:
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1. Finite sums: if 5 ( ®G, I) is primitive recursive, then so is the function

6( ®G,~) =
~∑
I=0

5 ( ®G, I).

2. Finite products: if 5 ( ®G, I) is primitive recursive, then so is the function

ℎ( ®G,~) =
~∏
I=0

5 ( ®G, I).

Proof. For example, �nite sums are de�ned recursively by the equations

6( ®G, 0) = 5 ( ®G, 0)
6( ®G,~ + 1) = 6( ®G,~) + 5 ( ®G,~ + 1). �

16.8 Primitive Recursive Relations

De�nition 16.15. A relation '( ®G) is said to be primitive recursive if its characteristic
function,

j' ( ®G) =
{

1 if '( ®G)
0 otherwise

is primitive recursive.

In other words, when one speaks of a primitive recursive relation '( ®G), one is
referring to a relation of the form j' ( ®G) = 1, where j' is a primitive recursive function
which, on any input, returns either 1 or 0. For example, the relation IsZero(G), which
holds if and only if G = 0, corresponds to the function jIsZero, de�ned using primitive
recursion by

jIsZero (0) = 1, jIsZero (G + 1) = 0.

It should be clear that one can compose relations with other primitive recursive
functions. So the following are also primitive recursive:

1. �e equality relation, G = ~, de�ned by IsZero(|G − ~ |)

2. �e less-than relation, G ≤ ~, de�ned by IsZero(G ¤− ~)

Proposition 16.16. �e set of primitive recursive relations is closed under boolean
operations, that is, if % ( ®G) and & ( ®G) are primitive recursive, so are

1. ¬% ( ®G)

2. % ( ®G) ∧& ( ®G)

3. % ( ®G) ∨& ( ®G)

4. % ( ®G) →& ( ®G)
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Proof. Suppose % ( ®G) and & ( ®G) are primitive recursive, i.e., their characteristic func-
tions j% and j& are. We have to show that the characteristic functions of ¬% ( ®G), etc.,
are also primitive recursive.

j¬% ( ®G) =
{

0 if j% ( ®G) = 1
1 otherwise

We can de�ne j¬% ( ®G) as 1 ¤− j% ( ®G).

j%∧& ( ®G) =
{

1 if j% ( ®G) = j& ( ®G) = 1
0 otherwise

We can de�ne j%∧& ( ®G) as j% ( ®G) · j& ( ®G) or as min(j% ( ®G), j& ( ®G)).
Similarly, j%∨& ( ®G) = max(j% ( ®G), j& ( ®G)) and j%→& ( ®G) = max(1 ¤−j% ( ®G), j& ( ®G)).�

Proposition 16.17. �e set of primitive recursive relations is closed under bounded
quanti�cation, i.e., if '( ®G, I) is a primitive recursive relation, then so are the relations
(∀I < ~) '( ®G, I) and (∃I < ~) '( ®G, I).

((∀I < ~) '( ®G, I) holds of ®G and ~ if and only if '( ®G, I) holds for every I less than ~,
and similarly for (∃I < ~) '( ®G, I).)

Proof. By convention, we take (∀I < 0) '( ®G, I) to be true (for the trivial reason that
there are no I less than 0) and (∃I < 0) '( ®G, I) to be false. A universal quanti�er
functions just like a �nite product or iterated minimum, i.e., if % ( ®G,~) ⇔ (∀I <

~) '( ®G, I) then j% ( ®G,~) can be de�ned by

j% ( ®G, 0) = 1
j% ( ®G,~ + 1) = min(j% ( ®G,~), j' ( ®G,~))).

Bounded existential quanti�cation can similarly be de�ned using max. Alternatively,
it can be de�ned from bounded universal quanti�cation, using the equivalence (∃I <

~) '( ®G, I) ↔ ¬(∀I < ~) ¬'( ®G, I). Note that, for example, a bounded quanti�er of the
form (∃G ≤ ~) . . . G . . . is equivalent to (∃G < ~ + 1) . . . G . . . . �

Another useful primitive recursive function is the conditional function, cond(G,~, I),
de�ned by

cond(G,~, I) =
{
~ if G = 0
I otherwise.

�is is de�ned recursively by

cond(0, ~, I) = ~, cond(G + 1, ~, I) = I.

One can use this to justify de�nitions of primitive recursive functions by cases from
primitive recursive relations:

Proposition 16.18. If 60 ( ®G), . . . , 6< ( ®G) are primitive recursive functions, and '0 ( ®G),
. . . , '<−1 ( ®G) are primitive recursive relations, then the function 5 de�ned by

5 ( ®G) =



60 ( ®G) if '0 ( ®G)
61 ( ®G) if '1 ( ®G) and not '0 ( ®G)
...

6<−1 ( ®G) if '<−1 ( ®G) and none of the previous hold
6< ( ®G) otherwise
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is also primitive recursive.

Proof. When< = 1, this is just the function de�ned by

5 ( ®G) = cond(j¬'0 ( ®G), 60 ( ®G), 61 ( ®G)) .

For< greater than 1, one can just compose de�nitions of this form. �

16.9 Bounded Minimization

It is o�en useful to de�ne a function as the least number satisfying some property
or relation % . If % is decidable, we can compute this function simply by trying out
all the possible numbers, 0, 1, 2, . . . , until we �nd the least one satisfying % . �is
kind of unbounded search takes us out of the realm of primitive recursive functions.
However, if we’re only interested in the least number less than some independently
given bound, we stay primitive recursive. In other words, and a bit more generally,
suppose we have a primitive recursive relation '(G, I). Consider the function that
maps G and ~ to the least I < ~ such that '(G, I). It, too, can be computed, by testing
whether '(G, 0), '(G, 1), . . . , '(G,~ − 1). But why is it primitive recursive?

Proposition 16.19. If '( ®G, I) is primitive recursive, so is the function<' ( ®G,~) which
returns the least I less than ~ such that '( ®G, I) holds, if there is one, and ~ otherwise.
We will write the function<' as

(min I < ~) '( ®G, I),

Proof. Note than there can be no I < 0 such that '( ®G, I) since there is no I < 0 at all.
So<' ( ®G, 0) = 0.

In case the bound is of the form ~ + 1 we have three cases: (a) �ere is a I < ~

such that '( ®G, I), in which case<' ( ®G,~ + 1) = <' ( ®G,~). (b) �ere is no such I < ~

but '( ®G,~) holds, then<' ( ®G,~ + 1) = ~. (c) �ere is no I < ~ + 1 such that '( ®G, I),
then<' (®I,~ + 1) = ~ + 1. So,

<' ( ®G, 0) = 0

<' ( ®G,~ + 1) =


<' ( ®G,~) if<' ( ®G,~) ≠ ~
~ if<' ( ®G,~) = ~ and '( ®G,~)
~ + 1 otherwise.

Note that there is a I < ~ such that '( ®G, I) i�<' ( ®G,~) ≠ ~. �

16.10 Primes

Bounded quanti�cation and bounded minimization provide us with a good deal of
machinery to show that natural functions and relations are primitive recursive. For
example, consider the relation “G divides ~”, wri�en G | ~. �e relation G | ~ holds if
division of ~ by G is possible without remainder, i.e., if ~ is an integer multiple of G .
(If it doesn’t hold, i.e., the remainder when dividing G by ~ is > 0, we write G - ~.) In
other words, G | ~ i� for some I, G · I = ~. Obviously, any such I, if it exists, must be
≤ ~. So, we have that G | ~ i� for some I ≤ ~, G · I = ~. We can de�ne the relation
G | ~ by bounded existential quanti�cation from = and multiplication by

G | ~ ⇔ (∃I ≤ ~) (G · I) = ~.
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We’ve thus shown that G | ~ is primitive recursive.
A natural number G is prime if it is neither 0 nor 1 and is only divisible by 1 and

itself. In other words, prime numbers are such that, whenever ~ | G , either ~ = 1
or ~ = G . To test if G is prime, we only have to check if ~ | G for all ~ ≤ G , since if
~ > G , then automatically ~ - G . So, the relation Prime(G), which holds i� G is prime,
can be de�ned by

Prime(G) ⇔ G ≥ 2 ∧ (∀~ ≤ G) (~ | G → ~ = 1 ∨ ~ = G)

and is thus primitive recursive.
�e primes are 2, 3, 5, 7, 11, etc. Consider the function ? (G) which returns the

Gth prime in that sequence, i.e., ? (0) = 2, ? (1) = 3, ? (2) = 5, etc. (For convenience
we will o�en write ? (G) as ?G (?0 = 2, ?1 = 3, etc.)

If we had a function nextPrime(x), which returns the �rst prime number larger
than G , ? can be easily de�ned using primitive recursion:

? (0) = 2
? (G + 1) = nextPrime(? (G))

Since nextPrime(G) is the least ~ such that ~ > G and ~ is prime, it can be easily
computed by unbounded search. But it can also be de�ned by bounded minimization,
thanks to a result due to Euclid: there is always a prime number between G and G !+ 1.

nextPrime(x) = (min ~ ≤ G ! + 1) (~ > G ∧ Prime(~)).

�is shows, that nextPrime(G) and hence ? (G) are (not just computable but) primitive
recursive.

(If you’re curious, here’s a quick proof of Euclid’s theorem. Suppose ?= is the
largest prime ≤ G and consider the product ? = ?0 · ?1 · · · · · ?= of all primes ≤ G .
Either ? + 1 is prime or there is a prime between G and ? + 1. Why? Suppose ? + 1 is
not prime. �en some prime number @ | ? + 1 where @ < ? + 1. None of the primes
≤ G divide ? + 1. (By de�nition of ? , each of the primes ?8 ≤ G divides ? , i.e., with
remainder 0. So, each of the primes ?8 ≤ G divides ? + 1 with remainder 1, and so
?8 - ? + 1.) Hence, @ is a prime > G and < ? + 1. And ? ≤ G !, so there is a prime > G

and ≤ G ! + 1.)

16.11 Sequences

�e set of primitive recursive functions is remarkably robust. But we will be able
to do even more once we have developed a adequate means of handling sequences.
We will identify �nite sequences of natural numbers with natural numbers in the
following way: the sequence 〈00, 01, 02, . . . , 0:〉 corresponds to the number

?
00+1
0 · ?01+1

1 · ?02+1
2 · · · · · ?0:+1

:
.

We add one to the exponents to guarantee that, for example, the sequences 〈2, 7, 3〉
and 〈2, 7, 3, 0, 0〉 have distinct numeric codes. We can take both 0 and 1 to code the
empty sequence; for concreteness, let Λ denote 0.

�e reason that this coding of sequences works is the so-called Fundamental
�eorem of Arithmetic: every natural number = ≥ 2 can be wri�en in one and only
one way in the form

= = ?
00
0 · ?

01
1 · · · · · ?

0:
:
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with0: ≥ 1. �is guarantees that the mapping 〈〉(00, . . . , 0: ) = 〈00, . . . , 0:〉 is injective:
di�erent sequences are mapped to di�erent numbers; to each number only at most
one sequence corresponds.

We’ll now show that the operations of determining the length of a sequence,
determining its 8th element, appending an element to a sequence, and concatenating
two sequences, are all primitive recursive.

Proposition 16.20. �e function len(B), which returns the length of the sequence B , is
primitive recursive.

Proof. Let '(8, B) be the relation de�ned by

'(8, B) i� ?8 | B ∧ ?8+1 - B .

' is clearly primitive recursive. Whenever B is the code of a non-empty sequence, i.e.,

B = ?
00+1
0 · · · · · ?0:+1

:
,

'(8, B) holds if ?8 is the largest prime such that ?8 | B , i.e., 8 = : . �e length of B thus is
8 + 1 i� ?8 is the largest prime that divides B , so we can let

len(B) =
{

0 if B = 0 or B = 1
1 + (min 8 < B) '(8, B) otherwise

We can use bounded minimization, since there is only one 8 that satis�es '(B, 8) when
B is a code of a sequence, and if 8 exists it is less than B itself. �

Proposition 16.21. �e function append(B, 0), which returns the result of appending
0 to the sequence B , is primitive recursive.

Proof. append can be de�ned by:

append(B, 0) =
{

20+1 if B = 0 or B = 1
B · ?0+1len(B) otherwise. �

Proposition 16.22. �e function element(B, 8), which returns the 8th element of B
(where the initial element is called the 0th), or 0 if 8 is greater than or equal to the length
of B , is primitive recursive.

Proof. Note that 0 is the 8th element of B i� ?0+18 is the largest power of ?8 that divides B ,
i.e., ?0+18 | B but ?0+28 - B . So:

element(B, 8) =
{

0 if 8 ≥ len(B)
(min 0 < B) (?0+28 - B) otherwise. �

Instead of using the o�cial names for the functions de�ned above, we introduce
a more compact notation. We will use (B)8 instead of element(B, 8), and 〈B0, . . . , B:〉 to
abbreviate

append(append(. . . append(Λ, B0) . . . ), B: ).

Note that if B has length : , the elements of B are (B)0, . . . , (B):−1.
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Proposition 16.23. �e function concat(B, C), which concatenates two sequences, is
primitive recursive.

Proof. We want a function concat with the property that

concat(〈00, . . . , 0:〉, 〈10, . . . , 1; 〉) = 〈00, . . . , 0: , 10, . . . , 1; 〉.

We’ll use a “helper” function hconcat(B, C, =) which concatenates the �rst = symbols
of C to B . �is function can be de�ned by primitive recursion as follows:

hconcat(B, C, 0) = B
hconcat(B, C, = + 1) = append(hconcat(B, C, =), (C)=)

�en we can de�ne concat by

concat(B, C) = hconcat(B, C, len(C)) . �

We will write B ⌢ C instead of concat(B, C).
It will be useful for us to be able to bound the numeric code of a sequence in terms

of its length and its largest element. Suppose B is a sequence of length : , each element
of which is less than or equal to some number G . �en B has at most : prime factors,
each at most ?:−1, and each raised to at most G + 1 in the prime factorization of B . In
other words, if we de�ne

sequenceBound(G, :) = ?: · (G+1)
:−1 ,

then the numeric code of the sequence B described above is at most sequenceBound(G, :).
Having such a bound on sequences gives us a way of de�ning new functions

using bounded search. For example, we can de�ne concat using bounded search. All
we need to do is write down a primitive recursive speci�cation of the object (number
of the concatenated sequence) we are looking for, and a bound on how far to look.
�e following works:

concat(B, C) = (min E < sequenceBound(B + C, len(B) + len(C)))
(len(E) = len(B) + len(C) ∧
(∀8 < len(B)) ((E)8 = (B)8 ) ∧
(∀9 < len(C)) ((E)len(B)+9 = (C) 9 ))

Proposition 16.24. �e function subseq(B, 8, =) which returns the subsequence of B of
length = beginning at the 8th element, is primitive recursive.

Proof. Exercise. �

16.12 Trees

Sometimes it is useful to represent trees as natural numbers, just like we can represent
sequences by numbers and properties of and operations on them by primitive recursive
relations and functions on their codes. We’ll use sequences and their codes to do this.
A tree can be either a single node (possibly with a label) or else a node (possibly with
a label) connected to a number of subtrees. �e node is called the root of the tree, and
the subtrees it is connected to its immediate subtrees.
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We code trees recursively as a sequence 〈:, 31, . . . , 3:〉, where : is the number of
immediate subtrees and 31, . . . , 3: the codes of the immediate subtrees. If the nodes
have labels, they can be included a�er the immediate subtrees. So a tree consisting
just of a single node with label ; would be coded by 〈0, ;〉, and a tree consisting of a
root (labelled ;1) connected to two single nodes (labelled ;2, ;3) would be coded by
〈2, 〈0, ;2〉, 〈0, ;3〉, ;1〉.

Proposition 16.25. �e function SubtreeSeq(C), which returns the code of a sequence
the elements of which are the codes of all subtrees of the tree with code C , is primitive
recursive.

Proof. First note that ISubtrees(C) = subseq(C, 1, (C)0) is primitive recursive and re-
turns the codes of the immediate subtrees of a tree C . Now we can de�ne a helper
function hSubtreeSeq(C, =) which computes the sequence of all subtrees which are =
nodes removed from the root. �e sequence of subtrees of C which is 0 nodes removed
from the root—in other words, begins at the root of C—is the sequence consisting just
of C . To obtain a sequence of all level = + 1 subtrees of C , we concatenate the level =
subtrees with a sequence consisting of all immediate subtrees of the level = subtrees.
To get a list of all these, note that if 5 (G) is a primitive recursive function return-
ing codes of sequences, then 65 (B, :) = 5 ((B)0) ⌢ . . . ⌢ 5 ((B): ) is also primitive
recursive:

6(B, 0) = 5 ((B)0)
6(B, : + 1) = 6(B, :) ⌢ 5 ((B):+1)

For instance, if B is a sequence of trees, then ℎ(B) = 6ISubtrees (B, len(B)) gives the
sequence of the immediate subtrees of the elements of B . We can use it to de�ne
hSubtreeSeq by

hSubtreeSeq(C, 0) = 〈C〉
hSubtreeSeq(C, = + 1) = hSubtreeSeq(C, =) ⌢ ℎ(hSubtree(C, =)) .

�e maximum level of subtrees in a tree coded by C , i.e., the maximum distance
between the root and a leaf node, is bounded by the code C . So a sequence of codes of
all subtrees of the tree coded by C is given by hSubtreeSeq(C, C). �

16.13 Other Recursions

Using pairing and sequencing, we can justify more exotic (and useful) forms of primi-
tive recursion. For example, it is o�en useful to de�ne two functions simultaneously,
such as in the following de�nition:

ℎ0 ( ®G, 0) = 50 ( ®G)
ℎ1 ( ®G, 0) = 51 ( ®G)

ℎ0 ( ®G,~ + 1) = 60 ( ®G,~, ℎ0 ( ®G,~), ℎ1 ( ®G,~))
ℎ1 ( ®G,~ + 1) = 61 ( ®G,~, ℎ0 ( ®G,~), ℎ1 ( ®G,~))

�is is an instance of simultaneous recursion. Another useful way of de�ning functions
is to give the value of ℎ( ®G,~ + 1) in terms of all the values ℎ( ®G, 0), . . . , ℎ( ®G,~), as in
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the following de�nition:

ℎ( ®G, 0) = 5 ( ®G)
ℎ( ®G,~ + 1) = 6( ®G,~, 〈ℎ( ®G, 0), . . . , ℎ( ®G,~)〉) .

�e following schema captures this idea more succinctly:

ℎ( ®G,~) = 6( ®G,~, 〈ℎ( ®G, 0), . . . , ℎ( ®G,~ − 1)〉)

with the understanding that the last argument to 6 is just the empty sequence when
~ is 0. In either formulation, the idea is that in computing the “successor step,” the
function ℎ can make use of the entire sequence of values computed so far. �is is
known as a course-of-values recursion. For a particular example, it can be used to
justify the following type of de�nition:

ℎ( ®G,~) =
{
6( ®G,~, ℎ( ®G, : ( ®G,~))) if : ( ®G,~) < ~
5 ( ®G) otherwise

In other words, the value of ℎ at ~ can be computed in terms of the value of ℎ at any
previous value, given by : .

You should think about how to obtain these functions using ordinary primitive
recursion. One �nal version of primitive recursion is more �exible in that one is
allowed to change the parameters (side values) along the way:

ℎ( ®G, 0) = 5 ( ®G)
ℎ( ®G,~ + 1) = 6( ®G,~, ℎ(: ( ®G), ~))

�is, too, can be simulated with ordinary primitive recursion. (Doing so is tricky. For
a hint, try unwinding the computation by hand.)

16.14 Non-Primitive Recursive Functions

�e primitive recursive functions do not exhaust the intuitively computable functions.
It should be intuitively clear that we can make a list of all the unary primitive recursive
functions, 50, 51, 52, . . . such that we can e�ectively compute the value of 5G on input
~; in other words, the function 6(G,~), de�ned by

6(G,~) = 5G (~)

is computable. But then so is the function

ℎ(G) = 6(G, G) + 1
= 5G (G) + 1.

For each primitive recursive function 58 , the value of ℎ and 58 di�er at 8 . So ℎ is
computable, but not primitive recursive; and one can say the same about 6. �is is an
“e�ective” version of Cantor’s diagonalization argument.

One can provide more explicit examples of computable functions that are not
primitive recursive. For example, let the notation 6= (G) denote 6(6(. . . 6(G))), with =
6’s in all; and de�ne a sequence 60, 61, . . . of functions by

60 (G) = G + 1
6=+1 (G) = 6G= (G)
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You can con�rm that each function 6= is primitive recursive. Each successive function
grows much faster than the one before; 61 (G) is equal to 2G , 62 (G) is equal to 2G · G ,
and 63 (G) grows roughly like an exponential stack of G 2’s. Ackermann’s function is
essentially the function � (G) = 6G (G), and one can show that this grows faster than
any primitive recursive function.

Let us return to the issue of enumerating the primitive recursive functions. Remem-
ber that we have assigned symbolic notations to each primitive recursive function;
so it su�ces to enumerate notations. We can assign a natural number #(� ) to each
notation � , recursively, as follows:

#(0) = 〈0〉
#(() = 〈1〉

#(%=8 ) = 〈2, =, 8〉
#(Comp:,; [�,�0, . . . ,�:−1]) = 〈3, :, ;, #(� ), #(�0), . . . , #(�:−1)〉

#(Rec; [�,� ]) = 〈4, ;, #(�), #(� )〉

Here we are using the fact that every sequence of numbers can be viewed as a natural
number, using the codes from the last section. �e upshot is that every code is
assigned a natural number. Of course, some sequences (and hence some numbers)
do not correspond to notations; but we can let 58 be the unary primitive recursive
function with notation coded as 8 , if 8 codes such a notation; and the constant 0
function otherwise. �e net result is that we have an explicit way of enumerating the
unary primitive recursive functions.

(In fact, some functions, like the constant zero function, will appear more than
once on the list. �is is not just an artifact of our coding, but also a result of the fact
that the constant zero function has more than one notation. We will later see that
one can not computably avoid these repetitions; for example, there is no computable
function that decides whether or not a given notation represents the constant zero
function.)

We can now take the function 6(G,~) to be given by 5G (~), where 5G refers to the
enumeration we have just described. How do we know that 6(G,~) is computable?
Intuitively, this is clear: to compute 6(G,~), �rst “unpack” G , and see if it is a notation
for a unary function. If it is, compute the value of that function on input ~.

You may already be convinced that (with some work!) one can write a program
(say, in Java or C++) that does this; and now we can appeal to the Church-Turing
thesis, which says that anything that, intuitively, is computable can be computed by
a Turing machine.

Of course, a more direct way to show that 6(G,~) is computable is to describe
a Turing machine that computes it, explicitly. �is would, in particular, avoid the
Church-Turing thesis and appeals to intuition. Soon we will have built up enough
machinery to show that 6(G,~) is computable, appealing to a model of computation
that can be simulated on a Turing machine: namely, the recursive functions.

16.15 Partial Recursive Functions

To motivate the de�nition of the recursive functions, note that our proof that there
are computable functions that are not primitive recursive actually establishes much
more. �e argument was simple: all we used was the fact was that it is possible to
enumerate functions 50, 51, . . . such that, as a function of G and ~, 5G (~) is computable.
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So the argument applies to any class of functions that can be enumerated in such a
way. �is puts us in a bind: we would like to describe the computable functions
explicitly; but any explicit description of a collection of computable functions cannot
be exhaustive!

�e way out is to allow partial functions to come into play. We will see that it
is possible to enumerate the partial computable functions. In fact, we already pre�y
much know that this is the case, since it is possible to enumerate Turing machines
in a systematic way. We will come back to our diagonal argument later, and explore
why it does not go through when partial functions are included.

�e question is now this: what do we need to add to the primitive recursive
functions to obtain all the partial recursive functions? We need to do two things:

1. Modify our de�nition of the primitive recursive functions to allow for partial
functions as well.

2. Add something to the de�nition, so that some new partial functions are included.

�e �rst is easy. As before, we will start with zero, successor, and projections,
and close under composition and primitive recursion. �e only di�erence is that we
have to modify the de�nitions of composition and primitive recursion to allow for
the possibility that some of the terms in the de�nition are not de�ned. If 5 and 6 are
partial functions, we will write 5 (G) ↓ to mean that 5 is de�ned at G , i.e., G is in the
domain of 5 ; and 5 (G) ↑ to mean the opposite, i.e., that 5 is not de�ned at G . We will
use 5 (G) ' 6(G) to mean that either 5 (G) and 6(G) are both unde�ned, or they are
both de�ned and equal. We will use these notations for more complicated terms as
well. We will adopt the convention that if ℎ and 60, . . . , 6: all are partial functions,
then

ℎ(60 ( ®G), . . . , 6: ( ®G))

is de�ned if and only if each 68 is de�ned at ®G , and ℎ is de�ned at 60 ( ®G), . . . , 6: ( ®G).
With this understanding, the de�nitions of composition and primitive recursion for
partial functions is just as above, except that we have to replace “=” by “'”.

What we will add to the de�nition of the primitive recursive functions to obtain
partial functions is the unbounded search operator. If 5 (G, ®I) is any partial function on
the natural numbers, de�ne `G 5 (G, ®I) to be

the least G such that 5 (0, ®I), 5 (1, ®I), . . . , 5 (G, ®I) are all de�ned, and
5 (G, ®I) = 0, if such an G exists

with the understanding that `G 5 (G, ®I) is unde�ned otherwise. �is de�nes `G 5 (G, ®I)
uniquely.

Note that our de�nition makes no reference to Turing machines, or algorithms, or
any speci�c computational model. But like composition and primitive recursion, there
is an operational, computational intuition behind unbounded search. When it comes
to the computability of a partial function, arguments where the function is unde�ned
correspond to inputs for which the computation does not halt. �e procedure for
computing `G 5 (G, ®I) will amount to this: compute 5 (0, ®I), 5 (1, ®I), 5 (2, ®I) until a
value of 0 is returned. If any of the intermediate computations do not halt, however,
neither does the computation of `G 5 (G, ®I).

If '(G, ®I) is any relation, `G '(G, ®I) is de�ned to be `G (1 ¤− j' (G, ®I)). In other
words, `G '(G, ®I) returns the least value of G such that '(G, ®I) holds. So, if 5 (G, ®I)
is a total function, `G 5 (G, ®I) is the same as `G (5 (G, ®I) = 0). But note that our
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original de�nition is more general, since it allows for the possibility that 5 (G, ®I) is
not everywhere de�ned (whereas, in contrast, the characteristic function of a relation
is always total).

De�nition 16.26. �e set of partial recursive functions is the smallest set of partial
functions from the natural numbers to the natural numbers (of various arities) con-
taining zero, successor, and projections, and closed under composition, primitive
recursion, and unbounded search.

Of course, some of the partial recursive functions will happen to be total, i.e.,
de�ned for every argument.

De�nition 16.27. �e set of recursive functions is the set of partial recursive functions
that are total.

A recursive function is sometimes called “total recursive” to emphasize that it is
de�ned everywhere.

16.16 General Recursive Functions

�ere is another way to obtain a set of total functions. Say a total function 5 (G, ®I) is
regular if for every sequence of natural numbers ®I, there is an G such that 5 (G, ®I) = 0.
In other words, the regular functions are exactly those functions to which one can
apply unbounded search, and end up with a total function. One can, conservatively,
restrict unbounded search to regular functions:

De�nition 16.28. �e set of general recursive functions is the smallest set of functions
from the natural numbers to the natural numbers (of various arities) containing zero,
successor, and projections, and closed under composition, primitive recursion, and
unbounded search applied to regular functions.

Clearly every general recursive function is total. �e di�erence between De�-
nition 16.28 and De�nition 16.27 is that in the la�er one is allowed to use partial
recursive functions along the way; the only requirement is that the function you end
up with at the end is total. So the word “general,” a historic relic, is a misnomer; on
the surface, De�nition 16.28 is less general than De�nition 16.27. But, fortunately, the
di�erence is illusory; though the de�nitions are di�erent, the set of general recursive
functions and the set of recursive functions are one and the same.

Problems

Problem 16.1. Prove Proposition 16.5 by showing that the primitive recursive de�-
nition of mult is can be put into the form required by De�nition 16.1 and showing
that the corresponding functions 5 and 6 are primitive recursive.

Problem 16.2. Give the complete primitive recursive notation for mult.

Problem 16.3. Prove Proposition 16.13.
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Problem 16.4. Show that

5 (G,~) = 2(2
. .
.2
G

)

}
~ 2’s

is primitive recursive.

Problem 16.5. Show that integer division 3 (G,~) = bG/~c (i.e., division, where you
disregard everything a�er the decimal point) is primitive recursive. When ~ = 0, we
stipulate 3 (G,~) = 0. Give an explicit de�nition of 3 using primitive recursion and
composition.

Problem 16.6. Suppose '( ®G, I) is primitive recursive. De�ne the function<′
'
( ®G,~)

which returns the least I less than ~ such that '( ®G, I) holds, if there is one, and 0
otherwise, by primitive recursion from j' .

Problem 16.7. De�ne integer division 3 (G,~) using bounded minimization.

Problem 16.8. Show that there is a primitive recursive function sconcat(B) with the
property that

sconcat(〈B0, . . . , B:〉) = B0 ⌢ . . . ⌢ B: .

Problem 16.9. Show that there is a primitive recursive function tail(B) with the
property that

tail(Λ) = 0 and
tail(〈B0, . . . , B:〉) = 〈B1, . . . , B:〉.

Problem 16.10. Prove Proposition 16.24.

Problem 16.11. �e de�nition of hSubtreeSeq in the proof of Proposition 16.25 in
general includes repetitions. Give an alternative de�nition which guarantees that the
code of a subtree occurs only once in the resulting list.
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Chapter 17

Arithmetization of Syntax

17.1 Introduction

In order to connect computability and logic, we need a way to talk about the objects of
logic (symbols, terms, formulas, derivations), operations on them, and their properties
and relations, in a way amenable to computational treatment. We can do this directly,
by considering computable functions and relations on symbols, sequences of symbols,
and other objects built from them. Since the objects of logical syntax are all �nite and
built from a countable sets of symbols, this is possible for some models of computation.
But other models of computation—such as the recursive functions—-are restricted
to numbers, their relations and functions. Moreover, ultimately we also want to be
able to deal with syntax within certain theories, speci�cally, in theories formulated
in the language of arithmetic. In these cases it is necessary to arithmetize syntax, i.e.,
to represent syntactic objects, operations on them, and their relations, as numbers,
arithmetical functions, and arithmetical relations, respectively. �e idea, which goes
back to Leibniz, is to assign numbers to syntactic objects.

It is relatively straightforward to assign numbers to symbols as their “codes.” Some
symbols pose a bit of a challenge, since, e.g., there are in�nitely many variables, and
even in�nitely many function symbols of each arity =. But of course it’s possible
to assign numbers to symbols systematically in such a way that, say, E2 and E3 are
assigned di�erent codes. Sequences of symbols (such as terms and formulas) are a
bigger challenge. But if we can deal with sequences of numbers purely arithmetically
(e.g., by the powers-of-primes coding of sequences), we can extend the coding of
individual symbols to coding of sequences of symbols, and then further to sequences
or other arrangements of formulas, such as derivations. �is extended coding is called
“Gödel numbering.” Every term, formula, and derivation is assigned a Gödel number.

By coding sequences of symbols as sequences of their codes, and by chosing a
system of coding sequences that can be dealt with using computable functions, we
can then also deal with Gödel numbers using computable functions. In practice, all
the relevant functions will be primitive recursive. For instance, computing the length
of a sequence and computing the 8-th element of a sequence from the code of the
sequence are both primitive recursive. If the number coding the sequence is, e.g., the
Gödel number of a formula i , we immediately see that the length of a formula and the
(code of the) 8-th symbol in a formula can also be computed from the Gödel number
of i . It is a bit harder to prove that, e.g., the property of being the Gödel number
of a correctly formed term or of a correct derivation is primitive recursive. It is
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nevertheless possible, because the sequences of interest (terms, formulas, derivations)
are inductively de�ned.

As an example, consider the operation of substitution. If i is a formula, G a
variable, and C a term, then i [C/G] is the result of replacing every free occurrence
of G in i by C . Now suppose we have assigned Gödel numbers to i , G , C—say, : , ; ,
and<, respectively. �e same scheme assigns a Gödel number to i [C/G], say, =. �is
mapping—of : , ; , and< to =—is the arithmetical analog of the substitution operation.
When the substitution operation maps i , G , C to i [C/G], the arithmetized substitution
functions maps the Gödel numbers : , ; ,< to the Gödel number =. We will see that
this function is primitive recursive.

Arithmetization of syntax is not just of abstract interest, although it was originally
a non-trivial insight that languages like the language of arithmetic, which do not
come with mechanisms for “talking about” languages can, a�er all, formalize complex
properties of expressions. It is then just a small step to ask what a theory in this
language, such as Peano arithmetic, can prove about its own language (including,
e.g., whether sentences are provable or true). �is leads us to the famous limitative
theorems of Gödel (about unprovability) and Tarski (the unde�nability of truth). But
the trick of arithmetizing syntax is also important in order to prove some important
results in computability theory, e.g., about the computational prower of theories or
the relationship between di�erent models of computability. �e arithmetization of
syntax serves as a model for arithmetizing other objects and properties. For instance,
it is similarly possible to arithmetize con�gurations and computations (say, of Turing
machines). �is makes it possible to simulate computations in one model (e.g., Turing
machines) in another (e.g., recursive functions).

17.2 Coding Symbols

�e basic language L of �rst order logic makes use of the symbols

⊥ ¬ ∨ ∧ → ∀ ∃ = ( ) ,

together with countable sets of variables and constant symbols, and countable sets of
function symbols and predicate symbols of arbitrary arity. We can assign codes to
each of these symbols in such a way that every symbol is assigned a unique number
as its code, and no two di�erent symbols are assigned the same number. We know
that this is possible since the set of all symbols is countable and so there is a bijection
between it and the set of natural numbers. But we want to make sure that we can
recover the symbol (as well as some information about it, e.g., the arity of a function
symbol) from its code in a computable way. �ere are many possible ways of doing
this, of course. Here is one such way, which uses primitive recursive functions. (Recall
that 〈=0, . . . , =:〉 is the number coding the sequence of numbers =0, . . . , =: .)

De�nition 17.1. If B is a symbol of L, let the symbol code cB be de�ned as follows:

1. If B is among the logical symbols, cB is given by the following table:

⊥ ¬ ∨ ∧ → ∀
〈0, 0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 〈0, 4〉 〈0, 5〉
∃ = ( ) ,

〈0, 6〉 〈0, 7〉 〈0, 8〉 〈0, 9〉 〈0, 10〉
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2. If B is the 8-th variable E8 , then cB = 〈1, 8〉.

3. If B is the 8-th constant symbol 28 , then cB = 〈2, 8〉.

4. If B is the 8-th =-ary function symbol 5 =8 , then cB = 〈3, =, 8〉.

5. If B is the 8-th =-ary predicate symbol %=8 , then cB = 〈4, =, 8〉.

Proposition 17.2. �e following relations are primitive recursive:

1. Fn(G, =) i� G is the code of 5 =8 for some 8 , i.e., G is the code of an =-ary function
symbol.

2. Pred(G, =) i� G is the code of %=8 for some 8 or G is the code of = and = = 2, i.e., G
is the code of an =-ary predicate symbol.

De�nition 17.3. If B0, . . . , B=−1 is a sequence of symbols, its Gödel number is 〈cB0 , . . . , cB=−1〉.

Note that codes and Gödel numbers are di�erent things. For instance, the variable E5
has a code cE5 = 〈1, 5〉 = 22 · 36. But the variable E5 considered as a term is also a
sequence of symbols (of length 1). �e Gödel number #E5

# of the term E5 is 〈cE5〉 =
2cE5+1 = 222 ·36+1.

Example 17.4. Recall that if :0, . . . , :=−1 is a sequence of numbers, then the code of
the sequence 〈:0, . . . , :=−1〉 in the power-of-primes coding is

2:0+1 · 3:1+1 · · · · · ?:=−1
=−1 ,

where ?8 is the 8-th prime (starting with ?0 = 2). So for instance, the formula E0 = 0,
or, more explicitly, =(E0, 20), has the Gödel number

〈c=, c(, cE0 , c,, c20 , c)〉.

Here, c= is 〈0, 7〉 = 20+1 · 37=1, cE0 is 〈1, 0〉 = 21+1 · 30+1, etc. So #= (E0, 20)# is

2c=+1 · 3c(+1 · 5cE0+1 · 7c,+1 · 11c20+1 · 13c)+1 =

221 ·38+1 · 321 ·39+1 · 522 ·31+1 · 721 ·311+1 · 1123 ·31+1 · 1321 ·310+1 =

213 123 · 339 367 · 513 · 7354 295 · 1125 · 13118 099.

17.3 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up inductively from
constants and variables according to the formation rules for terms. Since sequences of
symbols can be coded as numbers—using a coding scheme for the symbols plus a way
to code sequences of numbers—assigning Gödel numbers to terms is not di�cult. �e
challenge is rather to show that the property a number has if it is the Gödel number
of a correctly formed term is computable, or in fact primitive recursive.

Variables and constant symbols are the simplest terms, and testing whether G is
the Gödel number of such a term is easy: Var(G) holds if G is #E8

# for some 8 . In other
words, G is a sequence of length 1 and its single element (G)0 is the code of some
variable E8 , i.e., G is 〈〈1, 8〉〉 for some 8 . Similarly, Const(G) holds if G is #28

# for some 8 .
Both of these relations are primitive recursive, since if such an 8 exists, it must be < G :

Var(G) ⇔ (∃8 < G) G = 〈〈1, 8〉〉
Const(G) ⇔ (∃8 < G) G = 〈〈2, 8〉〉
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Proposition 17.5. �e relations Term(G) and ClTerm(G) which hold i� G is the Gödel
number of a term or a closed term, respectively, are primitive recursive.

Proof. A sequence of symbols B is a term i� there is a sequence B0, . . . , B:−1 = B of
terms which records how the term B was formed from constant symbols and variables
according to the formation rules for terms. To express that such a putative formation
sequence follows the formation rules it has to be the case that, for each 8 < : , either

1. B8 is a variable E 9 , or

2. B8 is a constant symbol 2 9 , or

3. B8 is built from = terms C1, . . . , C= occurring prior to place 8 using an =-place
function symbol 5 =9 .

To show that the corresponding relation on Gödel numbers is primitive recursive, we
have to express this condition primitive recursively, i.e., using primitive recursive
functions, relations, and bounded quanti�cation.

Suppose~ is the number that codes the sequence B0, . . . , B:−1, i.e.,~ = 〈 #B0
#, . . . , #B:−1

#〉.
It codes a formation sequence for the term with Gödel number G i� for all 8 < : :

1. Var((~)8 ), or

2. Const((~)8 ), or

3. there is an = and a number I = 〈I1, . . . , I=〉 such that each I; is equal to some
(~)8′ for 8 ′ < 8 and

(~)8 = #5 =9 (# ⌢ �a�en(I) ⌢ #)#,

and moreover (~):−1 = G . (�e function �a�en(I) turns the sequence 〈 #C1
#, . . . , #C=

#〉
into #C1, . . . , C=

# and is primitive recursive.)
�e indices 9 , =, the Gödel numbers I; of the terms C; , and the code I of the

sequence 〈I1, . . . , I=〉, in (3) are all less than ~. We can replace : above with len(~).
Hence we can express “~ is the code of a formation sequence of the term with Gödel
number G” in a way that shows that this relation is primitive recursive.

We now just have to convince ourselves that there is a primitive recursive bound
on ~. But if G is the Gödel number of a term, it must have a formation sequence with
at most len(G) terms (since every term in the formation sequence of B must start at
some place in B , and no two subterms can start at the same place). �e Gödel number
of each subterm of B is of course ≤ G . Hence, there always is a formation sequence
with code ≤ G len(G) .

For ClTerm, simply leave out the clause for variables. �

Proposition 17.6. �e function num(=) = #=# is primitive recursive.

Proof. We de�ne num(=) by primitive recursion:

num(0) = #0#

num(= + 1) = #′(# ⌢ num(=) ⌢ #)#. �
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17.4 Coding Formulas

Proposition 17.7. �e relation Atom(G) which holds i� G is the Gödel number of an
atomic formula, is primitive recursive.

Proof. �e number G is the Gödel number of an atomic formula i� one of the following
holds:

1. �ere are =, 9 < G , and I < G such that for each 8 < =, Term((I)8 ) and G =

#%=9 (# ⌢ �a�en(I) ⌢ #)#.

2. �ere are I1, I2 < G such that Term(I1), Term(I2), and G =

#=(# ⌢ I1 ⌢
#,# ⌢ I2 ⌢

#)#.

3. G = #⊥#. �

Proposition 17.8. �e relation Frm(G) which holds i� G is the Gödel number of a for-
mula is primitive recursive.

Proof. A sequence of symbols B is a formula i� there is formation sequence B0, . . . ,
B:−1 = B of formula which records how B was formed from atomic formulas according
to the formation rules. �e code for each B8 (and indeed of the code of the sequence
〈B0, . . . , B:−1〉) is less than the code G of B . �

Proposition 17.9. �e relation FreeOcc(G, I, 8), which holds i� the 8-th symbol of the
formula with Gödel number G is a free occurrence of the variable with Gödel number I,
is primitive recursive.

Proof. Exercise. �

Proposition 17.10. �e property Sent(G) which holds i� G is the Gödel number of a
sentence is primitive recursive.

Proof. A sentence is a formula without free occurrences of variables. So Sent(G) holds
i�

(∀8 < len(G)) (∀I < G)
((∃ 9 < I) I = #E 9

#→¬FreeOcc(G, I, 8)). �

17.5 Substitution

Recall that substitution is the operation of replacing all free occurrences of a variableD
in a formula i by a term C , wri�en i [C/D]. �is operation, when carried out on Gödel
numbers of variables, formulas, and terms, is primitive recursive.

Proposition 17.11. �ere is a primitive recursive function Subst(G,~, I) with the prop-
erty that

Subst( #i #, #C #, #D#) = #i [C/D]#
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Proof. We can then de�ne a function hSubst by primitive recursion as follows:

hSubst(G,~, I, 0) = Λ

hSubst(G,~, I, 8 + 1) = {
hSubst(G,~, I, 8) ⌢ ~ if FreeOcc(G, I, 8)
append(hSubst(G,~, I, 8), (G)8 ) otherwise.

Subst(G,~, I) can now be de�ned as hSubst(G,~, I, len(G)). �

Proposition 17.12. �e relation FreeFor(G,~, I), which holds i� the term with Gödel
number ~ is free for the variable with Gödel number I in the formula with Gödel
number G , is primitive recursive.

Proof. Exercise. �

17.6 Derivations in Natural Deduction

In order to arithmetize derivations, we must represent derivations as numbers. Since
derivations are trees of formulas where each inference carries one or two labels, a
recursive representation is the most obvious approach: we represent a derivation as a
tuple, the components of which are the number of immediate sub-derivations leading
to the premises of the last inference, the representations of these sub-derivations, and
the end-formula, the discharge label of the last inference, and a number indicating
the type of the last inference.

De�nition 17.13. If X is a derivation in natural deduction, then #X# is de�ned induc-
tively as follows:

1. If X consists only of the assumption i , then #X# is 〈0, #i#, =〉. �e number = is 0
if it is an undischarged assumption, and the numerical label otherwise.

2. If X ends in an inference with one, two, or three premises, then #X# is

〈1, #X1
#, #i#, =, :〉,

〈2, #X1
#, #X2

#, #i#, =, :〉, or
〈3, #X1

#, #X2
#, #X3

#, #i#, =, :〉,

respectively. Here X1, X2, X3 are the sub-derivations ending in the premise(s) of
the last inference in X , i is the conclusion of the last inference in X , = is the
discharge label of the last inference (0 if the inference does not discharge any
assumptions), and : is given by the following table according to which rule
was used in the last inference.

Rule: ∧I ∧E ∨I ∨E
: : 1 2 3 4

Rule: →I →E ¬I ¬E
: : 5 6 7 8

Rule: ⊥E RAA ∀I ∀E
: : 9 10 11 12

Rule: ∃I ∃E =I =E
: : 13 14 15 16
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Example 17.14. Consider the very simple derivation

[i ∧k ]1
∧Ei →I1(i ∧k ) → i

�e Gödel number of the assumption would be 30 = 〈0, #i ∧k #, 1〉. �e Gödel number
of the derivation ending in the conclusion of ∧E would be 31 = 〈1, 30,

#i#, 0, 2〉 (1 since
∧E has one premise, the Gödel number of conclusion i , 0 because no assumption
is discharged, and 2 is the number coding ∧E). �e Gödel number of the entire
derivation then is 〈1, 31,

#((i ∧k ) → i)#, 1, 5〉, i.e.,

〈1, 〈1, 〈0, #(i ∧k )#, 1〉, #i#, 0, 2〉, #((i ∧k ) → i)#, 1, 5〉.

Having se�led on a representation of derivations, we must also show that we can
manipulate Gödel numbers of such derivations primitive recursively, and express
their essential properties and relations. Some operations are simple: e.g., given a
Gödel number 3 of a derivation, EndFmla(3) = (3) (3)0+1 gives us the Gödel number
of its end-formula, DischargeLabel(3) = (3) (3)0+2 gives us the discharge label and
LastRule(3) = (3) (3)0+3 the number indicating the type of the last inference. Some
are much harder. We’ll at least sketch how to do this. �e goal is to show that the
relation “X is a derivation of i from Γ” is a primitive recursive relation of the Gödel
numbers of X and i .

Proposition 17.15. �e following relations are primitive recursive:

1. i occurs as an assumption in X with label =.

2. All assumptions in X with label = are of the form i (i.e., we can discharge the
assumption i using label = in X).

Proof. We have to show that the corresponding relations between Gödel numbers of
formulas and Gödel numbers of derivations are primitive recursive.

1. We want to show that Assum(G, 3, =), which holds if G is the Gödel number of
an assumption of the derivation with Gödel number 3 labelled =, is primitive
recursive. �is is the case if the derivation with Gödel number 〈0, G, =〉 is a sub-
derivation of 3 . Note that the way we code derivations is a special case of the
coding of trees introduced in section 16.12, so the primitive recursive function
SubtreeSeq(3) gives a sequence of Gödel numbers of all sub-derivations of 3
(of length a most 3). So we can de�ne

Assum(G, 3, =) ⇔ (∃8 < 3) (SubtreeSeq(3))8 = 〈0, G, =〉.

2. We want to show that Discharge(G, 3, =), which holds if all assumptions with
label = in the derivation with Gödel number 3 all are the formula with Gödel
number G . But this relation holds i� (∀~ < 3) (Assum(~,3, =) → ~ = G). �

Proposition 17.16. �e property Correct(3) which holds i� the last inference in the
derivation X with Gödel number 3 is correct, is primitive recursive.

199



17. Arithmetization of Syntax

Proof. Here we have to show that for each rule of inference' the relation FollowsBy' (3)
is primitive recursive, where FollowsBy' (3) holds i� 3 is the Gödel number of deriva-
tion X , and the end-formula of X follows by a correct application of ' from the
immediate sub-derivations of X .

A simple case is that of the ∧I rule. If X ends in a correct ∧I inference, it looks
like this:

X1

i

X2

k
∧I

i ∧k

�en the Gödel number 3 of X is 〈2, 31, 32,
#(i ∧k )#, 0, :〉 where EndFmla(31) = #i#,

EndFmla(32) = #�#, = = 0, and : = 1. So we can de�ne FollowsBy∧I (3) as

(3)0 = 2 ∧ DischargeLabel(3) = 0 ∧ LastRule(3) = 1 ∧
EndFmla(3) = #(# ⌢ EndFmla((3)1) ⌢ #∧# ⌢ EndFmla((3)2) ⌢ #)#.

Another simple example if the =I rule. Here the premise is an empty derivation,
i.e., (3)1 = 0, and no discharge label, i.e., = = 0. However, i must be of the form C = C ,
for a closed term C . Here, a primitive recursive de�nition is

(3)0 = 1 ∧ (3)1 = 0 ∧ DischargeLabel(3) = 0 ∧
(∃C < 3) (ClTerm(C) ∧ EndFmla(3) = #=(# ⌢ C ⌢ #,# ⌢ C ⌢ #)#)

For a more complicated example, FollowsBy→I (3) holds i� the end-formula of X
is of the form (i→k ), where the end-formula of X1 isk , and any assumption in X
labelled = is of the form i . We can express this primitive recursively by

(3)0 = 1 ∧
(∃0 < 3) (Discharge(0, (3)1,DischargeLabel(3)) ∧

EndFmla(3) = ( #(# ⌢ 0 ⌢ #→# ⌢ EndFmla((3)1) ⌢ #)#))

(�ink of 0 as the Gödel number of i).
For another example, consider ∃I. Here, the last inference in X is correct i� there

is a formula i , a closed term C and a variable G such that i [C/G] is the end-formula of
the derivation X1 and ∃G i is the conclusion of the last inference. So, FollowsBy∃I (3)
holds i�

(3)0 = 1 ∧ DischargeLabel(3) = 0 ∧
(∃0 < 3) (∃G < 3) (∃C < 3) (ClTerm(C) ∧ Var(G) ∧
Subst(0, C, G) = EndFmla((3)1) ∧ EndFmla(3) = ( #∃# ⌢ G ⌢ 0)) .

We then de�ne Correct(3) as

Sent(EndFmla(3)) ∧
(LastRule(3) = 1 ∧ FollowsBy∧I (3)) ∨ · · · ∨
(LastRule(3) = 16 ∧ FollowsBy=E (3)) ∨

(∃= < 3) (∃G < 3) (3 = 〈0, G, =〉).
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�e �rst line ensures that the end-formula of 3 is a sentence. �e last line covers the
case where 3 is just an assumption. �

Proposition 17.17. �e relation Deriv(3) which holds if 3 is the Gödel number of a
correct derivation X , is primitive recursive.

Proof. A derivation X is correct if every one of its inferences is a correct application of
a rule, i.e., if every one of its sub-derivations ends in a correct inference. So, Deriv(3)
i�

(∀8 < len(SubtreeSeq(3))) Correct((SubtreeSeq(3))8 ) �

Proposition 17.18. �e relation OpenAssum(I, 3) that holds if I is the Gödel number
of an undischarged assumption i of the derivation X with Gödel number 3 , is primitive
recursive.

Proof. An occurrence of an assumption is discharged if it occurs with label = in a
sub-derivation of X that ends in a rule with discharge label =. So i is an undischarged
assumption of X if at least one of its occurrences is not discharged in X . We must be
careful: X may contain both discharged and undischarged occurrences of i .

Consider a sequence X0, . . . , X: where X0 = 3 , X: is the assumption [i]= (for
some =), and X8 is an immediate sub-derivation of X8+1. If such a sequence exists in
which no X8 ends in an inference with discharge label =, then i is an undischarged
assumption of X .

�e primitive recursive function SubtreeSeq(3) provides us with a sequence of
Gödel numbers of all sub-derivations of X . Any sequence of Gödel numbers of sub-
derivations of X is a subsequence of it. Being a subsequence of is a primitive recursive
relation: Subseq(B, B ′) holds i� (∀8 < len(B)) ∃ 9 < len(B ′) (B)8 = (B) 9 . Being an
immediate sub-derivation is as well: Subderiv(3,3 ′) i� (∃ 9 < (3 ′)0) 3 = (3 ′) 9 . So we
can de�ne OpenAssum(I, 3) by

(∃B < SubtreeSeq(3)) (Subseq(B, SubtreeSeq(3)) ∧ (B)0 = 3 ∧
(∃= < 3) ((B)len(B) ¤−1 = 〈0, I, =〉 ∧

(∀8 < (len(B) ¤− 1)) (Subderiv((B)8 , (B)8+1)] ∧
DischargeLabel((B)8+1) ≠ =))). �

Proposition 17.19. Suppose Γ is a primitive recursive set of sentences. �en the relation
PrfΓ (G,~) expressing “G is the code of a derivation X of i from undischarged assumptions
in Γ and ~ is the Gödel number of i” is primitive recursive.

Proof. Suppose “~ ∈ Γ” is given by the primitive recursive predicate 'Γ (~). We have
to show that PrfΓ (G,~) which holds i� ~ is the Gödel number of a sentence i and G is
the code of a natural deduction derivation with end formula i and all undischarged
assumptions in Γ is primitive recursive.

By Proposition 17.17, the property Deriv(G) which holds i� G is the Gödel number
of a correct derivation X in natural deduction is primitive recursive. �us we can
de�ne PrfΓ (G,~) by

PrfΓ (G,~) ⇔ Deriv(G) ∧ EndFmla(G) = ~ ∧
(∀I < G) (OpenAssum(I, G) → 'Γ (I)) . �
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Problems

Problem 17.1. Show that the function �a�en(I), which turns the sequence 〈 #C1
#, . . . , #C=

#〉
into #C1, . . . , C=

#, is primitive recursive.

Problem 17.2. Give a detailed proof of Proposition 17.8 along the lines of the �rst
proof of Proposition 17.5

Problem 17.3. Give a detailed proof of Proposition 17.8 along the lines of the alter-
nate proof of Proposition 17.5

Problem 17.4. Prove Proposition 17.9. You may make use of the fact that any sub-
string of a formula which is a formula is a sub-formula of it.

Problem 17.5. Prove Proposition 17.12

Problem 17.6. De�ne the following properties as in Proposition 17.16:

1. FollowsBy→E (3),

2. FollowsBy=E (3),

3. FollowsBy∨E (3),

4. FollowsBy∀I (3).

For the last one, you will have to also show that you can test primitive recursively if
the last inference of the derivation with Gödel number 3 satis�es the eigenvariable
condition, i.e., the eigenvariable 0 of the∀I inference occurs neither in the end-formula
of 3 nor in an open assumption of 3 . You may use the primitive recursive predicate
OpenAssum from Proposition 17.18 for this.
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Chapter 18

Representability in Q

18.1 Introduction

�e incompleteness theorems apply to theories in which basic facts about computable
functions can be expressed and proved. We will describe a very minimal such theory
called “Q” (or, sometimes, “Robinson’s & ,” a�er Raphael Robinson). We will say what
it means for a function to be representable in Q, and then we will prove the following:

A function is representable in Q if and only if it is computable.

For one thing, this provides us with another model of computability. But we will
also use it to show that the set {i | Q ` i} is not decidable, by reducing the halting
problem to it. By the time we are done, we will have proved much stronger things
than this.

�e language of Q is the language of arithmetic; Q consists of the following
axioms (to be used in conjunction with the other axioms and rules of �rst-order logic
with identity predicate):

∀G ∀~ (G ′ = ~ ′→ G = ~) (&1)
∀G 0 ≠ G ′ (&2)
∀G (G = 0 ∨ ∃~ G = ~ ′) (&3)
∀G (G + 0) = G (&4)
∀G ∀~ (G + ~ ′) = (G + ~) ′ (&5)
∀G (G × 0) = 0 (&6)
∀G ∀~ (G × ~ ′) = ((G × ~) + G) (&7)
∀G ∀~ (G < ~↔∃I (I ′ + G) = ~) (&8)

For each natural number =, de�ne the numeral = to be the term 0′′...′ where there are
= tick marks in all. So, 0 is the constant symbol 0 by itself, 1 is 0′, 2 is 0′′, etc.

As a theory of arithmetic, Q is extremely weak; for example, you can’t even prove
very simple facts like ∀G G ≠ G ′ or ∀G ∀~ (G + ~) = (~ + G). But we will see that
much of the reason that Q is so interesting is because it is so weak. In fact, it is just
barely strong enough for the incompleteness theorem to hold. Another reason Q is
interesting is because it has a �nite set of axioms.
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A stronger theory than Q (called Peano arithmetic PA) is obtained by adding a
schema of induction to Q:

(i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G)

where i (G) is any formula. If i (G) contains free variables other than G , we add
universal quanti�ers to the front to bind all of them (so that the corresponding
instance of the induction schema is a sentence). For instance, if i (G,~) also contains
the variable ~ free, the corresponding instance is

∀~ ((i (0) ∧ ∀G (i (G) → i (G ′))) → ∀G i (G))

Using instances of the induction schema, one can prove much more from the axioms
of PA than from those of Q. In fact, it takes a good deal of work to �nd “natural”
statements about the natural numbers that can’t be proved in Peano arithmetic!

De�nition 18.1. A function 5 (G0, . . . , G: ) from the natural numbers to the natural
numbers is said to be representable in Q if there is a formula i 5 (G0, . . . , G: , ~) such
that whenever 5 (=0, . . . , =: ) =<, Q proves

1. i 5 (=0, . . . , =: ,<)

2. ∀~ (i 5 (=0, . . . , =: , ~) →< = ~).

�ere are other ways of stating the de�nition; for example, we could equivalently
require that Q proves ∀~ (i 5 (=0, . . . , =: , ~) ↔ ~ =<).

�eorem 18.2. A function is representable in Q if and only if it is computable.

�ere are two directions to proving the theorem. �e le�-to-right direction is
fairly straightforward once arithmetization of syntax is in place. �e other direction
requires more work. Here is the basic idea: we pick “general recursive” as a way
of making “computable” precise, and show that every general recursive function is
representable in Q. Recall that a function is general recursive if it can be de�ned
from zero, the successor function succ, and the projection functions %=8 , using com-
position, primitive recursion, and regular minimization. So one way of showing
that every general recursive function is representable in Q is to show that the basic
functions are representable, and whenever some functions are representable, then
so are the functions de�ned from them using composition, primitive recursion, and
regular minimization. In other words, we might show that the basic functions are
representable, and that the representable functions are “closed under” composition,
primitive recursion, and regular minimization. �is guarantees that every general
recursive function is representable.

It turns out that the step where we would show that representable functions are
closed under primitive recursion is hard. In order to avoid this step, we show �rst that
in fact we can do without primitive recursion. �at is, we show that every general
recursive function can be de�ned from basic functions using composition and regular
minimization alone. To do this, we show that primitive recursion can actually be done
by a speci�c regular minimization. However, for this to work, we have to add some
additional basic functions: addition, multiplication, and the characteristic function of
the identity relation j=. �en, we can prove the theorem by showing that all of these
basic functions are representable in Q, and the representable functions are closed
under composition and regular minimization.
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18.2 Functions Representable in Q are Computable

Lemma 18.3. Every function that is representable in Q is computable.

Proof. Let’s �rst give the intuitive idea for why this is true. If 5 (G0, . . . , G: ) is repre-
sentable in Q, there is a formula i (G0, . . . , G: , ~) such that

Q ` i 5 (=0, . . . , =: ,<) i� < = 5 (=0, . . . , =: ) .

To compute 5 , we do the following. List all the possible derivations X in the language of
arithmetic. �is is possible to do mechanically. For each one, check if it is a derivation
of a formula of the formi 5 (=0, . . . , =: ,<). If it is,< must be = 5 (=0, . . . , =: ) and we’ve
found the value of 5 . �e search terminates because Q ` i 5 (=0, . . . , =: , 5 (=0, . . . , =: )),
so eventually we �nd a X of the right sort.

�is is not quite precise because our procedure operates on derivations and
formulas instead of just on numbers, and we haven’t explained exactly why “listing
all possible derivations” is mechanically possible. But as we’ve seen, it is possible
to code terms, formulas, and derivations by Gödel numbers. We’ve also introduced
a precise model of computation, the general recursive functions. And we’ve seen
that the relation PrfQ (3,~), which holds i� 3 is the Gödel number of a derivation
of the formula with Gödel number G from the axioms of Q, is (primitive) recursive.
Other primitive recursive functions we’ll need are num (Proposition 17.6) and Subst
(Proposition 17.11). From these, it is possible to de�ne 5 by minimization; thus, 5 is
recursive.

First, de�ne

�(=0, . . . , =: ,<) =
Subst(Subst(. . . Subst( #i 5

#, num(=0), #G0
#),

. . . ), num(=: ), #G:
#), num(<), #~#)

�is looks complicated, but it’s just the function�(=0, . . . , =: ,<) = #i 5 (=0, . . . , =: ,<)#.
Now, consider the relation '(=0, . . . , =: , B) which holds if (B)0 is the Gödel number

of a derivation from Q of i 5 (=0, . . . , =: , (B)1):

'(=0, . . . , =: , B) i� PrfQ ((B)0, �(=0, . . . , =: , (B)1))

If we can �nd an B such that '(=0, . . . , =: , B) hold, we have found a pair of numbers—
(B)0 and (B1)—such that (B)0 is the Gödel number of a derivation of�5 (=0, . . . , =: , (B)1).
So looking for B is like looking for the pair 3 and < in the informal proof. And
a computable function that “looks for” such an B can be de�ned by regular min-
imization. Note that ' is regular: for every =0, . . . , =: , there is a derivation X of
Q ` i 5 (=0, . . . , =: , 5 (=0, . . . , =: )), so '(=0, . . . , =: , B) holds for B = 〈 #X#, 5 (=0, . . . , =: )〉.
So, we can write 5 as

5 (=0, . . . , =: ) = (`B '(=0, . . . , =: , B))1. �

18.3 �e Beta Function Lemma

In order to show that we can carry out primitive recursion if addition, multiplication,
and j= are available, we need to develop functions that handle sequences. (If we had
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exponentiation as well, our task would be easier.) When we had primitive recursion,
we could de�ne things like the “=-th prime,” and pick a fairly straightforward coding.
But here we do not have primitive recursion—in fact we want to show that we can do
primitive recursion using minimization—so we need to be more clever.

Lemma 18.4. �ere is a function V (3, 8) such that for every sequence 00, . . . , 0= there
is a number 3 , such that for every 8 ≤ =, V (3, 8) = 08 . Moreover, V can be de�ned from
the basic functions using just composition and regular minimization.

�ink of 3 as coding the sequence 〈00, . . . , 0=〉, and V (3, 8) returning the 8-th
element. (Note that this “coding” does not use the prower-of-primes coding we’re
already familiar with!). �e lemma is fairly minimal; it doesn’t say we can concatenate
sequences or append elements, or even that we can compute 3 from 00, . . . , 0= using
functions de�nable by composition and regular minimization. All it says is that there
is a “decoding” function such that every sequence is “coded.”

�e use of the notation V is Gödel’s. To repeat, the hard part of proving the
lemma is de�ning a suitable V using the seemingly restricted resources, i.e., using just
composition and minimization—however, we’re allowed to use addition, multiplica-
tion, and j=. �ere are various ways to prove this lemma, but one of the cleanest is
still Gödel’s original method, which used a number-theoretic fact called the Chinese
Remainder theorem.

De�nition 18.5. Two natural numbers 0 and 1 are relatively prime if their greatest
common divisor is 1; in other words, they have no other divisors in common.

De�nition 18.6. 0 ≡ 1 mod 2 means 2 | (0−1), i.e., 0 and1 have the same remainder
when divided by 2 .

Here is the Chinese Remainder theorem:

�eorem 18.7. Suppose G0, . . . , G= are (pairwise) relatively prime. Let ~0, . . . , ~= be
any numbers. �en there is a number I such that

I ≡ ~0 mod G0

I ≡ ~1 mod G1

...

I ≡ ~= mod G= .

Here is how we will use the Chinese Remainder theorem: if G0, . . . , G= are bigger
than ~0, . . . , ~= respectively, then we can take I to code the sequence 〈~0, . . . , ~=〉. To
recover ~8 , we need only divide I by G8 and take the remainder. To use this coding,
we will need to �nd suitable values for G0, . . . , G= .

A couple of observations will help us in this regard. Given ~0, . . . , ~= , let

9 = max(=,~0, . . . , ~=) + 1,
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and let

G0 = 1 + 9 !
G1 = 1 + 2 · 9 !
G2 = 1 + 3 · 9 !
...

G= = 1 + (= + 1) · 9 !

�en two things are true:

1. G0, . . . , G= are relatively prime.

2. For each 8 , ~8 < G8 .

To see that (1) is true, note that if ? is a prime number and ? | G8 and ? | G: , then
? | 1 + (8 + 1) 9 ! and ? | 1 + (: + 1) 9 !. But then ? divides their di�erence,

(1 + (8 + 1) 9 !) − (1 + (: + 1) 9 !) = (8 − :) 9 !.

Since ? divides 1 + (8 + 1) 9 !, it can’t divide 9 ! as well (otherwise, the �rst division
would leave a remainder of 1). So ? divides 8−: , since ? divides (8−:) 9 !. But |8 − : | is
at most =, and we have chosen 9 > =, so this implies that ? | 9 !, again a contradiction.
So there is no prime number dividing both G8 and G: . Clause (2) is easy: we have
~8 < 9 < 9 ! < G8 .

Now let us prove the V function lemma. Remember that we can use 0, successor,
plus, times, j=, projections, and any function de�ned from them using composition
and minimization applied to regular functions. We can also use a relation if its
characteristic function is so de�nable. As before we can show that these relations are
closed under boolean combinations and bounded quanti�cation; for example:

1. not(G) = j= (G, 0)

2. (min G ≤ I) '(G,~) = `G ('(G,~) ∨ G = I)

3. (∃G ≤ I) '(G,~) ⇔ '((min G ≤ I) '(G,~), ~)

We can then show that all of the following are also de�nable without primitive
recursion:

1. �e pairing function, � (G,~) = 1
2 [(G + ~) (G + ~ + 1)] + G

2. Projections
 (I) = (min G ≤ @) (∃~ ≤ I [I = � (G,~)])

and
!(I) = (min ~ ≤ @) (∃G ≤ I [I = � (G,~)]).

3. G < ~

4. G | ~

5. �e function rem(G,~) which returns the remainder when ~ is divided by G
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18. Representability in Q

Now de�ne
V∗ (30, 31, 8) = rem(1 + (8 + 1)31, 30)

and
V (3, 8) = V∗ ( (3), !(3), 8).

�is is the function we need. Given 00, . . . , 0= , as above, let

9 = max(=, 00, . . . , 0=) + 1,

and let 31 = 9 !. By the observations above, we know that 1+31, 1+231, . . . , 1+(=+1)31
are relatively prime and all are bigger than 00, . . . , 0= . By the Chinese Remainder
theorem there is a value 30 such that for each 8 ,

30 ≡ 08 mod (1 + (8 + 1)31)

and so (because 31 is greater than 08 ),

08 = rem(1 + (8 + 1)31, 30).

Let 3 = � (30, 31). �en for each 8 ≤ =, we have

V (3, 8) = V∗ (30, 31, 8)
= rem(1 + (8 + 1)31, 30)
= 08

which is what we need. �is completes the proof of the V-function lemma.

18.4 Simulating Primitive Recursion

Now we can show that de�nition by primitive recursion can be “simulated” by regular
minimization using the beta function. Suppose we have 5 ( ®G) and 6( ®G,~, I). �en the
function ℎ(G, ®I) de�ned from 5 and 6 by primitive recursion is

ℎ( ®G,~) = 5 (®I)
ℎ( ®G,~ + 1) = 6( ®G,~, ℎ( ®G,~)) .

We need to show that ℎ can be de�ned from 5 and 6 using just composition and
regular minimization, using the basic functions and functions de�ned from them
using composition and regular minimization (such as V).

Lemma 18.8. If ℎ can be de�ned from 5 and 6 using primitive recursion, it can be
de�ned from 5 , 6, the functions zero, succ, %=8 , add, mult, j=, using composition and
regular minimization.

Proof. First, de�ne an auxiliary function ℎ̂( ®G,~) which returns the least number 3
such that 3 codes a sequence which satis�es

1. (3)0 = 5 ( ®G), and

2. for each 8 < ~, (3)8+1 = 6( ®G, 8, (3)8 ),
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18.5. Basic Functions are Representable in Q

where now (3)8 is short for V (3, 8). In other words, ℎ̂ returns the sequence 〈ℎ( ®G, 0), ℎ( ®G, 1), . . . , ℎ( ®G,~)〉.
We can write ℎ̂ as

ℎ̂( ®G,~) = `3 (V (3, 0) = 5 ( ®G) ∧ (∀8 < ~) V (3, 8 + 1) = 6( ®G, 8, V (3, 8)) .

Note: no primitive recursion is needed here, just minimization. �e function we
minimize is regular because of the beta function lemma Lemma 18.4.

But now we have
ℎ( ®G,~) = V (ℎ̂( ®G,~), ~),

so ℎ can be de�ned from the basic functions using just composition and regular
minimization. �

18.5 Basic Functions are Representable in Q

First we have to show that all the basic functions are representable in Q. In the end,
we need to show how to assign to each :-ary basic function 5 (G0, . . . , G:−1) a formula
i 5 (G0, . . . , G:−1, ~) that represents it.

We will be able to represent zero, successor, plus, times, the characteristic function
for equality, and projections. In each case, the appropriate representing function
is entirely straightforward; for example, zero is represented by the formula ~ = 0,
successor is represented by the formula G ′0 = ~, and addition is represented by the
formula (G0 + G1) = ~. �e work involves showing that Q can prove the relevant
sentences; for example, saying that addition is represented by the formula above
involves showing that for every pair of natural numbers< and =, Q proves

= +< = = +< and
∀~ ((= +<) = ~→ ~ = = +<).

Proposition 18.9. �e zero function zero(G) = 0 is represented in Q by ~ = 0.

Proposition 18.10. �e successor function succ(G) = G + 1 is represented in Q by
~ = G ′.

Proposition 18.11. �e projection function %=8 (G0, . . . , G=−1) = G8 is represented in Q
by ~ = G8 .

Proposition 18.12. �e characteristic function of =,

j= (G0, G1) =
{

1 if G0 = G1

0 >Cℎ4AF8B4

is represented in Q by

(G0 = G1 ∧ ~ = 1) ∨ (G0 ≠ G1 ∧ ~ = 0).

�e proof requires the following lemma.

Lemma 18.13. Given natural numbers = and<, if = ≠<, then Q ` = ≠<.
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18. Representability in Q

Proof. Use induction on = to show that for every<, if = ≠<, then & ` = ≠<.
In the base case, = = 0. If< is not equal to 0, then< = : + 1 for some natural

number : . We have an axiom that says ∀G 0 ≠ G ′. By a quanti�er axiom, replacing G
by : , we can conclude 0 ≠ :

′
. But :

′
is just<.

In the induction step, we can assume the claim is true for =, and consider = + 1.
Let< be any natural number. �ere are two possibilities: either< = 0 or for some :
we have< = : + 1. �e �rst case is handled as above. In the second case, suppose
= + 1 ≠ : + 1. �en = ≠ : . By the induction hypothesis for = we have Q ` = ≠ : . We
have an axiom that says ∀G ∀~ G ′ = ~ ′→ G = ~. Using a quanti�er axiom, we have
=′ = :

′→ = = : . Using propositional logic, we can conclude, in Q, = ≠ :→ =′ ≠ :
′
.

Using modus ponens, we can conclude =′ ≠ :
′
, which is what we want, since :

′
is

<. �

Note that the lemma does not say much: in essence it says that Q can prove that
di�erent numerals denote di�erent objects. For example, Q proves 0′′ ≠ 0′′′. But
showing that this holds in general requires some care. Note also that although we are
using induction, it is induction outside of Q.

Proof of Proposition 18.12. If = =<, then = and< are the same term, and j= (=,<) = 1.
But Q ` (= = < ∧ 1 = 1), so it proves i= (=,<, 1). If = ≠ <, then j= (=,<) = 0. By
Lemma 18.13, Q ` = ≠< and so also (= ≠< ∧ 0 = 0). �us Q ` i= (=,<, 0).

For the second part, we also have two cases. If = = <, we have to show that
Q ` ∀~ (i= (=,<,~) → ~ = 1). Arguing informally, suppose i= (=,<,~), i.e.,

(= = = ∧ ~ = 1) ∨ (= ≠ = ∧ ~ = 0)

�e le� disjunct implies ~ = 1 by logic; the right contradicts = = = which is provable
by logic.

Suppose, on the other hand, that = ≠<. �en i= (=,<,~) is

(= =< ∧ ~ = 1) ∨ (= ≠< ∧ ~ = 0)

Here, the le� disjunct contradicts = ≠<, which is provable in Q by Lemma 18.13; the
right disjunct entails ~ = 0. �

Proposition 18.14. �e addition function add(G0, G1) = G0 + G1 is represented in Q by

~ = (G0 + G1).

Lemma 18.15. Q ` (= +<) = = +<

Proof. We prove this by induction on<. If< = 0, the claim is that Q ` (= + 0) = =.
�is follows by axiom&4. Now suppose the claim for<; let’s prove the claim for<+1,
i.e., prove that Q ` (= +< + 1) = = +< + 1. Note that< + 1 is just<′, and = +< + 1
is just = +<′. By axiom &5, Q ` (= +<′) = (= +<) ′. By induction hypothesis,
Q ` (= +<) = = +<. So Q ` (= +<′) = = +<′. �

Proof of Proposition 18.14. �e formulaiadd (G0, G1, ~) representing add is~ = (G0+G1).
First we show that if add(=,<) = : , then Q ` iadd (=,<, :), i.e., Q ` : = (= +<). But
since : = = +<, : just is = +<, and we’ve shown in Lemma 18.15 that Q ` (= +<) =
= +<.
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18.6. Composition is Representable in Q

We also have to show that if add(=,<) = : , then

Q ` ∀~ (iadd (=,<,~) → ~ = :).

Suppose we have (= +<) = ~. Since

Q ` (= +<) = = +<,

we can replace the le� side with = +< and get = +< = ~, for arbitrary ~. �

Proposition 18.16. �e multiplication function mult(G0, G1) = G0 · G1 is represented
in Q by

~ = (G0 × G1).

Proof. Exercise. �

Lemma 18.17. Q ` (= ×<) = = ·<

Proof. Exercise. �

Recall that we use × for the function symbol of the language of arithmetic, and
· for the ordinary multiplication operation on numbers. So · can appear between
expressions for numbers (such as in< · =) while × appears only between terms of the
language of arithmetic (such as in (< ×=)). Even more confusingly, + is used for both
the function symbol and the addition operation. When it appears between terms—e.g.,
in (= +<)—it is the 2-place function symbol of the language of arithmetic, and when
it appears between numbers—e.g., in = +<—it is the addition operation. �is includes
the case = +<: this is the standard numeral corresponding to the number = +<.

18.6 Composition is Representable in Q

Suppose ℎ is de�ned by

ℎ(G0, . . . , G;−1) = 5 (60 (G0, . . . , G;−1), . . . , 6:−1 (G0, . . . , G;−1)).

where we have already found formulas i 5 , i60 , . . . , i6:−1 representing the functions 5 ,
and 60, . . . , 6:−1, respectively. We have to �nd a formula iℎ representing ℎ.

Let’s start with a simple case, where all functions are 1-place, i.e., consider ℎ(G) =
5 (6(G)). If i 5 (~, I) represents 5 , and i6 (G,~) represents6, we need a formula iℎ (G, I)
that represents ℎ. Note that ℎ(G) = I i� there is a ~ such that both I = 5 (~) and
~ = 6(G). (If ℎ(G) = I, then 6(G) is such a ~; if such a ~ exists, then since ~ = 6(G) and
I = 5 (~), I = 5 (6(G)).) �is suggests that ∃~ (i6 (G,~) ∧i 5 (~, I)) is a good candidate
for iℎ (G, I). We just have to verify that Q proves the relevant formulas.

Proposition 18.18. If ℎ(=) =<, then Q ` iℎ (=,<).

Proof. Suppose ℎ(=) =<, i.e., 5 (6(=)) =<. Let : = 6(=). �en

Q ` i6 (=, :)

since i6 represents 6, and

Q ` i 5 (:,<)
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18. Representability in Q

since i 5 represents 5 . �us,

Q ` i6 (=, :) ∧ i 5 (:,<)

and consequently also

Q ` ∃~ (i6 (=,~) ∧ i 5 (~,<)),

i.e., Q ` iℎ (=,<). �

Proposition 18.19. If ℎ(=) =<, then Q ` ∀I (iℎ (=, I) → I =<).

Proof. Suppose ℎ(=) =<, i.e., 5 (6(=)) =<. Let : = 6(=). �en

Q ` ∀~ (i6 (=,~) → ~ = :)

since i6 represents 6, and

Q ` ∀I (i 5 (:, I) → I =<)

since i 5 represents 5 . Using just a li�le bit of logic, we can show that also

Q ` ∀I (∃~ (i6 (=,~) ∧ i 5 (~, I)) → I =<).

i.e., Q ` ∀~ (iℎ (=,~) → ~ =<). �

�e same idea works in the more complex case where 5 and 68 have arity greater
than 1.

Proposition 18.20. Ifi 5 (~0, . . . , ~:−1, I) represents 5 (~0, . . . , ~:−1) inQ, andi68 (G0, . . . , G;−1, ~)
represents 68 (G0, . . . , G;−1) in Q, then

∃~0, . . . ∃~:−1 (i60 (G0, . . . , G;−1, ~0) ∧ · · · ∧
i6:−1 (G0, . . . , G;−1, ~:−1) ∧ i 5 (~0, . . . , ~:−1, I))

represents

ℎ(G0, . . . , G;−1) = 5 (60 (G0, . . . , G;−1), . . . , 6:−1 (G0, . . . , G;−1)) .

Proof. Exercise. �

18.7 Regular Minimization is Representable in Q

Let’s consider unbounded search. Suppose 6(G, I) is regular and representable in Q,
say by the formula i6 (G, I,~). Let 5 be de�ned by 5 (I) = `G [6(G, I) = 0]. We would
like to �nd a formula i 5 (I,~) representing 5 . �e value of 5 (I) is that number G
which (a) satis�es 6(G, I) = 0 and (b) is the least such, i.e., for anyF < G , 6(F, I) ≠ 0.
So the following is a natural choice:

i 5 (I,~) ≡ i6 (~, I, 0) ∧ ∀F (F < ~→¬i6 (F, I, 0)) .

In the general case, of course, we would have to replace I with I0, . . . , I: .
�e proof, again, will involve some lemmas about things Q is strong enough to

prove.
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Lemma 18.21. For every constant symbol 0 and every natural number =,

Q ` (0′ + =) = (0 + =) ′.

Proof. �e proof is, as usual, by induction on =. In the base case, = = 0, we need to
show that Q proves (0′ + 0) = (0 + 0) ′. But we have:

Q ` (0′ + 0) = 0′ by axiom &4 (18.1)
Q ` (0 + 0) = 0 by axiom &4 (18.2)
Q ` (0 + 0) ′ = 0′ by eq. (18.2) (18.3)
Q ` (0′ + 0) = (0 + 0) ′ by eq. (18.1) and eq. (18.3)

In the induction step, we can assume that we have shown that Q ` (0′ +=) = (0 +=) ′.
Since = + 1 is =′, we need to show that Q proves (0′ + =′) = (0 + =′) ′. We have:

Q ` (0′ + =′) = (0′ + =) ′ by axiom &5 (18.4)
Q ` (0′ + =′) = (0 + =′) ′ inductive hypothesis (18.5)
Q ` (0′ + =) ′ = (0 + =′) ′ by eq. (18.4) and eq. (18.5). �

It is again worth mentioning that this is weaker than saying that Q proves
∀G ∀~ (G ′ + ~) = (G + ~) ′. Although this sentence is true in N, Q does not prove
it.

Lemma 18.22. Q ` ∀G ¬G < 0.

Proof. We give the proof informally (i.e., only giving hints as to how to construct the
formal derivation).

We have to prove ¬0 < 0 for an arbitrary 0. By the de�nition of <, we need to
prove ¬∃~ (~ ′ + 0) = 0 in Q. We’ll assume ∃~ (~ ′ + 0) = 0 and prove a contradiction.
Suppose (1 ′ + 0) = 0. Using &3, we have that 0 = 0 ∨ ∃~ 0 = ~ ′. We distinguish cases.

Case 1: 0 = 0 holds. From (1 ′ + 0) = 0, we have (1 ′ + 0) = 0. By axiom &4 of
Q, we have (1 ′ + 0) = 1 ′, and hence 1 ′ = 0. But by axiom &2 we also have 1 ′ ≠ 0, a
contradiction.

Case 2: For some 2 , 0 = 2 ′. But then we have (1 ′ + 2 ′) = 0. By axiom &5, we have
(1 ′ + 2) ′ = 0, again contradicting axiom &2. �

Lemma 18.23. For every natural number =,

Q ` ∀G (G < = + 1→ (G = 0 ∨ · · · ∨ G = =)) .

Proof. We use induction on =. Let us consider the base case, when = = 0. In that case,
we need to show 0 < 1→ 0 = 0, for arbitrary 0. Suppose 0 < 1. �en by the de�ning
axiom for <, we have ∃~ (~ ′ + 0) = 0′ (since 1 ≡ 0′).

Suppose 1 has that property, i.e., we have (1 ′ + 0) = 0′. We need to show 0 = 0.
By axiom &3, we have either 0 = 0 or that there is a 2 such that 0 = 2 ′. In the former
case, there is nothing to show. So suppose 0 = 2 ′. �en we have (1 ′ + 2 ′) = 0′. By
axiom &5 of Q, we have (1 ′ + 2) ′ = 0′. By axiom &1, we have (1 ′ + 2) = 0. But this
means, by axiom &8, that 2 < 0, contradicting Lemma 18.22.

Now for the inductive step. We prove the case for =+1, assuming the case for =. So
suppose 0 < = + 2. Again using&3 we can distinguish two cases: 0 = 0 and for some 1,
0 = 2 ′. In the �rst case, 0 = 0∨ · · · ∨0 = = + 1 follows trivially. In the second case, we
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18. Representability in Q

have 2 ′ < = + 2, i.e., 2 ′ < = + 1′. By axiom&8, for some 3 , (3 ′ + 2 ′) = = + 1′. By axiom
&5, (3 ′ + 2) ′ = = + 1′. By axiom&1, (3 ′ + 2) = = + 1, and so 2 < = + 1 by axiom&8. By
inductive hypothesis, 2 = 0 ∨ · · · ∨ 2 = =. From this, we get 2 ′ = 0′ ∨ · · · ∨ 2 ′ = =′ by
logic, and so 0 = 1 ∨ · · · ∨ 0 = = + 1 since 0 = 2 ′. �

Lemma 18.24. For every natural number<,

Q ` ∀~ ((~ < < ∨< < ~) ∨ ~ =<).

Proof. By induction on<. First, consider the case< = 0. Q ` ∀~ (~ = 0 ∨ ∃I ~ = I ′)
by &3. Let 0 be arbitrary. �en either 0 = 0 or for some 1, 0 = 1 ′. In the former case,
we also have (0 < 0∨ 0 < 0) ∨0 = 0. But if 0 = 1 ′, then (1 ′ + 0) = (0 + 0) by the logic
of =. By &4, (0 + 0) = 0, so we have (1 ′ + 0) = 0, and hence ∃I (I ′ + 0) = 0. By the
de�nition of < in &8, 0 < 0. If 0 < 0, then also (0 < 0 ∨ 0 < 0) ∨ 0 = 0.

Now suppose we have

Q ` ∀~ ((~ < < ∨< < ~) ∨ ~ =<)

and we want to show

Q ` ∀~ ((~ < < + 1 ∨< + 1 < ~) ∨ ~ =< + 1)

Let 0 be arbitrary. By &3, either 0 = 0 or for some 1, 0 = 1 ′. In the �rst case, we have
<′ + 0 =< + 1 by &4, and so 0 < < + 1 by &8.

Now consider the second case, 0 = 1 ′. By the induction hypothesis, (1 < < ∨< <

1) ∨ 1 =<.
�e �rst disjunct 1 < < is equivalent (by&8) to ∃I (I ′+1) =<. Suppose 2 has this

property. If (2 ′ + 1) =<, then also (2 ′ + 1) ′ =<′. By &5, (2 ′ + 1) ′ = (2 ′ + 1 ′). Hence,
(2 ′ + 1 ′) = <′. We get ∃D (D ′ + 1 ′) = < + 1 by existentially generalizing on 2 ′ and
keeping in mind that<′ ≡< + 1. Hence, if 1 < < then 1 ′ < < + 1 and so 0 < < + 1.

Now suppose< < 1, i.e., ∃I (I ′+<) = 1. Suppose 2 is such a I, i.e., (2 ′+<) = 1. By
logic, (2 ′+<) ′ = 1 ′. By&5, (2 ′+<′) = 1 ′. Since 0 = 1 ′ and<′ ≡< + 1, (2 ′+< + 1) = 0.
By &8,< + 1 < 0.

Finally, assume 1 =<. �en, by logic, 1 ′ =<′, and so 0 =< + 1.
Hence, from each disjunct of the case for< and1, we can obtain the corresponding

disjunct for for< + 1 and 0. �

Proposition 18.25. If i6 (G, I,~) represents 6(G, I) in Q, then

i 5 (I,~) ≡ i6 (~, I, 0) ∧ ∀F (F < ~→¬i6 (F, I, 0)) .

represents 5 (I) = `G [6(G, I) = 0].

Proof. First we show that if 5 (=) =<, then Q ` i 5 (=,<), i.e.,

Q ` i6 (<,=, 0) ∧ ∀F (F < <→¬i6 (F,=, 0)) .

Since i6 (G, I,~) represents 6(G, I) and 6(<,=) = 0 if 5 (=) =<, we have

Q ` i6 (<,=, 0).
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If 5 (=) =<, then for every : < <, 6(:, =) ≠ 0. So

Q ` ¬i6 (:, =, 0).

We get that

Q ` ∀F (F < <→¬i6 (F,=, 0)). (18.6)

by Lemma 18.22 in case< = 0 and by Lemma 18.23 otherwise.
Now let’s show that if 5 (=) = <, then Q ` ∀~ (i 5 (=,~) → ~ = <). We again

sketch the argument informally, leaving the formalization to the reader.
Supposei 5 (=,1). From this we get (a)i6 (1, =, 0) and (b)∀F (F < 1→¬i6 (F,=, 0)).

By Lemma 18.24, (1 < < ∨< < 1) ∨ 1 =<. We’ll show that both 1 < < and< < 1

leads to a contradiction.
If < < 1, then ¬i6 (<,=, 0) from (b). But < = 5 (=), so 6(<,=) = 0, and so

Q ` i6 (<,=, 0) since i6 represents 6. So we have a contradiction.
Now suppose 1 < <. �en since Q ` ∀F (F < <→¬i6 (F,=, 0)) by eq. (18.6),

we get ¬i6 (1, =, 0). �is again contradicts (a). �

18.8 Computable Functions are Representable in Q

�eorem 18.26. Every computable function is representable in Q.

Proof. For de�niteness, and using the Church-Turing �esis, let’s say that a function
is computable i� it is general recursive. �e general recursive functions are those
which can be de�ned from the zero function zero, the successor function succ, and
the projection function %=8 using composition, primitive recursion, and regular mini-
mization. By Lemma 18.8, any function ℎ that can be de�ned from 5 and 6 can also
be de�ned using composition and regular minimization from 5 , 6, and zero, succ, %=8 ,
add, mult, j=. Consequently, a function is general recursive i� it can be de�ned from
zero, succ, %=8 , add, mult, j= using composition and regular minimization.

We’ve furthermore shown that the basic functions in question are representable
in Q (Propositions 18.9 to 18.12, 18.14 and 18.16), and that any function de�ned from
representable functions by composition or regular minimization (Proposition 18.20,
Proposition 18.25) is also representable. �us every general recursive function is
representable in Q. �

We have shown that the set of computable functions can be characterized as the set
of functions representable in Q. In fact, the proof is more general. From the de�nition
of representability, it is not hard to see that any theory extending Q (or in which one
can interpret Q) can represent the computable functions. But, conversely, in any proof
system in which the notion of proof is computable, every representable function is
computable. So, for example, the set of computable functions can be characterized
as the set of functions representable in Peano arithmetic, or even Zermelo-Fraenkel
set theory. As Gödel noted, this is somewhat surprising. We will see that when
it comes to provability, questions are very sensitive to which theory you consider;
roughly, the stronger the axioms, the more you can prove. But across a wide range
of axiomatic theories, the representable functions are exactly the computable ones;
stronger theories do not represent more functions as long as they are axiomatizable.
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18.9 Representing Relations

Let us say what it means for a relation to be representable.

De�nition 18.27. A relation '(G0, . . . , G: ) on the natural numbers is representable
in Q if there is a formula i' (G0, . . . , G: ) such that whenever '(=0, . . . , =: ) is true, Q
proves i' (=0, . . . , =: ), and whenever '(=0, . . . , =: ) is false, Q proves ¬i' (=0, . . . , =: ).

�eorem 18.28. A relation is representable in Q if and only if it is computable.

Proof. For the forwards direction, suppose '(G0, . . . , G: ) is represented by the formula
i' (G0, . . . , G: ). Here is an algorithm for computing ': on input =0, . . . , =: , simulta-
neously search for a proof of i' (=0, . . . , =: ) and a proof of ¬i' (=0, . . . , =: ). By our
hypothesis, the search is bound to �nd one or the other; if it is the �rst, report “yes,”
and otherwise, report “no.”

In the other direction, suppose '(G0, . . . , G: ) is computable. By de�nition, this
means that the function j' (G0, . . . , G: ) is computable. By �eorem 18.2, j' is rep-
resented by a formula, say ij' (G0, . . . , G: , ~). Let i' (G0, . . . , G: ) be the formula
ij' (G0, . . . , G: , 1). �en for any=0, . . . ,=: , if'(=0, . . . , =: ) is true, then j' (=0, . . . , =: ) =
1, in which case Q proves ij' (=0, . . . , =: , 1), and so Q proves i' (=0, . . . , =: ). On the
other hand, if '(=0, . . . , =: ) is false, then j' (=0, . . . , =: ) = 0. �is means that Q proves

∀~ (ij' (=0, . . . , =: , ~) → ~ = 0).

Since Q proves 0 ≠ 1, Q proves ¬ij' (=0, . . . , =: , 1), and so it proves ¬i' (=0, . . . , =: ).�

18.10 Undecidability

We call a theory T undecidable if there is no computational procedure which, a�er
�nitely many steps and unfailingly, provides a correct answer to the question “does T
prove i?” for any sentence i in the language of T. So Q would be decidable i� there
were a computational procedure which decides, given a sentence i in the language
of arithmetic, whether Q ` i or not. We can make this more precise by asking: Is the
relation ProvQ (~), which holds of ~ i� ~ is the Gödel number of a sentence provable
in Q, recursive? �e answer is: no.

�eorem 18.29. Q is undecidable, i.e., the relation

ProvQ (~) ⇔ Sent(~) ∧ ∃G PrfQ (G,~)

is not recursive.

Proof. Suppose it were. �en we could solve the halting problem as follows: Given 4
and =, we know that i4 (=) ↓ i� there is an B such that ) (4, =, B), where ) is Kleene’s
predicate from �. Since ) is primitive recursive it is representable in Q by a formula
k) , that is, Q ` k) (4, =, B) i� ) (4, =, B). If Q ` k) (4, =, B) then also Q ` ∃~k) (4, =,~).
If no such B exists, then Q ` ¬k) (4, =, B) for every B . But Q is l-consistent, i.e., if
Q ` ¬i (=) for every = ∈ N, then Q 0 ∃~ i (~). We know this because the axioms
of Q are true in the standard model N. So, Q 0 ∃~k) (4, =,~). In other words,
Q ` ∃~k) (4, =,~) i� there is an B such that ) (4, =, B), i.e., i� i4 (=) ↓. From 4 and =
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we can compute #∃~k) (4, =,~)#, let 6(4, =) be the primitive recursive function which
does that. So

ℎ(4, =) =
{

1 if ProvQ (6(4, =))
0 otherwise.

�is would show that ℎ is recursive if ProvQ is. But ℎ is not recursive, by �, so ProvQ
cannot be either. �

Corollary 18.30. First-order logic is undecidable.

Proof. If �rst-order logic were decidable, provability in Q would be as well, since
Q ` i i� ` l→ i , where l is the conjunction of the axioms of Q. �

Problems

Problem 18.1. Prove that ~ = 0, ~ = G ′, and ~ = G8 represent zero, succ, and %=8 ,
respectively.

Problem 18.2. Prove Lemma 18.17.

Problem 18.3. Use Lemma 18.17 to prove Proposition 18.16.

Problem 18.4. Using the proofs of Proposition 18.19 and Proposition 18.19 as a guide,
carry out the proof of Proposition 18.20 in detail.

Problem 18.5. Show that if ' is representable in Q, so is j' .
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Chapter 19

Incompleteness and Provability

19.1 Introduction

Hilbert thought that a system of axioms for a mathematical structure, such as the
natural numbers, is inadequate unless it allows one to derive all true statements
about the structure. Combined with his later interest in formal systems of deduction,
this suggests that he thought that we should guarantee that, say, the formal systems
we are using to reason about the natural numbers is not only consistent, but also
complete, i.e., every statement in its language is either derivable or its negation is.
Gödel’s �rst incompleteness theorem shows that no such system of axioms exists:
there is no complete, consistent, axiomatizable formal system for arithmetic. In fact,
no “su�ciently strong,” consistent, axiomatizable mathematical theory is complete.

A more important goal of Hilbert’s, the centerpiece of his program for the justi�-
cation of modern (“classical”) mathematics, was to �nd �nitary consistency proofs for
formal systems representing classical reasoning. With regard to Hilbert’s program,
then, Gödel’s second incompleteness theorem was a much bigger blow. �e second
incompleteness theorem can be stated in vague terms, like the �rst incompleteness
theorem. Roughly speaking, it says that no su�ciently strong theory of arithmetic
can prove its own consistency. We will have to take “su�ciently strong” to include a
li�le bit more than Q.

�e idea behind Gödel’s original proof of the incompleteness theorem can be
found in the Epimenides paradox. Epimenides, a Cretan, asserted that all Cretans
are liars; a more direct form of the paradox is the assertion “this sentence is false.”
Essentially, by replacing truth with derivability, Gödel was able to formalize a sentence
which, in a roundabout way, asserts that it itself is not derivable. If that sentence were
derivable, the theory would then be inconsistent. Gödel showed that the negation of
that sentence is also not derivable from the system of axioms he was considering. (For
this second part, Gödel had to assume that the theory T is what’s called “l-consistent.”
l-Consistency is related to consistency, but is a stronger property. A few years a�er
Gödel, Rosser showed that assuming simple consistency of T is enough.)

�e �rst challenge is to understand how one can construct a sentence that refers
to itself. For every formula i in the language of Q, let piq denote the numeral
corresponding to #i#. �ink about what this means: i is a formula in the language
of Q, #i# is a natural number, and piq is a term in the language of Q. So every formula
i in the language of Q has a name, piq, which is a term in the language of Q; this
provides us with a conceptual framework in which formulas in the language of Q can
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19. Incompleteness and Provability

“say” things about other formulas. �e following lemma is known as the �xed-point
lemma.

Lemma 19.1. Let T be any theory extending Q, and letk (G) be any formula with only
the variable G free. �en there is a sentence i such that T ` i↔k (piq).

�e lemma asserts that given any propertyk (G), there is a sentence i that asserts
“k (G) is true of me,” and T “knows” this.

How can we construct such a sentence? Consider the following version of the
Epimenides paradox, due to �ine:

“Yields falsehood when preceded by its quotation” yields falsehood when
preceded by its quotation.

�is sentence is not directly self-referential. It simply makes an assertion about the
syntactic objects between quotes, and, in doing so, it is on par with sentences like

1. “Robert” is a nice name.

2. “I ran.” is a short sentence.

3. “Has three words” has three words.

But what happens when one takes the phrase “yields falsehood when preceded by its
quotation,” and precedes it with a quoted version of itself? �en one has the original
sentence! In short, the sentence asserts that it is false.

19.2 �e Fixed-Point Lemma

�e �xed-point lemma says that for any formulak (G), there is a sentence i such that
T ` i↔k (piq), provided T extends Q. In the case of the liar sentence, we’d want
i to be equivalent (provably in T) to “piq is false,” i.e., the statement that #i# is the
Gödel number of a false sentence. To understand the idea of the proof, it will be useful
to compare it with �ine’s informal gloss of i as, “‘yields a falsehood when preceded
by its own quotation’ yields a falsehood when preceded by its own quotation.” �e
operation of taking an expression, and then forming a sentence by preceding this
expression by its own quotation may be called diagonalizing the expression, and the
result its diagonalization. So, the diagonalization of ‘yields a falsehood when preceded
by its own quotation’ is “‘yields a falsehood when preceded by its own quotation’
yields a falsehood when preceded by its own quotation.” Now note that �ine’s liar
sentence is not the diagonalization of ‘yields a falsehood’ but of ‘yields a falsehood
when preceded by its own quotation.’ So the property being diagonalized to yield the
liar sentence itself involves diagonalization!

In the language of arithmetic, we form quotations of a formula with one free
variable by computing its Gödel numbers and then substituting the standard numeral
for that Gödel number into the free variable. �e diagonalization of U (G) is U (=),
where = = #U (G)#. (From now on, let’s abbreviate #U (G)# as pU (G)q.) So ifk (G) is “is
a falsehood,” then “yields a falsehood if preceded by its own quotation,” would be
“yields a falsehood when applied to the Gödel number of its diagonalization.” If we had
a symbol 3806 for the function diag(=) which computes the Gödel number of the diag-
onalization of the formula with Gödel number =, we could write U (G) ask (3806(G)).
And �ine’s version of the liar sentence would then be the diagonalization of it,
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19.2. �e Fixed-Point Lemma

i.e., U (pU (G)q) ork (3806(pk (3806(G))q)). Of course, k (G) could now be any other
property, and the same construction would work. For the incompleteness theorem,
we’ll takek (G) to be “G is not derivable in T.” �en U (G) would be “yields a sentence
not derivable in T when applied to the Gödel number of its diagonalization.”

To formalize this in T, we have to �nd a way to formalize diag. �e function
diag(=) is computable, in fact, it is primitive recursive: if = is the Gödel number of
a formula U (G), diag(=) returns the Gödel number of U (pU (G)q). (Recall, pU (G)q
is the standard numeral of the Gödel number of U (G), i.e., #U (G)#). If 3806 were a
function symbol in T representing the function diag, we could takei to be the formula
k (3806(pk (3806(G))q)). Notice that

diag( #k (3806(G))#) = #k (3806(pk (3806(G))q))#

= #i#.

Assuming T can derive
3806(pk (3806(G))q) = piq,

it can derivek (3806(pk (3806(G))q)) ↔k (piq). But the le� hand side is, by de�ni-
tion, i .

Of course, 3806 will in general not be a function symbol of T, and certainly is
not one of Q. But, since diag is computable, it is representable in Q by some formula
\diag (G,~). So instead of writing k (3806(G)) we can write ∃~ (\diag (G,~) ∧ k (~)).
Otherwise, the proof sketched above goes through, and in fact, it goes through
already in Q.

Lemma 19.2. Let k (G) be any formula with one free variable G . �en there is a sen-
tence i such that Q ` i↔k (piq).

Proof. Given k (G), let U (G) be the formula ∃~ (\diag (G,~) ∧ k (~)) and let i be its
diagonalization, i.e., the formula U (pU (G)q).

Since \diag represents diag, and diag( #U (G)#) = #i#, Q can derive

\diag (pU (G)q, piq) (19.1)
∀~ (\diag (pU (G)q, ~) → ~ = piq). (19.2)

Now we show that Q ` i↔k (piq). We argue informally, using just logic and facts
derivable in Q.

First, suppose i , i.e., U (pU (G)q). Going back to the de�nition of U (G), we see that
U (pU (G)q) just is

∃~ (\diag (pU (G)q, ~) ∧k (~)) .

Consider such a ~. Since \diag (pU (G)q, ~), by eq. (19.2), ~ = piq. So, from k (~) we
havek (piq).

Now suppose k (piq). By eq. (19.1), we have \diag (pU (G)q, piq) ∧ k (piq). It
follows that ∃~ (\diag (pU (G)q, ~) ∧k (~)). But that’s just U (pUq), i.e., i . �

You should compare this to the proof of the �xed-point lemma in computability
theory. �e di�erence is that here we want to de�ne a statement in terms of itself,
whereas there we wanted to de�ne a function in terms of itself; this di�erence aside,
it is really the same idea.
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19. Incompleteness and Provability

19.3 �e First Incompleteness �eorem

We can now describe Gödel’s original proof of the �rst incompleteness theorem. Let
T be any computably axiomatized theory in a language extending the language of
arithmetic, such that T includes the axioms of Q. �is means that, in particular, T
represents computable functions and relations.

We have argued that, given a reasonable coding of formulas and proofs as numbers,
the relation Prf) (G,~) is computable, where Prf) (G,~) holds if and only if G is the
Gödel number of a derivation of the formula with Gödel number~ in T. In fact, for the
particular theory that Gödel had in mind, Gödel was able to show that this relation
is primitive recursive, using the list of 45 functions and relations in his paper. �e
45th relation, G�~, is just Prf) (G,~) for his particular choice of T. Remember that
where Gödel uses the word “recursive” in his paper, we would now use the phrase
“primitive recursive.”

Since Prf) (G,~) is computable, it is representable in T. We will use Prf) (G,~)
to refer to the formula that represents it. Let Prov) (~) be the formula ∃G Prf) (G,~).
�is describes the 46th relation, Bew(~), on Gödel’s list. As Gödel notes, this is the
only relation that “cannot be asserted to be recursive.” What he probably meant is
this: from the de�nition, it is not clear that it is computable; and later developments,
in fact, show that it isn’t.

Let T be an axiomatizable theory containing Q. �en Prf) (G,~) is decidable, hence
representable in Q by a formula Prf) (G,~). Let Prov) (~) be the formula we described
above. By the �xed-point lemma, there is a formula WT such that Q (and hence T)
derives

WT↔¬Prov) (pWTq). (19.3)
Note that WT says, in essence, “WT is not derivable in T.”

Lemma 19.3. If T is a consistent, axiomatizable theory extending Q, then T 0 WT.

Proof. Suppose T derives WT. �en there is a derivation, and so, for some number
<, the relation Prf) (<, #WT

#) holds. But then Q derives the sentence Prf) (<, pWTq).
So Q derives ∃G Prf) (G, pWTq), which is, by de�nition, Prov) (pWTq). By eq. (19.3), Q
derives ¬WT, and since T extends Q, so does T. We have shown that if T derives WT,
then it also derives ¬WT, and hence it would be inconsistent. �

De�nition 19.4. A theory T is l-consistent if the following holds: if ∃G i (G) is any
sentence and T derives ¬i (0), ¬i (1), ¬i (2), . . . then T does not prove ∃G i (G).

Note that everyl-consistent theory is also consistent. �is follows simply from the
fact that if T is inconsistent, then T ` i for every i . In particular, if T is inconsistent,
it derives both ¬i (=) for every = and also derives ∃G i (G). So, if T is inconsistent, it
is l-inconsistent. By contraposition, if T is l-consistent, it must be consistent.

Lemma 19.5. If T is an l-consistent, axiomatizable theory extending Q, then T 0 ¬WT.

Proof. We show that if T derives ¬WT, then it isl-inconsistent. Suppose T derives ¬WT.
If T is inconsistent, it is l-inconsistent, and we are done. Otherwise, T is consistent,
so it does not derive WT by Lemma 19.3. Since there is no derivation of WT in T, Q
derives

¬Prf) (0, pWTq),¬Prf) (1, pWTq),¬Prf) (2, pWTq), . . .
and so does T. On the other hand, by eq. (19.3), ¬WT is equivalent to ∃G Prf) (G, pWTq).
So T is l-inconsistent. �
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�eorem 19.6. Let T be any l-consistent, axiomatizable theory extending Q. �en T
is not complete.

Proof. If T is l-consistent, it is consistent, so T 0 WT by Lemma 19.3. By Lemma 19.5,
T 0 ¬WT. �is means that T is incomplete, since it derives neither WT nor ¬WT. �

19.4 Rosser’s �eorem

Can we modify Gödel’s proof to get a stronger result, replacing “l-consistent” with
simply “consistent”? �e answer is “yes,” using a trick discovered by Rosser. Rosser’s
trick is to use a “modi�ed” derivability predicate RProv) (~) instead of Prov) (~).

�eorem 19.7. Let T be any consistent, axiomatizable theory extending Q. �en T is
not complete.

Proof. Recall that Prov) (~) is de�ned as ∃G Prf) (G,~), where Prf) (G,~) represents
the decidable relation which holds i� G is the Gödel number of a derivation of the
sentence with Gödel number ~. �e relation that holds between G and ~ if G is the
Gödel number of a refutation of the sentence with Gödel number ~ is also decidable.
Let not(G) be the primitive recursive function which does the following: if G is the
code of a formula i , not(G) is a code of ¬i . �en Ref) (G,~) holds i� Prf) (G, not(~)).
Let Ref) (G,~) represent it. �en, if T ` ¬i and X is a corresponding derivation,
Q ` Ref) (pXq, piq). We de�ne RProv) (~) as

∃G (Prf) (G,~) ∧ ∀I (I < G →¬Ref) (I,~))).

Roughly, RProv) (~) says “there is a proof of ~ in T, and there is no shorter refutation
of ~.” Assuming T is consistent, RProv) (~) is true of the same numbers as Prov) (~);
but from the point of view of provability in T (and we now know that there is a
di�erence between truth and provability!) the two have di�erent properties. If T
is inconsistent, then the two do not hold of the same numbers! (RProv) (~) is o�en
read as “~ is Rosser provable.” Since, as just discussed, Rosser provability is not some
special kind of provability—in inconsistent theories, there are sentences that are
provable but not Rosser provable—this may be confusing. To avoid the confusion,
you could instead read it as “~ is shmovable.”)

By the �xed-point lemma, there is a formula dT such that

Q ` dT↔¬RProv) (pdTq) . (19.4)

In contrast to the proof of �eorem 19.6, here we claim that if T is consistent, T
doesn’t derive dT, and T also doesn’t derive ¬dT. (In other words, we don’t need the
assumption of l-consistency.)

First, let’s show that T 0 d) . Suppose it did, so there is a derivation of d) from ) ;
let = be its Gödel number. �en Q ` Prf) (=, pd) q), since Prf) represents Prf) in Q.
Also, for each : < =, : is not the Gödel number of ¬d) , since T is consistent. So for
each : < =, Q ` ¬Ref) (:, pd) q). By Lemma 18.23, Q ` ∀I (I < =→¬Ref) (I, pd) q)).
�us,

Q ` ∃G (Prf) (G, pd) q) ∧ ∀I (I < G →¬Ref) (I, pd) q))),
but that’s just RProv) (pd) q). By eq. (19.4), Q ` ¬d) . Since T extends Q, also T ` ¬d) .
We’ve assumed that T ` d) , so T would be inconsistent, contrary to the assumption
of the theorem.
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Now, let’s show that T 0 ¬d) . Again, suppose it did, and suppose = is the Gödel
number of a derivation of ¬d) . �en Ref) (=, #d)

#) holds, and since Ref) represents
Ref) in Q, Q ` Ref) (=, pd) q). We’ll again show that T would then be inconsistent
because it would also derive d) . Since

Q ` d) ↔¬RProv) (pd) q),

and since T extends Q, it su�ces to show that

Q ` ¬RProv) (pd) q) .

�e sentence ¬RProv) (pd) q), i.e.,

¬∃G (Prf) (G, pd) q) ∧ ∀I (I < G →¬Ref) (I, pd) q)))

is logically equivalent to

∀G (Prf) (G, pd) q) → ∃I (I < G ∧ Ref) (I, pd) q)))

We argue informally using logic, making use of facts about what Q derives. Suppose
G is arbitrary and Prf) (G, pd) q). We already know that T 0 d) , and so for every
: , Q ` ¬Prf) (:, pd) q). �us, for every : it follows that G ≠ : . In particular, we
have (a) that G ≠ =. We also have ¬(G = 0 ∨ G = 1 ∨ · · · ∨ G = = − 1) and so by
Lemma 18.23, (b) ¬(G < =). By Lemma 18.24, = < G . Since Q ` Ref) (=, pd) q), we
have = < G ∧ Ref) (=, pd) q), and from that ∃I (I < G ∧ Ref) (I, pd) q)). Since G was
arbitrary we get, as required, that

∀G (Prf) (G, pd) q) → ∃I (I < G ∧ Ref) (I, pd) q))). �

19.5 Comparison with Gödel’s Original Paper

It is worthwhile to spend some time with Gödel’s 1931 paper. �e introduction
sketches the ideas we have just discussed. Even if you just skim through the paper, it
is easy to see what is going on at each stage: �rst Gödel describes the formal system
% (syntax, axioms, proof rules); then he de�nes the primitive recursive functions and
relations; then he shows that G�~ is primitive recursive, and argues that the primitive
recursive functions and relations are represented in P. He then goes on to prove
the incompleteness theorem, as above. In Section 3, he shows that one can take the
unprovable assertion to be a sentence in the language of arithmetic. �is is the origin
of the V-lemma, which is what we also used to handle sequences in showing that
the recursive functions are representable in Q. Gödel doesn’t go so far to isolate a
minimal set of axioms that su�ce, but we now know that Q will do the trick. Finally,
in Section 4, he sketches a proof of the second incompleteness theorem.

Problems

Problem 19.1. Everyl-consistent theory is consistent. Show that the converse does
not hold, i.e., that there are consistent butl-inconsistent theories. Do this by showing
that Q ∪ {¬WQ} is consistent but l-inconsistent.
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Appendix A

Proofs

A.1 Introduction

Based on your experiences in introductory logic, you might be comfortable with a
proof system—probably a natural deduction or Fitch style proof system, or perhaps
a proof-tree system. You probably remember doing proofs in these systems, either
proving a formula or show that a given argument is valid. In order to do this, you
applied the rules of the system until you got the desired end result. In reasoning about
logic, we also prove things, but in most cases we are not using a proof system. In fact,
most of the proofs we consider are done in English (perhaps, with some symbolic
language thrown in) rather than entirely in the language of �rst-order logic. When
constructing such proofs, you might at �rst be at a loss—how do I prove something
without a proof system? How do I start? How do I know if my proof is correct?

Before a�empting a proof, it’s important to know what a proof is and how to
construct one. As implied by the name, a proof is meant to show that something is
true. You might think of this in terms of a dialogue—someone asks you if something
is true, say, if every prime other than two is an odd number. To answer “yes” is not
enough; they might want to know why. In this case, you’d give them a proof.

In everyday discourse, it might be enough to gesture at an answer, or give an
incomplete answer. In logic and mathematics, however, we want rigorous proof—we
want to show that something is true beyond any doubt. �is means that every step in
our proof must be justi�ed, and the justi�cation must be cogent (i.e., the assumption
you’re using is actually assumed in the statement of the theorem you’re proving, the
de�nitions you apply must be correctly applied, the justi�cations appealed to must
be correct inferences, etc.).

Usually, we’re proving some statement. We call the statements we’re proving by
various names: propositions, theorems, lemmas, or corollaries. A proposition is a basic
proof-worthy statement: important enough to record, but perhaps not particularly
deep nor applied o�en. A theorem is a signi�cant, important proposition. Its proof
o�en is broken into several steps, and sometimes it is named a�er the person who �rst
proved it (e.g., Cantor’s �eorem, the Löwenheim-Skolem theorem) or a�er the fact it
concerns (e.g., the completeness theorem). A lemma is a proposition or theorem that
is used to in the proof of a more important result. Confusingly, sometimes lemmas
are important results in themselves, and also named a�er the person who introduced
them (e.g., Zorn’s Lemma). A corollary is a result that easily follows from another
one.
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A statement to be proved o�en contains some assumption that clari�es about
which kinds of things we’re proving something. It might begin with “Leti be a formula
of the formk→ j” or “Suppose Γ ` i” or something of the sort. �ese are hypotheses
of the proposition, theorem, or lemma, and you may assume these to be true in your
proof. �ey restrict what we’re proving about, and also introduce some names for
the objects we’re talking about. For instance, if your proposition begins with “Let i
be a formula of the formk → j ,” you’re proving something about all formulas of a
certain sort only (namely, conditionals), and it’s understood thatk→ j is an arbitrary
conditional that your proof will talk about.

A.2 Starting a Proof

But where do you even start?
You’ve been given something to prove, so this should be the last thing that is

mentioned in the proof (you can, obviously, announce that you’re going to prove it at
the beginning, but you don’t want to use it as an assumption). Write what you are
trying to prove at the bo�om of a fresh sheet of paper—this way you don’t lose sight
of your goal.

Next, you may have some assumptions that you are able to use (this will be made
clearer when we talk about the type of proof you are doing in the next section). Write
these at the top of the page and make sure to �ag that they are assumptions (i.e., if
you are assuming ? , write “assume that ? ,” or “suppose that ?”). Finally, there might
be some de�nitions in the question that you need to know. You might be told to
use a speci�c de�nition, or there might be various de�nitions in the assumptions
or conclusion that you are working towards. Write these down and ensure that you
understand what they mean.

How you set up your proof will also be dependent upon the form of the question.
�e next section provides details on how to set up your proof based on the type of
sentence.

A.3 Using De�nitions

We mentioned that you must be familiar with all de�nitions that may be used in the
proof, and that you can properly apply them. �is is a really important point, and it
is worth looking at in a bit more detail. De�nitions are used to abbreviate properties
and relations so we can talk about them more succinctly. �e introduced abbreviation
is called the de�niendum, and what it abbreviates is the de�niens. In proofs, we o�en
have to go back to how the de�niendum was introduced, because we have to exploit
the logical structure of the de�niens (the long version of which the de�ned term is
the abbreviation) to get through our proof. By unpacking de�nitions, you’re ensuring
that you’re ge�ing to the heart of where the logical action is.

We’ll start with an example. Suppose you want to prove the following:

Proposition A.1. For any sets � and �, � ∪ � = � ∪�.

In order to even start the proof, we need to know what it means for two sets to
be identical; i.e., we need to know what the “=” in that equation means for sets. Sets
are de�ned to be identical whenever they have the same elements. So the de�nition
we have to unpack is:
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De�nition A.2. Sets� and � are identical,� = �, i� every element of� is an element
of �, and vice versa.

�is de�nition uses� and � as placeholders for arbitrary sets. What it de�nes—the
de�niendum—is the expression “� = �” by giving the condition under which � = �

is true. �is condition—“every element of � is an element of �, and vice versa”—is
the de�niens.1 �e de�nition speci�es that � = � is true if, and only if (we abbreviate
this to “i�”) the condition holds.

When you apply the de�nition, you have to match the� and � in the de�nition to
the case you’re dealing with. In our case, it means that in order for � ∪ � = � ∪� to
be true, each I ∈ � ∪ � must also be in � ∪�, and vice versa. �e expression � ∪ � in
the proposition plays the role of� in the de�nition, and �∪� that of �. Since� and �
are used both in the de�nition and in the statement of the proposition we’re proving,
but in di�erent uses, you have to be careful to make sure you don’t mix up the two.
For instance, it would be a mistake to think that you could prove the proposition by
showing that every element of � is an element of �, and vice versa—that would show
that � = �, not that � ∪ � = � ∪ �. (Also, since � and � may be any two sets, you
won’t get very far, because if nothing is assumed about � and � they may well be
di�erent sets.)

Within the proof we are dealing with set-theoretic notions such as union, and
so we must also know the meanings of the symbol ∪ in order to understand how
the proof should proceed. And sometimes, unpacking the de�nition gives rise to
further de�nitions to unpack. For instance, � ∪ � is de�ned as {I | I ∈ � or I ∈ �}.
So if you want to prove that G ∈ � ∪ �, unpacking the de�nition of ∪ tells you that
you have to prove G ∈ {I | I ∈ � or I ∈ �}. Now you also have to remember that
G ∈ {I | . . . I . . .} i� . . . G . . . . So, further unpacking the de�nition of the {I | . . . I . . .}
notation, what you have to show is: G ∈ � or G ∈ �. So, “every element of � ∪ � is
also an element of � ∪ �” really means: “for every G , if G ∈ � or G ∈ �, then G ∈ �
or G ∈ �.” If we fully unpack the de�nitions in the proposition, we see that what we
have to show is this:

Proposition A.3. For any sets � and �: (a) for every G , if G ∈ � or G ∈ �, then G ∈ �
or G ∈ �, and (b) for every G , if G ∈ � or G ∈ �, then G ∈ � or G ∈ �.

What’s important is that unpacking de�nitions is a necessary part of constructing
a proof. Properly doing it is sometimes di�cult: you must be careful to distinguish
and match the variables in the de�nition and the terms in the claim you’re proving.
In order to be successful, you must know what the question is asking and what
all the terms used in the question mean—you will o�en need to unpack more than
one de�nition. In simple proofs such as the ones below, the solution follows almost
immediately from the de�nitions themselves. Of course, it won’t always be this
simple.

A.4 Inference Patterns

Proofs are composed of individual inferences. When we make an inference, we
typically indicate that by using a word like “so,” “thus,” or “therefore.” �e inference

1In this particular case—and very confusingly!—when � = �, the sets � and � are just one and the
same set, even though we use di�erent le�ers for it on the le� and the right side. But the ways in which
that set is picked out may be di�erent, and that makes the de�nition non-trivial.
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o�en relies on one or two facts we already have available in our proof—it may be
something we have assumed, or something that we’ve concluded by an inference
already. To be clear, we may label these things, and in the inference we indicate what
other statements we’re using in the inference. An inference will o�en also contain
an explanation of why our new conclusion follows from the things that come before
it. �ere are some common pa�erns of inference that are used very o�en in proofs;
we’ll go through some below. Some pa�erns of inference, like proofs by induction,
are more involved (and will be discussed later).

We’ve already discussed one pa�ern of inference: unpacking, or applying, a
de�nition. When we unpack a de�nition, we just restate something that involves
the de�niendum by using the de�niens. For instance, suppose that we have already
established in the course of a proof that � = � (a). �en we may apply the de�nition
of = for sets and infer: “�us, by de�nition from (a), every element of � is an element
of � and vice versa.”

Somewhat confusingly, we o�en do not write the justi�cation of an inference
when we actually make it, but before. Suppose we haven’t already proved that � = �,
but we want to. If � = � is the conclusion we aim for, then we can restate this aim
also by applying the de�nition: to prove � = � we have to prove that every element
of � is an element of � and vice versa. So our proof will have the form: (a) prove that
every element of � is an element of �; (b) every element of � is an element of � ; (c)
therefore, from (a) and (b) by de�nition of =, � = �. But we would usually not write
it this way. Instead we might write something like,

We want to show � = �. By de�nition of =, this amounts to showing
that every element of � is an element of � and vice versa.
(a) . . . (a proof that every element of � is an element of �) . . .
(b) . . . (a proof that every element of � is an element of �) . . .

Using a Conjunction

Perhaps the simplest inference pa�ern is that of drawing as conclusion one of the
conjuncts of a conjunction. In other words: if we have assumed or already proved
that ? and @, then we’re entitled to infer that ? (and also that @). �is is such a
basic inference that it is o�en not mentioned. For instance, once we’ve unpacked the
de�nition of � = � we’ve established that every element of � is an element of � and
vice versa. From this we can conclude that every element of � is an element of �
(that’s the “vice versa” part).

Proving a Conjunction

Sometimes what you’ll be asked to prove will have the form of a conjunction; you
will be asked to “prove ? and @.” In this case, you simply have to do two things: prove
? , and then prove @. You could divide your proof into two sections, and for clarity,
label them. When you’re making your �rst notes, you might write “(1) Prove ?” at
the top of the page, and “(2) Prove @” in the middle of the page. (Of course, you might
not be explicitly asked to prove a conjunction but �nd that your proof requires that
you prove a conjunction. For instance, if you’re asked to prove that � = � you will
�nd that, a�er unpacking the de�nition of =, you have to prove: every element of �
is an element of � and every element of � is an element of �).
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Proving a Disjunction

When what you are proving takes the form of a disjunction (i.e., it is an statement of
the form “? or @”), it is enough to show that one of the disjuncts is true. However, it
basically never happens that either disjunct just follows from the assumptions of your
theorem. More o�en, the assumptions of your theorem are themselves disjunctive, or
you’re showing that all things of a certain kind have one of two properties, but some
of the things have the one and others have the other property. �is is where proof by
cases is useful (see below).

Conditional Proof

Many theorems you will encounter are in conditional form (i.e., show that if ? holds,
then @ is also true). �ese cases are nice and easy to set up—simply assume the
antecedent of the conditional (in this case, ?) and prove the conclusion @ from it. So
if your theorem reads, “If ? then @,” you start your proof with “assume ?” and at the
end you should have proved @.

Conditionals may be stated in di�erent ways. So instead of “If ? then @,” a theorem
may state that “? only if @,” “@ if ? ,” or “@, provided ? .” �ese all mean the same and
require assuming ? and proving @ from that assumption. Recall that a biconditional
(“? if and only if (i�) @”) is really two conditionals put together: if ? then @, and if @
then ? . All you have to do, then, is two instances of conditional proof: one for the
�rst conditional and another one for the second. Sometimes, however, it is possible
to prove an “i�” statement by chaining together a bunch of other “i�” statements so
that you start with “?” an end with “@”—but in that case you have to make sure that
each step really is an “i�.”

Universal Claims

Using a universal claim is simple: if something is true for anything, it’s true for
each particular thing. So if, say, the hypothesis of your proof is � ⊆ �, that means
(unpacking the de�nition of ⊆), that, for every G ∈ �, G ∈ �. �us, if you already
know that I ∈ �, you can conclude I ∈ �.

Proving a universal claim may seem a li�le bit tricky. Usually these statements
take the following form: “If G has % , then it has &” or “All %s are &s.” Of course,
it might not �t this form perfectly, and it takes a bit of practice to �gure out what
you’re asked to prove exactly. But: we o�en have to prove that all objects with some
property have a certain other property.

�e way to prove a universal claim is to introduce names or variables, for the
things that have the one property and then show that they also have the other property.
We might put this by saying that to prove something for all %s you have to prove
it for an arbitrary % . And the name introduced is a name for an arbitrary % . We
typically use single le�ers as these names for arbitrary things, and the le�ers usually
follow conventions: e.g., we use = for natural numbers, i for formulas, � for sets, 5
for functions, etc.

�e trick is to maintain generality throughout the proof. You start by assuming
that an arbitrary object (“G”) has the property % , and show (based only on de�nitions
or what you are allowed to assume) that G has the property & . Because you have
not stipulated what G is speci�cally, other that it has the property % , then you can
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assert that all every % has the property & . In short, G is a stand-in for all things with
property % .

Proposition A.4. For all sets � and �, � ⊆ � ∪ �.

Proof. Let � and � be arbitrary sets. We want to show that � ⊆ � ∪ �. By de�nition
of ⊆, this amounts to: for every G , if G ∈ � then G ∈ �∪�. So let G ∈ � be an arbitrary
element of �. We have to show that G ∈ � ∪ �. Since G ∈ �, G ∈ � or G ∈ �. �us,
G ∈ {G | G ∈ � ∨ G ∈ �}. But that, by de�nition of ∪, means G ∈ � ∪ �. �

Proof by Cases

Suppose you have a disjunction as an assumption or as an already established
conclusion—you have assumed or proved that ? or @ is true. You want to prove
A . You do this in two steps: �rst you assume that ? is true, and prove A , then you
assume that @ is true and prove A again. �is works because we assume or know that
one of the two alternatives holds. �e two steps establish that either one is su�cient
for the truth of A . (If both are true, we have not one but two reasons for why A is
true. It is not necessary to separately prove that A is true assuming both ? and @.) To
indicate what we’re doing, we announce that we “distinguish cases.” For instance,
suppose we know that G ∈ � ∪� . � ∪� is de�ned as {G | G ∈ � or G ∈ �}. In other
words, by de�nition, G ∈ � or G ∈ � . We would prove that G ∈ � from this by �rst
assuming that G ∈ �, and proving G ∈ � from this assumption, and then assume G ∈ � ,
and again prove G ∈ � from this. You would write “We distinguish cases” under the
assumption, then “Case (1): G ∈ �” underneath, and “Case (2): G ∈ � halfway down
the page. �en you’d proceed to �ll in the top half and the bo�om half of the page.

Proof by cases is especially useful if what you’re proving is itself disjunctive.
Here’s a simple example:

Proposition A.5. Suppose � ⊆ � and � ⊆ �. �en � ∪� ⊆ � ∪ �.

Proof. Assume (a) that � ⊆ � and (b) � ⊆ �. By de�nition, any G ∈ � is also ∈ � (c)
and any G ∈ � is also ∈ � (d). To show that � ∪ � ⊆ � ∪ �, we have to show that
if G ∈ � ∪ � then G ∈ � ∪ � (by de�nition of ⊆). G ∈ � ∪ � i� G ∈ � or G ∈ � (by
de�nition of ∪). Similarly, G ∈ � ∪ � i� G ∈ � or G ∈ �. So, we have to show: for any
G , if G ∈ � or G ∈ � , then G ∈ � or G ∈ �.

So far we’ve only unpacked de�nitions! We’ve reformulated our propo-
sition without ⊆ and ∪ and are le� with trying to prove a universal
conditional claim. By what we’ve discussed above, this is done by assum-
ing that G is something about which we assume the “if” part is true, and
we’ll go on to show that the “then” part is true as well. In other words,
we’ll assume that G ∈ � or G ∈ � and show that G ∈ � or G ∈ �.2

Suppose that G ∈ � or G ∈ � . We have to show that G ∈ � or G ∈ �. We distinguish
cases.

Case 1: G ∈ �. By (c), G ∈ � . �us, G ∈ � or G ∈ �. (Here we’ve made the
inference discussed in the preceding subsection!)

Case 2: G ∈ � . By (d), G ∈ �. �us, G ∈ � or G ∈ �. �

2�is paragraph just explains what we’re doing—it’s not part of the proof, and you don’t have to go
into all this detail when you write down your own proofs.
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Proving an Existence Claim

When asked to prove an existence claim, the question will usually be of the form
“prove that there is an G such that . . . G . . . ”, i.e., that some object that has the property
described by “. . . G . . . ”. In this case you’ll have to identify a suitable object show that
is has the required property. �is sounds straightforward, but a proof of this kind
can be tricky. Typically it involves constructing or de�ning an object and proving that
the object so de�ned has the required property. Finding the right object may be hard,
proving that it has the required property may be hard, and sometimes it’s even tricky
to show that you’ve succeeded in de�ning an object at all!

Generally, you’d write this out by specifying the object, e.g., “let G be . . . ” (where . . .
speci�es which object you have in mind), possibly proving that . . . in fact describes
an object that exists, and then go on to show that G has the property & . Here’s a
simple example.

Proposition A.6. Suppose that G ∈ �. �en there is an � such that � ⊆ � and � ≠ ∅.

Proof. Assume G ∈ �. Let � = {G}.

Here we’ve de�ned the set � by enumerating its elements. Since we
assume that G is an object, and we can always form a set by enumerating
its elements, we don’t have to show that we’ve succeeded in de�ning
a set � here. However, we still have to show that � has the properties
required by the proposition. �e proof isn’t complete without that!

Since G ∈ �, � ≠ ∅.

�is relies on the de�nition of� as {G} and the obvious facts that G ∈ {G}
and G ∉ ∅.

Since G is the only element of {G}, and G ∈ �, every element of � is also an element
of �. By de�nition of ⊆, � ⊆ �. �

Using Existence Claims

Suppose you know that some existence claim is true (you’ve proved it, or it’s a
hypothesis you can use), say, “for some G , G ∈ �” or “there is an G ∈ �.” If you want to
use it in your proof, you can just pretend that you have a name for one of the things
which your hypothesis says exist. Since� contains at least one thing, there are things
to which that name might refer. You might of course not be able to pick one out or
describe it further (other than that it is ∈ �). But for the purpose of the proof, you
can pretend that you have picked it out and give a name to it. It’s important to pick a
name that you haven’t already used (or that appears in your hypotheses), otherwise
things can go wrong. In your proof, you indicate this by going from “for some G ,
G ∈ �” to “Let 0 ∈ �.” Now you can reason about 0, use some other hypotheses, etc.,
until you come to a conclusion, ? . If ? no longer mentions 0, ? is independent of the
asusmption that 0 ∈ �, and you’ve shown that it follows just from the assumption
“for some G , G ∈ �.”

Proposition A.7. If � ≠ ∅, then � ∪ � ≠ ∅.

Proof. Suppose � ≠ ∅. So for some G , G ∈ �.
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Here we �rst just restated the hypothesis of the proposition. �is hy-
pothesis, i.e., � ≠ ∅, hides an existential claim, which you get to only by
unpacking a few de�nitions. �e de�nition of = tells us that � = ∅ i�
every G ∈ � is also ∈ ∅ and every G ∈ ∅ is also ∈ �. Negating both sides,
we get: � ≠ ∅ i� either some G ∈ � is ∉ ∅ or some G ∈ ∅ is ∉ �. Since
nothing is ∈ ∅, the second disjunct can never be true, and “G ∈ � and
G ∉ ∅” reduces to just G ∈ �. So G ≠ ∅ i� for some G , G ∈ �. �at’s an
existence claim. Now we use that existence claim by introducing a name
for one of the elements of �:

Let 0 ∈ �.

Now we’ve introduced a name for one of the things ∈ �. We’ll continue
to argue about 0, but we’ll be careful to only assume that 0 ∈ � and
nothing else:

Since 0 ∈ �, 0 ∈ � ∪ �, by de�nition of ∪. So for some G , G ∈ � ∪ �, i.e., � ∪ � ≠ ∅.

In that last step, we went from “0 ∈ � ∪ �” to “for some G , G ∈ � ∪ �.”
�at doesn’t mention 0 anymore, so we know that “for some G , G ∈ �∪�”
follows from “for some G , G ∈ � alone.” But that means that � ∪ � ≠ ∅. �

It’s maybe good practice to keep bound variables like “G” separate from hypothet-
ical names like 0, like we did. In practice, however, we o�en don’t and just use G , like
so:

Suppose � ≠ ∅, i.e., there is an G ∈ �. By de�nition of ∪, G ∈ � ∪ �. So
� ∪ � ≠ ∅.

However, when you do this, you have to be extra careful that you use di�erent G ’s
and ~’s for di�erent existential claims. For instance, the following is not a correct
proof of “If � ≠ ∅ and � ≠ ∅ then � ∩ � ≠ ∅” (which is not true).

Suppose � ≠ ∅ and � ≠ ∅. So for some G , G ∈ � and also for some G ,
G ∈ �. Since G ∈ � and G ∈ �, G ∈ �∩�, by de�nition of ∩. So�∩� ≠ ∅.

Can you spot where the incorrect step occurs and explain why the result does not
hold?

A.5 An Example

Our �rst example is the following simple fact about unions and intersections of sets.
It will illustrate unpacking de�nitions, proofs of conjunctions, of universal claims,
and proof by cases.

Proposition A.8. For any sets �, �, and � , � ∪ (� ∩�) = (� ∪ �) ∩ (� ∪�)

Let’s prove it!

Proof. We want to show that for any sets�, �, and� ,�∪ (�∩�) = (�∪�) ∩ (�∪�)
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First we unpack the de�nition of “=” in the statement of the proposition.
Recall that proving sets identical means showing that the sets have the
same elements. �at is, all elements of � ∪ (� ∩�) are also elements of
(� ∪ �) ∩ (� ∪�), and vice versa. �e “vice versa” means that also every
element of (� ∪ �) ∩ (� ∪�) must be an element of � ∪ (� ∩�). So in
unpacking the de�nition, we see that we have to prove a conjunction.
Let’s record this:

By de�nition, �∪ (� ∩�) = (�∪�) ∩ (�∪�) i� every element of�∪ (� ∩�) is also
an element of (�∪�) ∩ (�∪�), and every element of (�∪�) ∩ (�∪�) is an element
of � ∪ (� ∩�).

Since this is a conjunction, we must prove each conjunct separately. Lets
start with the �rst: let’s prove that every element of � ∪ (� ∩�) is also
an element of (� ∪ �) ∩ (� ∪�).
�is is a universal claim, and so we consider an arbitrary element of
�∪ (�∩�) and show that it must also be an element of (�∪�) ∩ (�∪�).
We’ll pick a variable to call this arbitrary element by, say, I. Our proof
continues:

First, we prove that every element of�∪(�∩�) is also an element of (�∪�)∩ (�∪�).
Let I ∈ � ∪ (� ∩�). We have to show that I ∈ (� ∪ �) ∩ (� ∪�).

Now it is time to unpack the de�nition of ∪ and ∩. For instance, the
de�nition of ∪ is: � ∪ � = {I | I ∈ � or I ∈ �}. When we apply the
de�nition to “� ∪ (� ∩�),” the role of the “�” in the de�nition is now
played by “� ∩ � ,” so � ∪ (� ∩ �) = {I | I ∈ � or I ∈ � ∩ �}. So our
assumption that I ∈ �∪ (�∩�) amounts to: I ∈ {I | I ∈ � or I ∈ �∩�}.
And I ∈ {I | . . . I . . .} i� . . .I . . . , i.e., in this case, I ∈ � or I ∈ � ∩� .

By the de�nition of ∪, either I ∈ � or I ∈ � ∩� .

Since this is a disjunction, it will be useful to apply proof by cases. We
take the two cases, and show that in each one, the conclusion we’re
aiming for (namely, “I ∈ (� ∪ �) ∩ (� ∪�)”) obtains.

Case 1: Suppose that I ∈ �.

�ere’s not much more to work from based on our assumptions. So let’s
look at what we have to work with in the conclusion. We want to show
that I ∈ (� ∪ �) ∩ (� ∪�). Based on the de�nition of ∩, if we want to
show that I ∈ (�∪�) ∩ (�∪�), we have to show that it’s in both (�∪�)
and (� ∪�). But I ∈ � ∪ � i� I ∈ � or I ∈ �, and we already have (as
the assumption of case 1) that I ∈ �. By the same reasoning—switching
� for �—I ∈ � ∪� . �is argument went in the reverse direction, so let’s
record our reasoning in the direction needed in our proof.

Since I ∈ �, I ∈ � or I ∈ �, and hence, by de�nition of ∪, I ∈ � ∪ �. Similarly,
I ∈ � ∪� . But this means that I ∈ (� ∪ �) ∩ (� ∪�), by de�nition of ∩.

�is completes the �rst case of the proof by cases. Now we want to derive
the conclusion in the second case, where I ∈ � ∩� .
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Case 2: Suppose that I ∈ � ∩� .

Again, we are working with the intersection of two sets. Let’s apply the
de�nition of ∩:

Since I ∈ � ∩� , I must be an element of both � and � , by de�nition of ∩.

It’s time to look at our conclusion again. We have to show that I is in
both (� ∪ �) and (� ∪�). And again, the solution is immediate.

Since I ∈ �, I ∈ (� ∪ �). Since I ∈ � , also I ∈ (� ∪�). So, I ∈ (� ∪ �) ∩ (� ∪�).

Here we applied the de�nitions of ∪ and ∩ again, but since we’ve already
recalled those de�nitions, and already showed that if I is in one of two
sets it is in their union, we don’t have to be as explicit in what we’ve
done.
We’ve completed the second case of the proof by cases, so now we can
assert our �rst conclusion.

So, if I ∈ � ∪ (� ∩�) then I ∈ (� ∪ �) ∩ (� ∪�).

Now we just want to show the other direction, that every element of
(� ∪ �) ∩ (� ∪�) is an element of � ∪ (� ∩�). As before, we prove this
universal claim by assuming we have an arbitrary element of the �rst set
and show it must be in the second set. Let’s state what we’re about to do.

Now, assume that I ∈ (� ∪ �) ∩ (� ∪�). We want to show that I ∈ � ∪ (� ∩�).

We are now working from the hypothesis that I ∈ (� ∪ �) ∩ (� ∪�). It
hopefully isn’t too confusing that we’re using the same I here as in the
�rst part of the proof. When we �nished that part, all the assumptions
we’ve made there are no longer in e�ect, so now we can make new
assumptions about what I is. If that is confusing to you, just replace I
with a di�erent variable in what follows.
We know that I is in both�∪� and�∪� , by de�nition of ∩. And by the
de�nition of ∪, we can further unpack this to: either I ∈ � or I ∈ �, and
also either I ∈ � or I ∈ � . �is looks like a proof by cases again—except
the “and” makes it confusing. You might think that this amounts to there
being three possibilities: I is either in �, � or � . But that would be a
mistake. We have to be careful, so let’s consider each disjunction in turn.

By de�nition of ∩, I ∈ � ∪ � and I ∈ � ∪� . By de�nition of ∪, I ∈ � or I ∈ �. We
distinguish cases.

Since we’re focusing on the �rst disjunction, we haven’t go�en our
second disjunction (from unpacking � ∪�) yet. In fact, we don’t need it
yet. �e �rst case is I ∈ �, and an element of a set is also an element of
the union of that set with any other. So case 1 is easy:

Case 1: Suppose that I ∈ �. It follows that I ∈ � ∪ (� ∩�).

Now for the second case, I ∈ �. Here we’ll unpack the second ∪ and do
another proof-by-cases:
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Case 2: Suppose that I ∈ �. Since I ∈ � ∪� , either I ∈ � or I ∈ � . We distinguish
cases further:

Case 2a: I ∈ �. �en, again, I ∈ � ∪ (� ∩�).

Ok, this was a bit weird. We didn’t actually need the assumption that I ∈
� for this case, but that’s ok.

Case 2b: I ∈ � . �en I ∈ � and I ∈ � , so I ∈ �∩� , and consequently, I ∈ �∪ (�∩�).

�is concludes both proofs-by-cases and so we’re done with the second
half.

So, if I ∈ (� ∪ �) ∩ (� ∪�) then I ∈ � ∪ (� ∩�). �

A.6 Another Example

Proposition A.9. If � ⊆ � , then � ∪ (� \�) = � .

Proof. Suppose that � ⊆ � . We want to show that � ∪ (� \�) = � .

We begin by observing that this is a conditional statement. It is tacitly
universally quanti�ed: the proposition holds for all sets � and � . So �
and � are variables for arbitrary sets. To prove such a statement, we
assume the antecedent and prove the consequent.
We continue by using the assumption that � ⊆ � . Let’s unpack the
de�nition of ⊆: the assumption means that all elements of � are also
elements of� . Let’s write this down—it’s an important fact that we’ll use
throughout the proof.

By the de�nition of ⊆, since � ⊆ � , for all I, if I ∈ �, then I ∈ � .

We’ve unpacked all the de�nitions that are given to us in the assumption.
Now we can move onto the conclusion. We want to show that�∪(�\�) =
� , and so we set up a proof similarly to the last example: we show that
every element of � ∪ (� \ �) is also an element of � and, conversely,
every element of � is an element of � ∪ (� \�). We can shorten this to:
� ∪ (� \ �) ⊆ � and � ⊆ � ∪ (� \ �). (Here we’re doing the opposite
of unpacking a de�nition, but it makes the proof a bit easier to read.)
Since this is a conjunction, we have to prove both parts. To show the
�rst part, i.e., that every element of � ∪ (� \�) is also an element of � ,
we assume that I ∈ � ∪ (� \�) for an arbitrary I and show that I ∈ � .
By the de�nition of ∪, we can conclude that I ∈ � or I ∈ � \ � from
I ∈ � ∪ (� \�). You should now be ge�ing the hang of this.

� ∪ (� \ �) = � i� � ∪ (� \ �) ⊆ � and � ⊆ (� ∪ (� \ �). First we prove that
� ∪ (� \�) ⊆ � . Let I ∈ � ∪ (� \�). So, either I ∈ � or I ∈ (� \�).

We’ve arrived at a disjunction, and from it we want to prove that I ∈ � .
We do this using proof by cases.

Case 1: I ∈ �. Since for all I, if I ∈ �, I ∈ � , we have that I ∈ � .
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Here we’ve used the fact recorded earlier which followed from the hy-
pothesis of the proposition that � ⊆ � . �e �rst case is complete, and
we turn to the second case, I ∈ (� \ �). Recall that � \ � denotes the
di�erence of the two sets, i.e., the set of all elements of � which are not
elements of �. But any element of � not in � is in particular an element
of � .

Case 2: I ∈ (� \�). �is means that I ∈ � and I ∉ �. So, in particular, I ∈ � .

Great, we’ve proved the �rst direction. Now for the second direction.
Here we prove that� ⊆ � ∪ (� \�). So we assume that I ∈ � and prove
that I ∈ � ∪ (� \�).

Now let I ∈ � . We want to show that I ∈ � or I ∈ � \�.

Since all elements of � are also elements of � , and � \� is the set of all
things that are elements of � but not �, it follows that I is either in � or
in � \ �. �is may be a bit unclear if you don’t already know why the
result is true. It would be be�er to prove it step-by-step. It will help to
use a simple fact which we can state without proof: I ∈ � or I ∉ �. �is
is called the “principle of excluded middle:” for any statement ? , either ?
is true or its negation is true. (Here, ? is the statement that I ∈ �.) Since
this is a disjunction, we can again use proof-by-cases.

Either I ∈ � or I ∉ �. In the former case, I ∈ � ∪ (� \ �). In the la�er case, I ∈ �
and I ∉ �, so I ∈ � \�. But then I ∈ � ∪ (� \�).

Our proof is complete: we have shown that � ∪ (� \�) = � . �

A.7 Proof by Contradiction

In the �rst instance, proof by contradiction is an inference pa�ern that is used to
prove negative claims. Suppose you want to show that some claim ? is false, i.e., you
want to show ¬? . �e most promising strategy is to (a) suppose that ? is true, and
(b) show that this assumption leads to something you know to be false. “Something
known to be false” may be a result that con�icts with—contradicts—? itself, or some
other hypothesis of the overall claim you are considering. For instance, a proof of
“if @ then ¬?” involves assuming that @ is true and proving ¬? from it. If you prove
¬? by contradiction, that means assuming ? in addition to @. If you can prove ¬@
from ? , you have shown that the assumption ? leads to something that contradicts
your other assumption @, since @ and ¬@ cannot both be true. Of course, you have to
use other inference pa�erns in your proof of the contradiction, as well as unpacking
de�nitions. Let’s consider an example.

Proposition A.10. If � ⊆ � and � = ∅, then � has no elements.

Proof. Suppose � ⊆ � and � = ∅. We want to show that � has no elements.

Since this is a conditional claim, we assume the antecedent and want to
prove the consequent. �e consequent is: � has no elements. We can
make that a bit more explicit: it’s not the case that there is an G ∈ �.
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� has no elements i� it’s not the case that there is an G such that G ∈ �.

So we’ve determined that what we want to prove is really a negative
claim ¬? , namely: it’s not the case that there is an G ∈ �. To use proof
by contradiction, we have to assume the corresponding positive claim ? ,
i.e., there is an G ∈ �, and prove a contradiction from it. We indicate that
we’re doing a proof by contradiction by writing “by way of contradiction,
assume” or even just “suppose not,” and then state the assumption ? .

Suppose not: there is an G ∈ �.

�is is now the new assumption we’ll use to obtain a contradiction. We
have two more assumptions: that � ⊆ � and that � = ∅. �e �rst gives
us that G ∈ �:

Since � ⊆ �, G ∈ �.

But since � = ∅, every element of � (e.g., G ) must also be an element of ∅.

Since � = ∅, G ∈ ∅. �is is a contradiction, since by de�nition ∅ has no elements.

�is already completes the proof: we’ve arrived at what we need (a
contradiction) from the assumptions we’ve set up, and this means that
the assumptions can’t all be true. Since the �rst two assumptions (� ⊆ �
and � = ∅) are not contested, it must be the last assumption introduced
(there is an G ∈ �) that must be false. But if we want to be thorough, we
can spell this out.

�us, our assumption that there is an G ∈ � must be false, hence, � has no elements
by proof by contradiction. �

Every positive claim is trivially equivalent to a negative claim: ? i� ¬¬? . So proofs
by contradiction can also be used to establish positive claims “indirectly,” as follows:
To prove ? , read it as the negative claim ¬¬? . If we can prove a contradiction from
¬? , we’ve established ¬¬? by proof by contradiction, and hence ? .

In the last example, we aimed to prove a negative claim, namely that � has no
elements, and so the assumption we made for the purpose of proof by contradiction
(i.e., that there is an G ∈ �) was a positive claim. It gave us something to work with,
namely the hypothetical G ∈ � about which we continued to reason until we got to
G ∈ ∅.

When proving a positive claim indirectly, the assumption you’d make for the
purpose of proof by contradiction would be negative. But very o�en you can easily
reformulate a positive claim as a negative claim, and a negative claim as a positive
claim. Our previous proof would have been essentially the same had we proved
“� = ∅” instead of the negative consequent “� has no elements.” (By de�nition of =,
“� = ∅” is a general claim, since it unpacks to “every element of � is an element of ∅
and vice versa”.) But it is easily seen to be equivalent to the negative claim “not: there
is an G ∈ �.”

So it is sometimes easier to work with ¬? as an assumption than it is to prove ?
directly. Even when a direct proof is just as simple or even simpler (as in the next
example), some people prefer to proceed indirectly. If the double negation confuses
you, think of a proof by contradiction of some claim as a proof of a contradiction from
the opposite claim. So, a proof by contradiction of ¬? is a proof of a contradiction
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from the assumption ?; and proof by contradiction of ? is a proof of a contradiction
from ¬? .

Proposition A.11. � ⊆ � ∪ �.

Proof. We want to show that � ⊆ � ∪ �.

On the face of it, this is a positive claim: every G ∈ � is also in�∪�. �e
negation of that is: some G ∈ � is ∉ � ∪ �. So we can prove the claim
indirectly by assuming this negated claim, and showing that it leads to a
contradiction.

Suppose not, i.e., � * � ∪ �.

We have a de�nition of � ⊆ � ∪ �: every G ∈ � is also ∈ � ∪ �. To
understand what � * � ∪ � means, we have to use some elementary
logical manipulation on the unpacked de�nition: it’s false that every
G ∈ � is also ∈ � ∪ � i� there is some G ∈ � that is ∉ � . (�is is a place
where you want to be very careful: many students’ a�empted proofs by
contradiction fail because they analyze the negation of a claim like “all
�s are �s” incorrectly.) In other words, � * � ∪ � i� there is an G such
that G ∈ � and G ∉ � ∪ �. From then on, it’s easy.

So, there is an G ∈ � such that G ∉ � ∪ �. By de�nition of ∪, G ∈ � ∪ � i� G ∈ �
or G ∈ �. Since G ∈ �, we have G ∈ � ∪ �. �is contradicts the assumption that
G ∉ � ∪ �. �

Proposition A.12. If � ⊆ � and � ⊆ � then � ⊆ � .

Proof. Suppose � ⊆ � and � ⊆ � . We want to show � ⊆ � .

Let’s proceed indirectly: we assume the negation of what we want to
etablish.

Suppose not, i.e., � * � .

As before, we reason that � * � i� not every G ∈ � is also ∈ � , i.e., some
G ∈ � is ∉ � . Don’t worry, with practice you won’t have to think hard
anymore to unpack negations like this.

In other words, there is an G such that G ∈ � and G ∉ � .

Now we can use this to get to our contradiction. Of course, we’ll have to
use the other two assumptions to do it.

Since � ⊆ �, G ∈ �. Since � ⊆ � , G ∈ � . But this contradicts G ∉ � . �

Proposition A.13. If � ∪ � = � ∩ � then � = �.

Proof. Suppose � ∪ � = � ∩ �. We want to show that � = �.

�e beginning is now routine:

Assume, by way of contradiction, that � ≠ �.
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Our assumption for the proof by contradiction is that� ≠ �. Since� = �

i� � ⊆ � an � ⊆ �, we get that � ≠ � i� � * � or � * �. (Note how
important it is to be careful when manipulating negations!) To prove a
contradiction from this disjunction, we use a proof by cases and show
that in each case, a contradiction follows.

� ≠ � i� � * � or � * �. We distinguish cases.

In the �rst case, we assume� * �, i.e., for some G , G ∈ � but ∉ �. �∩� is
de�ned as those elements that � and � have in common, so if something
isn’t in one of them, it’s not in the intersection. � ∪ � is � together with
�, so anything in either is also in the union. �is tells us that G ∈ � ∪ �
but G ∉ � ∩ �, and hence that � ∩ � ≠ � ∩�.

Case 1: � * �. �en for some G , G ∈ � but G ∉ �. Since G ∉ �, then G ∉ � ∩ �.
Since G ∈ �, G ∈ � ∪ �. So, � ∩ � ≠ � ∩ �, contradicting the assumption that
� ∩ � = � ∪ �.

Case 2: � * �. �en for some ~, ~ ∈ � but ~ ∉ �. As before, we have ~ ∈ � ∪ �
but ~ ∉ � ∩ �, and so � ∩ � ≠ � ∪ �, again contradicting � ∩ � = � ∪ �. �

A.8 Reading Proofs

Proofs you �nd in textbooks and articles very seldom give all the details we have
so far included in our examples. Authors o�en do not draw a�ention to when they
distinguish cases, when they give an indirect proof, or don’t mention that they use a
de�nition. So when you read a proof in a textbook, you will o�en have to �ll in those
details for yourself in order to understand the proof. Doing this is also good practice
to get the hang of the various moves you have to make in a proof. Let’s look at an
example.

Proposition A.14 (Absorption). For all sets �, �,

� ∩ (� ∪ �) = �

Proof. If I ∈ � ∩ (� ∪ �), then I ∈ �, so � ∩ (� ∪ �) ⊆ �. Now suppose I ∈ �. �en
also I ∈ � ∪ �, and therefore also I ∈ � ∩ (� ∪ �). �

�e preceding proof of the absorption law is very condensed. �ere is no mention
of any de�nitions used, no “we have to prove that” before we prove it, etc. Let’s
unpack it. �e proposition proved is a general claim about any sets � and �, and
when the proof mentions � or �, these are variables for arbitrary sets. �e general
claims the proof establishes is what’s required to prove identity of sets, i.e., that every
element of the le� side of the identity is an element of the right and vice versa.

“If I ∈ � ∩ (� ∪ �), then I ∈ �, so � ∩ (� ∪ �) ⊆ �.”

�is is the �rst half of the proof of the identity: it estabishes that if an arbitrary I
is an element of the le� side, it is also an element of the right, i.e., � ∩ (� ∪ �) ⊆ �.
Assume that I ∈ � ∩ (� ∪ �). Since I is an element of the intersection of two sets
i� it is an element of both sets, we can conclude that I ∈ � and also I ∈ � ∪ �. In
particular, I ∈ �, which is what we wanted to show. Since that’s all that has to be
done for the �rst half, we know that the rest of the proof must be a proof of the second
half, i.e., a proof that � ⊆ � ∩ (� ∪ �).
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“Now suppose I ∈ �. �en also I ∈ � ∪ �, and therefore also I ∈
� ∩ (� ∪ �).”

We start by assuming that I ∈ �, since we are showing that, for any I, if I ∈ �
then I ∈ � ∩ (� ∪ �). To show that I ∈ � ∩ (� ∪ �), we have to show (by de�nition
of “∩”) that (i) I ∈ � and also (ii) I ∈ � ∪ �. Here (i) is just our assumption, so there
is nothing further to prove, and that’s why the proof does not mention it again. For
(ii), recall that I is an element of a union of sets i� it is an element of at least one
of those sets. Since I ∈ �, and � ∪ � is the union of � and �, this is the case here.
So I ∈ � ∪ �. We’ve shown both (i) I ∈ � and (ii) I ∈ � ∪ �, hence, by de�nition
of “∩,” I ∈ � ∩ (� ∪ �). �e proof doesn’t mention those de�nitions; it’s assumed
the reader has already internalized them. If you haven’t, you’ll have to go back and
remind yourself what they are. �en you’ll also have to recognize why it follows
from I ∈ � that I ∈ � ∪ �, and from I ∈ � and I ∈ � ∪ � that I ∈ � ∩ (� ∪ �).

Here’s another version of the proof above, with everything made explicit:

Proof. [By de�nition of = for sets,�∩(�∪�) = �we have to show (a)�∩(�∪�) ⊆ �
and (b)�∩(�∪�) ⊆ �. (a): By de�nition of ⊆, we have to show that if I ∈ �∩(�∪�),
then I ∈ �.] If I ∈ � ∩ (� ∪ �), then I ∈ � [since by de�nition of ∩, I ∈ � ∩ (� ∪ �)
i� I ∈ � and I ∈ � ∪ �], so � ∩ (� ∪ �) ⊆ �. [(b): By de�nition of ⊆, we have to
show that if I ∈ �, then I ∈ � ∩ (� ∪ �).] Now suppose [(1)] I ∈ �. �en also [(2)]
I ∈ � ∪ � [since by (1) I ∈ � or I ∈ �, which by de�nition of ∪ means I ∈ � ∪ �],
and therefore also I ∈ � ∩ (� ∪ �) [since the de�nition of ∩ requires that I ∈ �, i.e.,
(1), and I ∈ � ∪ �), i.e., (2)]. �

A.9 I Can’t Do It!

We all get to a point where we feel like giving up. But you can do it. Your instructor
and teaching assistant, as well as your fellow students, can help. Ask them for help!
Here are a few tips to help you avoid a crisis, and what to do if you feel like giving up.

To make sure you can solve problems successfully, do the following:

1. Start as far in advance as possible. We get busy throughout the semester and
many of us struggle with procrastination, one of the best things you can do is
to start your homework assignments early. �at way, if you’re stuck, you have
time to look for a solution (that isn’t crying).

2. Talk to your classmates. You are not alone. Others in the class may also struggle—
but the may struggle with di�erent things. Talking it out with your peers can
give you a di�erent perspective on the problem that might lead to a break-
through. Of course, don’t just copy their solution: ask them for a hint, or
explain where you get stuck and ask them for the next step. And when you do
get it, reciprocate. Helping someone else along, and explaining things will help
you understand be�er, too.

3. Ask for help. You have many resources available to you—your instructor and
teaching assistant are there for you and want you to succeed. �ey should be
able to help you work out a problem and identify where in the process you’re
struggling.
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4. Take a break. If you’re stuck, it might be because you’ve been staring at the
problem for too long. Take a short break, have a cup of tea, or work on a
di�erent problem for a while, then return to the problem with a fresh mind.
Sleep on it.

Notice how these strategies require that you’ve started to work on the proof well
in advance? If you’ve started the proof at 2am the day before it’s due, these might
not be so helpful.

�is might sound like doom and gloom, but solving a proof is a challenge that pays
o� in the end. Some people do this as a career—so there must be something to enjoy
about it. Like basically everything, solving problems and doing proofs is something
that requires practice. You might see classmates who �nd this easy: they’ve probably
just had lots of practice already. Try not to give in too easily.

If you do run out of time (or patience) on a particular problem: that’s ok. It doesn’t
mean you’re stupid or that you will never get it. Find out (from your instructor or
another student) how it is done, and identify where you went wrong or got stuck, so
you can avoid doing that the next time you encounter a similar issue. �en try to do
it without looking at the solution. And next time, start (and ask for help) earlier.

A.10 Other Resources

�ere are many books on how to do proofs in mathematics which may be useful. Check
out How to Read and do Proofs: An Introduction to Mathematical �ought Processes
(Solow, 2013) and How to Prove It: A Structured Approach (Velleman, 2019) in particular.
�e Book of Proof (Hammack, 2013) and Mathematical Reasoning (Sandstrum, 2019)
are books on proof that are freely available online. Philosophers might �nd More
Precisely: �e Math you need to do Philosophy (Steinhart, 2018) to be a good primer on
mathematical reasoning.

�ere are also various shorter guides to proofs available on the internet; e.g.,
“Introduction to Mathematical Arguments” (Hutchings, 2003) and “How to write
proofs” (Cheng, 2004).

Motivational Videos

Feel like you have no motivation to do your homework? Feeling down? �ese videos
might help!

• https://www.youtube.com/watch?v=ZXsQAXxao0

• https://www.youtube.com/watch?v=BQ4yd2W50No

• https://www.youtube.com/watch?v=StTqXEQ2l-Y

Problems

Problem A.1. Suppose you are asked to prove that � ∩ � ≠ ∅. Unpack all the
de�nitions occuring here, i.e., restate this in a way that does not mention “∩”, “=”, or
“∅.

Problem A.2. Prove indirectly that � ∩ � ⊆ �.
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Problem A.3. Expand the following proof of � ∪ (� ∩ �) = �, where you mention
all the inference pa�erns used, why each step follows from assumptions or claims
established before it, and where we have to appeal to which de�nitions.

Proof. If I ∈ � ∪ (� ∩ �) then I ∈ � or I ∈ � ∩ �. If I ∈ � ∩ �, I ∈ �. Any I ∈ � is
also ∈ � ∪ (� ∩ �). �
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Appendix B

Induction

B.1 Introduction

Induction is an important proof technique which is used, in di�erent forms, in almost
all areas of logic, theoretical computer science, and mathematics. It is needed to prove
many of the results in logic.

Induction is o�en contrasted with deduction, and characterized as the inference
from the particular to the general. For instance, if we observe many green emeralds,
and nothing that we would call an emerald that’s not green, we might conclude that
all emeralds are green. �is is an inductive inference, in that it proceeds from many
particlar cases (this emerald is green, that emerald is green, etc.) to a general claim
(all emeralds are green). Mathematical induction is also an inference that concludes a
general claim, but it is of a very di�erent kind that this “simple induction.”

Very roughly, an inductive proof in mathematics concludes that all mathematical
objects of a certain sort have a certain property. In the simplest case, the mathematical
objects an inductive proof is concerned with are natural numbers. In that case an
inductive proof is used to establish that all natural numbers have some property, and
it does this by showing that

1. 0 has the property, and (2)

2. whenever a number : has the property, so does : + 1.

Induction on natural numbers can then also o�en be used to prove general about
mathematical objects that can be assigned numbers. For instance, �nite sets each
have a �nite number = of elements, and if we can use induction to show that every
number = has the property “all �nite sets of size = are . . . ” then we will have shown
something about all �nite sets.

Induction can also be generalized to mathematical objects that are inductively
de�ned. For instance, expressions of a formal language such as those of �rst-order
logic are de�ned inductively. Structural induction is a way to prove results about
all such expressions. Structural induction, in particular, is very useful—and widely
used—in logic.

B.2 Induction on N

In its simplest form, induction is a technique used to prove results for all natural
numbers. It uses the fact that by starting from 0 and repeatedly adding 1 we eventually
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reach every natural number. So to prove that something is true for every number,
we can (1) establish that it is true for 0 and (2) show that whenever it is true for a
number =, it is also true for the next number = + 1. If we abbreviate “number = has
property %” by % (=) (and “number : has property %” by % (:), etc.), then a proof by
induction that % (=) for all = ∈ N consists of:

1. a proof of % (0), and

2. a proof that, for any : , if % (:) then % (: + 1).

To make this crystal clear, suppose we have both (1) and (2). �en (1) tells us that
% (0) is true. If we also have (2), we know in particular that if % (0) then % (0 + 1), i.e.,
% (1). �is follows from the general statement “for any : , if % (:) then % (: + 1)” by
pu�ing 0 for : . So by modus ponens, we have that % (1). From (2) again, now taking 1
for =, we have: if % (1) then % (2). Since we’ve just established % (1), by modus ponens,
we have % (2). And so on. For any number =, a�er doing this = times, we eventually
arrive at % (=). So (1) and (2) together establish % (=) for any = ∈ N.

Let’s look at an example. Suppose we want to �nd out how many di�erent sums
we can throw with = dice. Although it might seem silly, let’s start with 0 dice. If you
have no dice there’s only one possible sum you can “throw”: no dots at all, which
sums to 0. So the number of di�erent possible throws is 1. If you have only one die,
i.e., = = 1, there are six possible values, 1 through 6. With two dice, we can throw
any sum from 2 through 12, that’s 11 possibilities. With three dice, we can throw any
number from 3 to 18, i.e., 16 di�erent possibilities. 1, 6, 11, 16: looks like a pa�ern:
maybe the answer is 5= + 1? Of course, 5= + 1 is the maximum possible, because there
are only 5= + 1 numbers between =, the lowest value you can throw with = dice (all
1’s) and 6=, the highest you can throw (all 6’s).

�eorem B.1. With = dice one can throw all 5= + 1 possible values between = and 6=.

Proof. Let % (=) be the claim: “It is possible to throw any number between = and 6=
using = dice.” To use induction, we prove:

1. �e induction basis % (1), i.e., with just one die, you can throw any number
between 1 and 6.

2. �e induction step, for all : , if % (:) then % (: + 1).

(1) Is proved by inspecting a 6-sided die. It has all 6 sides, and every number
between 1 and 6 shows up one on of the sides. So it is possible to throw any number
between 1 and 6 using a single die.

To prove (2), we assume the antecedent of the conditional, i.e., % (:). �is assump-
tion is called the inductive hypothesis. We use it to prove % (: + 1). �e hard part is to
�nd a way of thinking about the possible values of a throw of : + 1 dice in terms of
the possible values of throws of : dice plus of throws of the extra : + 1-st die—this is
what we have to do, though, if we want to use the inductive hypothesis.

�e inductive hypothesis says we can get any number between : and 6: using
: dice. If we throw a 1 with our (: + 1)-st die, this adds 1 to the total. So we can throw
any value between : + 1 and 6: + 1 by throwing 5 dice and then rolling a 1 with the
(: + 1)-st die. What’s le�? �e values 6: + 2 through 6: + 6. We can get these by
rolling : 6s and then a number between 2 and 6 with our (: + 1)-st die. Together,
this means that with : + 1 dice we can throw any of the numbers between : + 1

246



B.3. Strong Induction

and 6(: + 1), i.e., we’ve proved % (: + 1) using the assumption % (:), the inductive
hypothesis. �

Very o�en we use induction when we want to prove something about a series of
objects (numbers, sets, etc.) that is itself de�ned “inductively,” i.e., by de�ning the
(= + 1)-st object in terms of the =-th. For instance, we can de�ne the sum B= of the
natural numbers up to = by

B0 = 0
B=+1 = B= + (= + 1)

�is de�nition gives:

B0 = 0,
B1 = B0 + 1 = 1,
B2 = B1 + 2 = 1 + 2 = 3
B3 = B2 + 3 = 1 + 2 + 3 = 6, etc.

Now we can prove, by induction, that B= = =(= + 1)/2.

Proposition B.2. B= = =(= + 1)/2.

Proof. We have to prove (1) that B0 = 0 · (0 + 1)/2 and (2) if B: = : (: + 1)/2 then
B:+1 = (:+1) (:+2)/2. (1) is obvious. To prove (2), we assume the inductive hypothesis:
B: = : (: + 1)/2. Using it, we have to show that B:+1 = (: + 1) (: + 2)/2.

What is B:+1? By the de�nition, B:+1 = B: + (: + 1). By inductive hypothesis,
B: = : (: + 1)/2. We can substitute this into the previous equation, and then just need
a bit of arithmetic of fractions:

B:+1 =
: (: + 1)

2 + (: + 1) =

=
: (: + 1)

2 + 2(: + 1)
2 =

=
=(: + 1) + 2(: + 1)

2 =

=
(: + 2) (: + 1)

2 . �

�e important lesson here is that if you’re proving something about some induc-
tively de�ned sequence 0= , induction is the obvious way to go. And even if it isn’t
(as in the case of the possibilities of dice throws), you can use induction if you can
somehow relate the case for : + 1 to the case for : .

B.3 Strong Induction

In the principle of induction discussed above, we prove % (0) and also if % (:), then
% (: + 1). In the second part, we assume that % (:) is true and use this assumption
to prove % (: + 1). Equivalently, of course, we could assume % (: − 1) and use it to
prove % (:)—the important part is that we be able to carry out the inference from
any number to its successor; that we can prove the claim in question for any number
under the assumption it holds for its predecessor.
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�ere is a variant of the principle of induction in which we don’t just assume that
the claim holds for the predecessor : − 1 of : , but for all numbers smaller than : , and
use this assumption to establish the claim for : . �is also gives us the claim % (=)
for all = ∈ N. For once we have established % (0), we have thereby established that %
holds for all numbers less than 1. And if we know that if % (;) for all ; < : , then % (:),
we know this in particular for : = 1. So we can conclude % (1). With this we have
proved % (0) and % (1), i.e., % (;) for all ; < 2, and since we have also the conditional, if
% (;) for all ; < 2, then % (2), we can conclude % (2), and so on.

In fact, if we can establish the general conditional “for all : , if % (;) for all ; < : ,
then % (:),” we do not have to establish % (0) anymore, since it follows from it. For
remember that a general claim like “for all ; < : , % (;)” is true if there are no ; < : .
�is is a case of vacuous quanti�cation: “all �s are �s” is true if there are no �s,
∀G (i (G) →k (G)) is true if no G satis�es i (G). In this case, the formalized version
would be “∀; (; < : → % (;))”—and that is true if there are no ; < : . And if : = 0
that’s exactly the case: no ; < 0, hence “for all ; < 0, % (0)” is true, whatever % is. A
proof of “if % (;) for all ; < : , then % (:)” thus automatically establishes % (0).

�is variant is useful if establishing the claim for : can’t be made to just rely on
the claim for : − 1 but may require the assumption that it is true for one or more
; < : .

B.4 Inductive De�nitions

In logic we very o�en de�ne kinds of objects inductively, i.e., by specifying rules for
what counts as an object of the kind to be de�ned which explain how to get new
objects of that kind from old objects of that kind. For instance, we o�en de�ne special
kinds of sequences of symbols, such as the terms and formulas of a language, by
induction. For a simple example, consider strings of consisting of le�ers a, b, c, d, the
symbol ◦, and brackets [ and ], such as “[[c ◦ d] [”, “[a[]◦]”, “a” or “[[a ◦ b] ◦ d]”. You
probably feel that there’s something “wrong” with the �rst two strings: the brackets
don’t “balance” at all in the �rst, and you might feel that the “◦” should “connect”
expressions that themselves make sense. �e third and fourth string look be�er: for
every “[” there’s a closing “]” (if there are any at all), and for any ◦ we can �nd “nice”
expressions on either side, surrounded by a pair of parentheses.

We would like to precisely specify what counts as a “nice term.” First of all, every
le�er by itself is nice. Anything that’s not just a le�er by itself should be of the form
“[C ◦ B]” where B and C are themselves nice. Conversely, if C and B are nice, then we
can form a new nice term by pu�ing a ◦ between them and surround them by a pair
of brackets. We might use these operations to de�ne the set of nice terms. �is is an
inductive de�nition.

De�nition B.3 (Nice terms). �e set of nice terms is inductively de�ned as follows:

1. Any le�er a, b, c, d is a nice term.

2. If B1 and B2 are nice terms, then so is [B1 ◦ B2].

3. Nothing else is a nice term.

�is de�nition tells us that something counts as a nice term i� it can be constructed
according to the two conditions (1) and (2) in some �nite number of steps. In the �rst
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step, we construct all nice terms just consisting of le�ers by themselves, i.e.,

a, b, c, d

In the second step, we apply (2) to the terms we’ve constructed. We’ll get

[a ◦ a], [a ◦ b], [b ◦ a], . . . , [d ◦ d]

for all combinations of two le�ers. In the third step, we apply (2) again, to any two
nice terms we’ve constructed so far. We get new nice term such as [a◦ [a◦a]]—where
C is a from step 1 and B is [a ◦ a] from step 2—and [[b ◦ c] ◦ [d ◦ b]] constructed out
of the two terms [b ◦ c] and [d ◦ b] from step 2. And so on. Clause (3) rules out that
anything not constructed in this way sneaks into the set of nice terms.

Note that we have not yet proved that every sequence of symbols that “feels” nice
is nice according to this de�nition. However, it should be clear that everything we
can construct does in fact “feel nice”: brackets are balanced, and ◦ connects parts that
are themselves nice.

�e key feature of inductive de�nitions is that if you want to prove something
about all nice terms, the de�nition tells you which cases you must consider. For
instance, if you are told that C is a nice term, the inductive de�nition tells you what
C can look like: C can be a le�er, or it can be [B1 ◦ B2] for some pair of nice terms B1
and B2. Because of clause (3), those are the only possibilities.

When proving claims about all of an inductively de�ned set, the strong form of
induction becomes particularly important. For instance, suppose we want to prove
that for every nice term of length =, the number of [ in it is < =/2. �is can be seen as
a claim about all =: for every =, the number of [ in any nice term of length = is < =/2.

Proposition B.4. For any =, the number of [ in a nice term of length = is < =/2.

Proof. To prove this result by (strong) induction, we have to show that the following
conditional claim is true:

If for every ; < : , any nice term of length ; has ;/2 [’s, then any nice
term of length : has :/2 [’s.

To show this conditional, assume that its antecedent is true, i.e., assume that for any
; < : , nice terms of length ; contain < ;/2 [’s. We call this assumption the inductive
hypothesis. We want to show the same is true for nice terms of length : .

So suppose C is a nice term of length : . Because nice terms are inductively de�ned,
we have two cases: (1) C is a le�er by itself, or (2) C is [B1 ◦ B2] for some nice terms B1
and B2.

1. C is a le�er. �en : = 1, and the number of [ in C is 0. Since 0 < 1/2, the claim
holds.

2. C is [B1 ◦ B2] for some nice terms B1 and B2. Let’s let ;1 be the length of B1 and
;2 be the length of B2. �en the length : of C is ;1 + ;2 + 3 (the lengths of B1 and
B2 plus three symbols [, ◦, ]). Since ;1 + ;2 + 3 is always greater than ;1, ;1 < : .
Similarly, ;2 < =. �at means that the induction hypothesis applies to the terms
B1 and B2: the number<1 of [ in B1 is < ;1/2, and the number<2 of [ in B2 is
< ;2/2.
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�e number of [ in C is the number of [ in B1, plus the number of [ in B2, plus 1,
i.e., it is<1 +<2 + 1. Since<1 < ;1/2 and<2 < ;2/2 we have:

<1 +<2 + 1 <
;1
2 +

;2
2 + 1 =

;1 + ;2 + 2
2 <

;1 + ; − 2 + 3
2 = :/2.

In each case, we’ve shown that the number of [ in C is < :/2 (on the basis of the
inductive hypothesis). By strong induction, the proposition follows. �

B.5 Structural Induction

So far we have used induction to establish results about all natural numbers. But a
corresponding principle can be used directly to prove results about all elements of an
inductively de�ned set. �is o�en called structural induction, because it depends on
the structure of the inductively de�ned objects.

Generally, an inductive de�nition is given by (a) a list of “initial” elements of the
set and (b) a list of operations which produce new elements of the set from old ones.
In the case of nice terms, for instance, the initial objects are the le�ers. We only have
one operation: the operations are

> (B1, B2) =[B1 ◦ B2]

You can even think of the natural numbersN themselves as being given be an inductive
de�nition: the initial object is 0, and the operation is the successor function G + 1.

In order to prove something about all elements of an inductively de�ned set, i.e.,
that every element of the set has a property % , we must:

1. Prove that the initial objects have %

2. Prove that for each operation > , if the arguments have % , so does the result.

For instance, in order to prove something about all nice terms, we would prove that
it is true about all le�ers, and that it is true about [B1 ◦ B2] provided it is true of B1 and
B2 individually.

Proposition B.5. �e number of [ equals the number of ] in any nice term C .

Proof. We use structural induction. Nice terms are inductively de�ned, with le�ers as
initial objects and the operations > for constructing new nice terms out of old ones.

1. �e claim is true for every le�er, since the number of [ in a le�er by itself is 0
and the number of ] in it is also 0.

2. Suppose the number of [ in B1 equals the number of ], and the same is true for
B2. �e number of [ in > (B1, B2), i.e., in [B1 ◦ B2], is the sum of the number of [ in
B1 and B2. �e number of ] in > (B1, B2) is the sum of the number of ] in B1 and B2.
�us, the number of [ in > (B1, B2) equals the number of ] in > (B1, B2). �

Let’s give another proof by structural induction: a proper initial segment of a
string C of symbols is any string B that agrees with C symbol by symbol, read from the
le�, but C is longer. So, e.g., [0 ◦ is a proper initial segment of [0 ◦ 1], but neither are
[1 ◦ (they disagree at the second symbol) nor [0 ◦ 1] (they are the same length).
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Proposition B.6. Every proper initial segment of a nice term C has more [’s than ]’s.

Proof. By induction on C :

1. C is a le�er by itself: �en C has no proper initial segments.

2. C = [B1 ◦ B2] for some nice terms B1 and B2. If A is a proper initial segment of C ,
there are a number of possibilities:

a) A is just [: �en A has one more [ than it does ].
b) A is [A1 where A1 is a proper initial segment of B1: Since B1 is a nice term,

by induction hypothesis, A1 has more [ than ] and the same is true for [A1.
c) A is [B1 or [B1 ◦ : By the previous result, the number of [ and ] in B1 are

equal; so the number of [ in [B1 or [B1 ◦ is one more than the number of ].
d) A is [B1 ◦ A2 where A2 is a proper initial segment of B2: By induction hy-

pothesis, A2 contains more [ than ]. By the previous result, the number of
[ and of ] in B1 are equal. So the number of [ in [B1 ◦ A2 is greater than the
number of ].

e) A is [B1 ◦ B2: By the previous result, the number of [ and ] in B1 are equal,
and the same for B2. So there is one more [ in [B1 ◦ B2 than there are ]. �

B.6 Relations and Functions

When we have de�ned a set of objects (such as the natural numbers or the nice terms)
inductively, we can also de�ne relations on these objects by induction. For instance,
consider the following idea: a nice term C1 is a subterm of a nice term C2 if it occurs as
a part of it. Let’s use a symbol for it: C1 v C2. Every nice term is a subterm of itself, of
course: C v C . We can give an inductive de�nition of this relation as follows:

De�nition B.7. �e relation of a nice term C1 being a subterm of C2, C1 v C2, is de�ned
by induction on C2 as follows:

1. If C2 is a le�er, then C1 v C2 i� C1 = C2.

2. If C2 is [B1 ◦ B2], then C1 v C2 i� C = C2, C1 v B1, or C1 v B2.

�is de�nition, for instance, will tell us that a v [b◦a]. For (2) says that a v [b◦a]
i� a = [b ◦ a], or a v 1, or a v a. �e �rst two are false: a clearly isn’t identical to
[b ◦ a], and by (1), a v b i� a = b, which is also false. However, also by (1), a v a i�
a = a, which is true.

It’s important to note that the success of this de�nition depends on a fact that we
haven’t proved yet: every nice term C is either a le�er by itself, or there are uniquely
determined nice terms B1 and B2 such that C = [B1 ◦ B2]. “Uniquely determined” here
means that if C = [B1 ◦ B2] it isn’t also = [A1 ◦ A2] with B1 ≠ A1 or B2 ≠ A2. If this were
the case, then clause (2) may come in con�ict with itself: reading C2 as [B1 ◦ B2] we
might get C1 v C2, but if we read C2 as [A1 ◦ A2] we might get not C1 v C2. Before we
prove that this can’t happen, let’s look at an example where it can happen.

De�nition B.8. De�ne bracketless terms inductively by

1. Every le�er is a bracketless term.
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2. If B1 and B2 are bracketless terms, then B1 ◦ B2 is a bracketless term.

3. Nothing else is a bracketless term.

Bracketless terms are, e.g., a, b ◦ d, b ◦ a ◦ b. Now if we de�ned “subterm” for
bracketless terms the way we did above, the second clause would read

If C2 = B1 ◦ B2, then C1 v C2 i� C1 = C2, C1 v B1, or C1 v B2.

Now b ◦ a ◦ b is of the form B1 ◦ B2 with

B1 = b and B2 = a ◦ b.

It is also of the form A1 ◦ A2 with

A1 = b ◦ a and A2 = b.

Now is a ◦ b a subterm of b ◦ a ◦ b? �e answer is yes if we go by the �rst reading,
and no if we go by the second.

�e property that the way a nice term is built up from other nice terms is unique is
called unique readability. Since inductive de�nitions of relations for such inductively
de�ned objects are important, we have to prove that it holds.

Proposition B.9. Suppose C is a nice term. �en either C is a le�er by itself, or there
are uniquely determined nice terms B1, B2 such that C = [B1 ◦ B2].

Proof. If C is a le�er by itself, the condition is satis�ed. So assume C isn’t a le�er by
itself. We can tell from the inductive de�nition that then C must be of the form [B1 ◦B2]
for some nice terms B1 and B2. It remains to show that these are uniquely determined,
i.e., if C = [A1 ◦ A2], then B1 = A1 and B2 = A2.

So suppose C = [B1 ◦ B2] and also C = [A1 ◦ A2] for nice terms B1, B2, A1, A2. We have
to show that B1 = A1 and B2 = A2. First, B1 and A1 must be identical, for otherwise one
is a proper initial segment of the other. But by Proposition B.6, that is impossible if B1
and A1 are both nice terms. But if B1 = A1, then clearly also B2 = A2. �

We can also de�ne functions inductively: e.g., we can de�ne the function 5 that
maps any nice term to the maximum depth of nested [. . . ] in it as follows:

De�nition B.10. �e depth of a nice term, 5 (C), is de�ned inductively as follows:

5 (C) =
{

0 if C is a le�er
max(5 (B), 5 (B ′)) + 1 if C = [B1 ◦ B2].

For instance

5 ( [a ◦ b]) = max(5 (a), 5 (b)) + 1 =

= max(0, 0) + 1 = 1, and
5 ( [[a ◦ b] ◦ c]) = max(5 ( [a ◦ b]), 5 (c)) + 1 =

= max(1, 0) + 1 = 2.

Here, of course, we assume that B1 an B2 are nice terms, and make use of the fact
that every nice term is either a le�er or of the form [B1 ◦ B2]. It is again important
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that it can be of this form in only one way. To see why, consider again the bracketless
terms we de�ned earlier. �e corresponding “de�nition” would be:

6(C) =
{

0 if C is a le�er
max(6(B), 6(B ′)) + 1 if C = [B1 ◦ B2].

Now consider the bracketless term a ◦ b ◦ c ◦ d. It can be read in more than one way,
e.g., as B1 ◦ B2 with

B1 = a and B2 = b ◦ c ◦ d,

or as A1 ◦ A2 with

A1 = a ◦ 1 and A2 = c ◦ d.

Calculating 6 according to the �rst way of reading it would give

6(B1 ◦ B2) = max(6(a), 6(b ◦ c ◦ d)) + 1 =

= max(0, 2) + 1 = 3

while according to the other reading we get

6(A1 ◦ A2) = max(6(a ◦ b), 6(c ◦ d)) + 1 =

= max(1, 1) + 1 = 2

But a function must always yield a unique value; so our “de�nition” of 6 doesn’t
de�ne a function at all.

Problems

Problem B.1. De�ne the set of supernice terms by

1. Any le�er a, b, c, d is a supernice term.

2. If B is a supernice term, then so is [B].

3. If B1 and B2 are supernice terms, then so is [B1 ◦ B2].

4. Nothing else is a supernice term.

Show that the number of [ in a supernice term C of length = is ≤ =/2 + 1.

Problem B.2. Prove by structural induction that no nice term starts with ].

Problem B.3. Give an inductive de�nition of the function ; , where ; (C) is the number
of symbols in the nice term C .

Problem B.4. Prove by structural induction on nice terms C that 5 (C) < ; (C) (where
; (C) is the number of symbols in C and 5 (C) is the depth of C as de�ned in De�ni-
tion B.10).
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Appendix C

Biographies

C.1 Georg Cantor

Figure C.1: Georg Cantor

An early biography of Georg Cantor (gay-
org kahn-tor) claimed that he was born and
found on a ship that was sailing for Saint Pe-
tersburg, Russia, and that his parents were
unknown. �is, however, is not true; al-
though he was born in Saint Petersburg in
1845.

Cantor received his doctorate in math-
ematics at the University of Berlin in 1867.
He is known for his work in set theory, and
is credited with founding set theory as a dis-
tinctive research discipline. He was the �rst
to prove that there are in�nite sets of di�er-
ent sizes. His theories, and especially his the-
ory of in�nities, caused much debate among
mathematicians at the time, and his work
was controversial.

Cantor’s religious beliefs and his mathe-
matical work were inextricably tied; he even
claimed that the theory of trans�nite num-
bers had been communicated to him directly
by God. In later life, Cantor su�ered from mental illness. Beginning in 1894, and
more frequently towards his later years, Cantor was hospitalized. �e heavy criticism
of his work, including a falling out with the mathematician Leopold Kronecker, led to
depression and a lack of interest in mathematics. During depressive episodes, Cantor
would turn to philosophy and literature, and even published a theory that Francis
Bacon was the author of Shakespeare’s plays.

Cantor died on January 6, 1918, in a sanatorium in Halle.

Further Reading For full biographies of Cantor, see Dauben (1990) and Gra�an-
Guinness (1971). Cantor’s radical views are also described in the BBC Radio 4 program
A Brief History of Mathematics (du Sautoy, 2014). If you’d like to hear about Cantor’s
theories in rap form, see Rose (2012).
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C.2 Alonzo Church

Figure C.2: Alonzo Church

Alonzo Church was born in Washington, DC
on June 14, 1903. In early childhood, an air
gun incident le� Church blind in one eye. He
�nished preparatory school in Connecticut
in 1920 and began his university education
at Princeton that same year. He completed
his doctoral studies in 1927. A�er a couple
years abroad, Church returned to Princeton.
Church was known exceedingly polite and
careful. His blackboard writing was immac-
ulate, and he would preserve important pa-
pers by carefully covering them in Duco ce-
ment (a clear glue). Outside of his academic
pursuits, he enjoyed reading science �ction
magazines and was not afraid to write to the
editors if he spo�ed any inaccuracies in the
writing.

Church’s academic achievements were great. Together with his students Stephen
Kleene and Barkley Rosser, he developed a theory of e�ective calculability, the lambda
calculus, independently of Alan Turing’s development of the Turing machine. �e
two de�nitions of computability are equivalent, and give rise to what is now known
as the Church-Turing �esis, that a function of the natural numbers is e�ectively
computable if and only if it is computable via Turing machine (or lambda calculus).
He also proved what is now known as Church’s �eorem: �e decision problem for
the validity of �rst-order formulas is unsolvable.

Church continued his work into old age. In 1967 he le� Princeton for UCLA,
where he was professor until his retirement in 1990. Church passed away on August
1, 1995 at the age of 92.

Further Reading For a brief biography of Church, see Enderton (2019). Church’s
original writings on the lambda calculus and the Entscheidungsproblem (Church’s
�esis) are Church (1936a,b). Aspray (1984) records an interview with Church about
the Princeton mathematics community in the 1930s. Church wrote a series of book
reviews of the Journal of Symbolic Logic from 1936 until 1979. �ey are all archived
on John MacFarlane’s website (MacFarlane, 2015).

C.3 Gerhard Gentzen

Gerhard Gentzen is known primarily as the creator of structural proof theory, and
speci�cally the creation of the natural deduction and sequent calculus proof systems.
He was born on November 24, 1909 in Greifswald, Germany. Gerhard was home-
schooled for three years before a�ending preparatory school, where he was behind
most of his classmates in terms of education. Despite this, he was a brilliant student
and showed a strong aptitude for mathematics. His interests were varied, and he, for
instance, also write poems for his mother and plays for the school theatre.

Gentzen began his university studies at the University of Greifswald, but moved
around to Gö�ingen, Munich, and Berlin. He received his doctorate in 1933 from
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the University of Gö�ingen under Hermann Weyl. (Paul Bernays supervised most
of his work, but was dismissed from the university by the Nazis.) In 1934, Gentzen
began work as an assistant to David Hilbert. �at same year he developed the sequent
calculus and natural deduction proof systems, in his papers Untersuchungen über
das logische Schließen I–II [Investigations Into Logical Deduction I–II]. He proved the
consistency of the Peano axioms in 1936.

Figure C.3: Gerhard Gentzen

Gentzen’s relationship with the Nazis
is complicated. At the same time his men-
tor Bernays was forced to leave Germany,
Gentzen joined the university branch of the
SA, the Nazi paramilitary organization. Like
many Germans, he was a member of the
Nazi party. During the war, he served as a
telecommunications o�cer for the air intelli-
gence unit. However, in 1942 he was released
from duty due to a nervous breakdown. It is
unclear whether or not Gentzen’s loyalties
lay with the Nazi party, or whether he joined
the party in order to ensure academic success.

In 1943, Gentzen was o�ered an academic position at the Mathematical Institute
of the German University of Prague, which he accepted. However, in 1945 the citizens
of Prague revolted against German occupation. Soviet forces arrived in the city and
arrested all the professors at the university. Because of his membership in Nazi
organizations, Gentzen was taken to a forced labour camp. He died of malnutrition
while in his cell on August 4, 1945 at the age of 35.

Further Reading For a full biography of Gentzen, see Menzler-Tro� (2007). An
interesting read about mathematicians under Nazi rule, which gives a brief note about
Gentzen’s life, is given by Segal (2014). Gentzen’s papers on logical deduction are
available in the original german (Gentzen, 1935a,b). English translations of Gentzen’s
papers have been collected in a single volume by Szabo (1969), which also includes a
biographical sketch.

C.4 Kurt Gödel

Kurt Gödel (ger-dle) was born on April 28, 1906 in Brünn in the Austro-Hungarian
empire (now Brno in the Czech Republic). Due to his inquisitive and bright nature,
young Kurtele was o�en called “Der kleine Herr Warum” (Li�le Mr. Why) by his
family. He excelled in academics from primary school onward, where he got less
than the highest grade only in mathematics. Gödel was o�en absent from school
due to poor health and was exempt from physical education. He was diagnosed
with rheumatic fever during his childhood. �roughout his life, he believed this
permanently a�ected his heart despite medical assessment saying otherwise.

Gödel began studying at the University of Vienna in 1924 and completed his doc-
toral studies in 1929. He �rst intended to study physics, but his interests soon moved
to mathematics and especially logic, in part due to the in�uence of the philosopher
Rudolf Carnap. His dissertation, wri�en under the supervision of Hans Hahn, proved
the completeness theorem of �rst-order predicate logic with identity (Gödel, 1929).
Only a year later, he obtained his most famous results—the �rst and second incom-
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pleteness theorems (published in Gödel 1931). During his time in Vienna, Gödel was
heavily involved with the Vienna Circle, a group of scienti�cally-minded philosophers
that included Carnap, whose work was especially in�uenced by Gödel’s results.

Figure C.4: Kurt Gödel

In 1938, Gödel married Adele Nimbursky.
His parents were not pleased: not only was
she six years older than him and already di-
vorced, but she worked as a dancer in a night-
club. Social pressures did not a�ect Gödel,
however, and they remained happily married
until his death.

A�er Nazi Germany annexed Austria
in 1938, Gödel and Adele emigrated to the
United States, where he took up a position at
the Institute for Advanced Study in Prince-
ton, New Jersey. Despite his introversion and
eccentric nature, Gödel’s time at Princeton
was collaborative and fruitful. He published
essays in set theory, philosophy and physics.
Notably, he struck up a particularly strong
friendship with his colleague at the IAS, Al-
bert Einstein.

In his later years, Gödel’s mental health
deteriorated. His wife’s hospitalization in
1977 meant she was no longer able to cook his meals for him. Having su�ered from
mental health issues throughout his life, he succumbed to paranoia. Deathly afraid of
being poisoned, Gödel refused to eat. He died of starvation on January 14, 1978, in
Princeton.

Further Reading For a complete biography of Gödel’s life is available, see John Daw-
son (1997). For further biographical pieces, as well as essays about Gödel’s contribu-
tions to logic and philosophy, see Wang (1990), Baaz et al. (2011), Takeuti et al. (2003),
and Sigmund et al. (2007).

Gödel’s PhD thesis is available in the original German (Gödel, 1929). �e original
text of the incompleteness theorems is (Gödel, 1931). All of Gödel’s published and
unpublished writings, as well as a selection of correspondence, are available in English
in his Collected Papers Feferman et al. (1986, 1990).

For a detailed treatment of Gödel’s incompleteness theorems, see Smith (2013). For
an informal, philosophical discussion of Gödel’s theorems, see Mark Linsenmayer’s
podcast (Linsenmayer, 2014).

C.5 Emmy Noether

Emmy Noether (ner-ter) was born in Erlangen, Germany, on March 23, 1882, to
an upper-middle class scholarly family. Hailed as the “mother of modern algebra,”
Noether made groundbreaking contributions to both mathematics and physics, despite
signi�cant barriers to women’s education. In Germany at the time, young girls were
meant to be educated in arts and were not allowed to a�end college preparatory
schools. However, a�er auditing classes at the Universities of Gö�ingen and Erlangen
(where her father was professor of mathematics), Noether was eventually able to

258
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enroll as a student at Erlangen in 1904, when their policy was updated to allow female
students. She received her doctorate in mathematics in 1907.

Figure C.5: Emmy Noether

Despite her quali�cations, Noether ex-
perienced much resistance during her ca-
reer. From 1908–1915, she taught at Erlangen
without pay. During this time, she caught the
a�ention of David Hilbert, one of the world’s
foremost mathematicians of the time, who
invited her to Gö�ingen. However, women
were prohibited from obtaining professor-
ships, and she was only able to lecture under
Hilbert’s name, again without pay. During
this time she proved what is now known as
Noether’s theorem, which is still used in the-
oretical physics today. Noether was �nally
granted the right to teach in 1919. Hilbert’s
response to continued resistance of his uni-
versity colleagues reportedly was: “Gentle-
men, the faculty senate is not a bathhouse.”

In the later 1920s, she concentrated on
work in abstract algebra, and her contribu-
tions revolutionized the �eld. In her proofs
she o�en made use of the so-called ascending chain condition, which states that there
is no in�nite strictly increasing chain of certain sets. For instance, certain algebraic
structures now known as Noetherian rings have the property that there are no in�nite
sequences of ideals �1 ( �2 ( . . . . �e condition can be generalized to any partial
order (in algebra, it concerns the special case of ideals ordered by the subset relation),
and we can also consider the dual descending chain condition, where every strictly
decreasing sequence in a partial order eventually ends. If a partial order satis�es
the descending chain condition, it is possible to use induction along this order in a
similar way in which we can use induction along the < order on N. Such orders are
called well-founded or Noetherian, and the corresponding proof principle Noetherian
induction.

Noether was Jewish, and when the Nazis came to power in 1933, she was dismissed
from her position. Luckily, Noether was able to emigrate to the United States for
a temporary position at Bryn Mawr, Pennsylvania. During her time there she also
lectured at Princeton, although she found the university to be unwelcoming to women
(Dick, 1981, 81). In 1935, Noether underwent an operation to remove a uterine tumour.
She died from an infection as a result of the surgery, and was buried at Bryn Mawr.

Further Reading For a biography of Noether, see Dick (1981). �e Perimeter
Institute for �eoretical Physics has their lectures on Noether’s life and in�uence
available online (Institute, 2015). If you’re tired of reading, Stu� You Missed in History
Class has a podcast on Noether’s life and in�uence (Frey and Wilson, 2015). �e
collected works of Noether are available in the original German (Jacobson, 1983).

C.6 Rózsa Péter
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Figure C.6: Rózsa Péter

Rózsa Péter was born Rósza Politzer, in Bu-
dapest, Hungary, on February 17, 1905. She
is best known for her work on recursive func-
tions, which was essential for the creation
of the �eld of recursion theory.

Péter was raised during harsh politi-
cal times—WWI raged when she was a
teenager—but was able to a�end the a�u-
ent Maria Terezia Girls’ School in Budapest,
from where she graduated in 1922. She then
studied at Pázmány Péter University (later
renamed Loránd Eötvös University) in Bu-
dapest. She began studying chemistry at the
insistence of her father, but later switched
to mathematics, and graduated in 1927. Al-
though she had the credentials to teach high
school mathematics, the economic situation
at the time was dire as the Great Depression
a�ected the world economy. During this time, Péter took odd jobs as a tutor and
private teacher of mathematics. She eventually returned to university to take up
graduate studies in mathematics. She had originally planned to work in number
theory, but a�er �nding out that her results had already been proven, she almost
gave up on mathematics altogether. She was encouraged to work on Gödel’s incom-
pleteness theorems, and unknowingly proved several of his results in di�erent ways.
�is restored her con�dence, and Péter went on to write her �rst papers on recursion
theory, inspired by David Hilbert’s foundational program. She received her PhD in
1935, and in 1937 she became an editor for the Journal of Symbolic Logic.

Péter’s early papers are widely credited as founding contributions to the �eld of
recursive function theory. In Péter (1935a), she investigated the relationship between
di�erent kinds of recursion. In Péter (1935b), she showed that a certain recursively
de�ned function is not primitive recursive. �is simpli�ed an earlier result due
to Wilhelm Ackermann. Péter’s simpli�ed function is what’s now o�en called the
Ackermann function—and sometimes, more properly, the Ackermann-Péter function.
She wrote the �rst book on recursive function theory (Péter, 1951).

Despite the importance and in�uence of her work, Péter did not obtain a full-
time teaching position until 1945. During the Nazi occupation of Hungary during
World War II, Péter was not allowed to teach due to anti-Semitic laws. In 1944 the
government created a Jewish ghe�o in Budapest; the ghe�o was cut o� from the
rest of the city and a�ended by armed guards. Péter was forced to live in the ghe�o
until 1945 when it was liberated. She then went on to teach at the Budapest Teachers
Training College, and from 1955 onward at Eötvös Loránd University. She was the
�rst female Hungarian mathematician to become an Academic Doctor of Mathematics,
and the �rst woman to be elected to the Hungarian Academy of Sciences.

Péter was known as a passionate teacher of mathematics, who preferred to explore
the nature and beauty of mathematical problems with her students rather than to
merely lecture. As a result, she was a�ectionately called “Aunt Rosa” by her students.
Péter died in 1977 at the age of 71.

Further Reading For more biographical reading, see (O’Connor and Robertson,
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2014) and (Andrásfai, 1986). Tamassy (1994) conducted a brief interview with Péter.
For a fun read about mathematics, see Péter’s book Playing With In�nity (Péter, 2010).

C.7 Julia Robinson

Figure C.7: Julia Robinson

Julia Bowman Robinson was an American
mathematician. She is known mainly for
her work on decision problems, and most
famously for her contributions to the solu-
tion of Hilbert’s tenth problem. Robinson
was born in St. Louis, Missouri, on Decem-
ber 8, 1919. Robinson recalls being intrigued
by numbers already as a child (Reid, 1986,
4). At age nine she contracted scarlet fever
and su�ered from several recurrent bouts of
rheumatic fever. �is forced her to spend
much of her time in bed, pu�ing her behind
in her education. Although she was able to
catch up with the help of private tutors, the
physical e�ects of her illness had a lasting
impact on her life.

Despite her childhood struggles, Robin-
son graduated high school with several
awards in mathematics and the sciences. She
started her university career at San Diego State College, and transferred to the Univer-
sity of California, Berkeley, as a senior. �ere she was in�uenced by the mathematician
Raphael Robinson. �ey became good friends, and married in 1941. As a spouse of a
faculty member, Robinson was barred from teaching in the mathematics department
at Berkeley. Although she continued to audit mathematics classes, she hoped to
leave university and start a family. Not long a�er her wedding, however, Robinson
contracted pneumonia. She was told that there was substantial scar tissue build up
on her heart due to the rheumatic fever she su�ered as a child. Due to the severity of
the scar tissue, the doctor predicted that she would not live past forty and she was
advised not to have children (Reid, 1986, 13).

Robinson was depressed for a long time, but eventually decided to continue
studying mathematics. She returned to Berkeley and completed her PhD in 1948
under the supervision of Alfred Tarski. �e �rst-order theory of the real numbers
had been shown to be decidable by Tarski, and from Gödel’s work it followed that the
�rst-order theory of the natural numbers is undecidable. It was a major open problem
whether the �rst-order theory of the rationals is decidable or not. In her thesis (1949),
Robinson proved that it was not.

Interested in decision problems, Robinson next a�empted to �nd a solution to
Hilbert’s tenth problem. �is problem was one of a famous list of 23 mathematical
problems posed by David Hilbert in 1900. �e tenth problem asks whether there
is an algorithm that will answer, in a �nite amount of time, whether or not a poly-
nomial equation with integer coe�cients, such as 3G2 − 2~ + 3 = 0, has a solution
in the integers. Such questions are known as Diophantine problems. A�er some
initial successes, Robinson joined forces with Martin Davis and Hilary Putnam, who
were also working on the problem. �ey succeeded in showing that exponential
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Diophantine problems (where the unknowns may also appear as exponents) are unde-
cidable, and showed that a certain conjecture (later called “J.R.”) implies that Hilbert’s
tenth problem is undecidable (Davis et al., 1961). Robinson continued to work on
the problem throughout the 1960s. In 1970, the young Russian mathematician Yuri
Matijasevich �nally proved the J.R. hypothesis. �e combined result is now called
the Matijasevich–Robinson–Davis–Putnam theorem, or MDRP theorem for short.
Matijasevich and Robinson became friends and collaborated on several papers. In
a le�er to Matijasevich, Robinson once wrote that “actually I am very pleased that
working together (thousands of miles apart) we are obviously making more progress
than either one of us could alone” (Matijasevich, 1992, 45).

Robinson was the �rst female president of the American Mathematical Society,
and the �rst woman to be elected to the National Academy of Science. She died on
July 30, 1985 at the age of 65 a�er being diagnosed with leukemia.

Further Reading Robinson’s mathematical papers are available in her Collected
Works (Robinson, 1996), which also includes a reprint of her National Academy of
Sciences biographical memoir (Feferman, 1994). Robinson’s older sister Constance
Reid published an “Autobiography of Julia,” based on interviews (Reid, 1986), as well
as a full memoir (Reid, 1996). A short documentary about Robinson and Hilbert’s
tenth problem was directed by George Csicsery (Csicsery, 2016). For a brief memoir
about Yuri Matijasevich’s collaborations with Robinson, and her in�uence on his
work, see (Matijasevich, 1992).

C.8 Bertrand Russell

Figure C.8: Bertrand Russell

Bertrand Russell is hailed as one of the
founders of modern analytic philosophy.
Born May 18, 1872, Russell was not only
known for his work in philosophy and logic,
but wrote many popular books in various
subject areas. He was also an ardent politi-
cal activist throughout his life.

Russell was born in Trellech, Mon-
mouthshire, Wales. His parents were mem-
bers of the British nobility. �ey were free-
thinkers, and even made friends with the
radicals in Boston at the time. Unfortunately,
Russell’s parents died when he was young,
and Russell was sent to live with his grand-
parents. �ere, he was given a religious up-
bringing (something his parents had wanted
to avoid at all costs). His grandmother was
very strict in all ma�ers of morality. During
adolescence he was mostly homeschooled by
private tutors.

Russell’s in�uence in analytic philosophy, and especially logic, is tremendous. He
studied mathematics and philosophy at Trinity College, Cambridge, where he was
in�uenced by the mathematician and philosopher Alfred North Whitehead. In 1910,
Russell and Whitehead published the �rst volume of Principia Mathematica, where
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they championed the view that mathematics is reducible to logic. He went on to
publish hundreds of books, essays and political pamphlets. In 1950, he won the Nobel
Prize for literature.

Russell’s was deeply entrenched in politics and social activism. During World
War I he was arrested and sent to prison for six months due to paci�st activities and
protest. While in prison, he was able to write and read, and claims to have found
the experience “quite agreeable.” He remained a paci�st throughout his life, and
was again incarcerated for a�ending a nuclear disarmament rally in 1961. He also
survived a plane crash in 1948, where the only survivors were those si�ing in the
smoking section. As such, Russell claimed that he owed his life to smoking. Russell
was married four times, but had a reputation for carrying on extra-marital a�airs. He
died on February 2, 1970 at the age of 97 in Penrhyndeudraeth, Wales.

Further Reading Russell wrote an autobiography in three parts, spanning his life
from 1872–1967 (Russell, 1967, 1968, 1969). �e Bertrand Russell Research Centre
at McMaster University is home of the Bertrand Russell archives. See their website
at Duncan (2015), for information on the volumes of his collected works (including
searchable indexes), and archival projects. Russell’s paper On Denoting (Russell, 1905)
is a classic of 20th century analytic philosophy.

�e Stanford Encyclopedia of Philosophy entry on Russell (Irvine, 2015) has sound
clips of Russell speaking on Desire and Political theory. Many video interviews with
Russell are available online. To see him talk about smoking and being involved in a
plane crash, e.g., see Russell (n.d.). Some of Russell’s works, including his Introduction
to Mathematical Philosophy are available as free audiobooks on LibriVox (n.d.).

C.9 Alfred Tarski

Figure C.9: Alfred Tarski

Alfred Tarski was born on January 14, 1901
in Warsaw, Poland (then part of the Russian
Empire). Described as “Napoleonic,” Tarski
was boisterous, talkative, and intense. His
energy was o�en re�ected in his lectures—he
once set �re to a wastebasket while disposing
of a cigare�e during a lecture, and was for-
bidden from lecturing in that building again.

Tarski had a thirst for knowledge from
a young age. Although later in life he would
tell students that he studied logic because
it was the only class in which he got a B,
his high school records show that he got A’s
across the board—even in logic. He studied
at the University of Warsaw from 1918 to
1924. Tarski �rst intended to study biology,
but became interested in mathematics, phi-
losophy, and logic, as the university was the
center of the Warsaw School of Logic and
Philosophy. Tarski earned his doctorate in 1924 under the supervision of Stanisław
Leśniewski.
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Before emigrating to the United States in 1939, Tarski completed some of his most
important work while working as a secondary school teacher in Warsaw. His work on
logical consequence and logical truth were wri�en during this time. In 1939, Tarski
was visiting the United States for a lecture tour. During his visit, Germany invaded
Poland, and because of his Jewish heritage, Tarski could not return. His wife and
children remained in Poland until the end of the war, but were then able to emigrate
to the United States as well. Tarski taught at Harvard, the College of the City of New
York, and the Institute for Advanced Study at Princeton, and �nally the University of
California, Berkeley. �ere he founded the multidisciplinary program in Logic and
the Methodology of Science. Tarski died on October 26, 1983 at the age of 82.

Further Reading For more on Tarski’s life, see the biography Alfred Tarski: Life and
Logic (Feferman and Feferman, 2004). Tarski’s seminal works on logical consequence
and truth are available in English in (Corcoran, 1983). All of Tarski’s original works
have been collected into a four volume series, (Tarski, 1981).

C.10 Alan Turing

Alan Turing was born in Mailda Vale, London, on June 23, 1912. He is considered
the father of theoretical computer science. Turing’s interest in the physical sciences
and mathematics started at a young age. However, as a boy his interests were not
represented well in his schools, where emphasis was placed on literature and classics.
Consequently, he did poorly in school and was reprimanded by many of his teachers.

Figure C.10: Alan Turing

Turing a�ended King’s College, Cam-
bridge as an undergraduate, where he stud-
ied mathematics. In 1936 Turing developed
(what is now called) the Turing machine as
an a�empt to precisely de�ne the notion of
a computable function and to prove the un-
decidability of the decision problem. He was
beaten to the result by Alonzo Church, who
proved the result via his own lambda cal-
culus. Turing’s paper was still published
with reference to Church’s result. Church
invited Turing to Princeton, where he spent
1936–1938, and obtained a doctorate under
Church.

Despite his interest in logic, Turing’s ear-
lier interests in physical sciences remained
prevalent. His practical skills were put to
work during his service with the British
cryptanalytic department at Bletchley Park during World War II. Turing was a central
�gure in cracking the cypher used by German Naval communications—the Enigma
code. Turing’s expertise in statistics and cryptography, together with the introduction
of electronic machinery, gave the team the ability to crack the code by creating a
de-crypting machine called a “bombe.” His ideas also helped in the creation of the
world’s �rst programmable electronic computer, the Colossus, also used at Bletchley
park to break the German Lorenz cypher.
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Turing was gay. Nevertheless, in 1942 he proposed to Joan Clarke, one of his
teammates at Bletchley Park, but later broke o� the engagement and confessed to
her that he was homosexual. He had several lovers throughout his lifetime, although
homosexual acts were then criminal o�ences in the UK. In 1952, Turing’s house
was burgled by a friend of his lover at the time, and when �ling a police report,
Turing admi�ed to having a homosexual relationship, under the impression that the
government was on their way to legalizing homosexual acts. �is was not true, and
he was charged with gross indecency. Instead of going to prison, Turing opted for
a hormone treatment that reduced libido. Turing was found dead on June 8, 1954,
of a cyanide overdose—most likely suicide. He was given a royal pardon by �een
Elizabeth II in 2013.

Further Reading For a comprehensive biography of Alan Turing, see Hodges
(2014). Turing’s life and work inspired a play, Breaking the Code, which was produced
in 1996 for TV starring Derek Jacobi as Turing. �e Imitation Game, an Academy
Award nominated �lm starring Bendict Cumberbatch and Kiera Knightley, is also
loosely based on Alan Turing’s life and time at Bletchley Park (Tyldum, 2014).

Radiolab (2012) has several podcasts on Turing’s life and work. BBC Horizon’s
documentary �e Strange Life and Death of Dr. Turing is available to watch online
(Sykes, 1992). (�eelen, 2012) is a short video of a working LEGO Turing Machine—
made to honour Turing’s centenary in 2012.

Turing’s original paper on Turing machines and the decision problem is Turing
(1937).

C.11 Ernst Zermelo

Figure C.11: Ernst Zermelo

Ernst Zermelo was born on July 27, 1871 in
Berlin, Germany. He had �ve sisters, though
his family su�ered from poor health and only
three survived to adulthood. His parents also
passed away when he was young, leaving
him and his siblings orphans when he was
seventeen. Zermelo had a deep interest in
the arts, and especially in poetry. He was
known for being sharp, wi�y, and critical.
His most celebrated mathematical achieve-
ments include the introduction of the axiom
of choice (in 1904), and his axiomatization
of set theory (in 1908).

Zermelo’s interests at university were
varied. He took courses in physics, math-
ematics, and philosophy. Under the super-
vision of Hermann Schwarz, Zermelo com-
pleted his dissertation Investigations in the
Calculus of Variations in 1894 at the Univer-
sity of Berlin. In 1897, he decided to pursue more studies at the University of Gö�igen,
where he was heavily in�uenced by the foundational work of David Hilbert. In
1899 he became eligible for professorship, but did not get one until eleven years
later—possibly due to his strange demeanour and “nervous haste.”
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Zermelo �nally received a paid professorship at the University of Zurich in 1910,
but was forced to retire in 1916 due to tuberculosis. A�er his recovery, he was given
an honourary professorship at the University of Freiburg in 1921. During this time he
worked on foundational mathematics. He became irritated with the works of �oralf
Skolem and Kurt Gödel, and publicly criticized their approaches in his papers. He
was dismissed from his position at Freiburg in 1935, due to his unpopularity and his
opposition to Hitler’s rise to power in Germany.

�e later years of Zermelo’s life were marked by isolation. A�er his dismissal in
1935, he abandoned mathematics. He moved to the country where he lived modestly.
He married in 1944, and became completely dependent on his wife as he was going
blind. Zermelo lost his sight completely by 1951. He passed away in Günterstal,
Germany, on May 21, 1953.

Further Reading For a full biography of Zermelo, see Ebbinghaus (2015). Zermelo’s
seminal 1904 and 1908 papers are available to read in the original German (Zermelo,
1904, 1908). Zermelo’s collected works, including his writing on physics, are available
in English translation in (Ebbinghaus et al., 2010; Ebbinghaus and Kanamori, 2013).
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Courtesy of Béla Andrásfai.
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Gödel, Kurt. 1929. Über die Vollständigkeit des Logikkalküls [On the completeness of
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Gödel, Kurt. 1931. über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I [On formally undecidable propositions of Principia
Mathematica and related systems I]. Monatshe�e für Mathematik und Physik 38:
173–198. Reprinted and translated in Feferman et al. (1986), pp. 144–195.

Gra�an-Guinness, Ivor. 1971. Towards a biography of Georg Cantor. Annals of Science
27(4): 345–391.

Hammack, Richard. 2013. Book of Proof. Richmond, VA: Virginia Common-
wealth University. URL http://www.people.vcu.edu/rhammack/
BookOfProof/BookOfProof.pdf.

Hodges, Andrew. 2014. Alan Turing: �e Enigma. London: Vintage.

270

http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/robinson-julia.pdf
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/robinson-julia.pdf
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/robinson-julia.pdf
http://www.missedinhistory.com/podcasts/emmy-noether-mathematics-trailblazer/
http://www.missedinhistory.com/podcasts/emmy-noether-mathematics-trailblazer/
http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf


Bibliography

Hutchings, Michael. 2003. Introduction to mathematical arguments. URL https:
//math.berkeley.edu/hutching/teach/proofs.pdf.

Institute, Perimeter. 2015. Emmy Noether: Her life, work, and in�uence. URL https:
//www.youtube.com/watch?v=tNNyAyMRsgE. Video Lecture.

Irvine, Andrew David. 2015. Sound clips of Bertrand Russell speak-
ing. URL http://plato.stanford.edu/entries/russell/
russell-soundclips.html.

Jacobson, Nathan. 1983. Emmy Noether: Gesammelte Abhandlungen—Collected Papers.
Berlin: Springer-Verlag.

John Dawson, Jr. 1997. Logical Dilemmas: �e Life and Work of Kurt Gödel. Boca
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