
DIT-022

Mathematical Foundations
for Software Engineering

Organizational Matters

a b c

1

1

10

0

0

Some warming-up for your brains until Monday:

3 – 4 – 8 – 11 – 44 – 49 – ?

What’s the next number?

See you on Monday at 1:15pm

Organizational Matters
• The course introduces the students to basic mathematical and critical thinking skills needed

for modeling, analysis and design, implementation, and testing of software applications:
– (1) using mathematics in understanding and addressing problems related to software engineering
– (2) the role of problem solving techniques used for software engineering and programming activities

• Teachers:
– Associate Professor Dr. Christian Berger, christian.berger@gu.se
– Professor Dr. Richard Torkar, richard.torkar@cse.gu.se
– Dr. Alexander Stotsky, Course Assistant, alexander.stotsky@chalmers.se
– Teodor Fredriksson, PhD Student, teodorf@chalmers.se

• Teaching Assistants:
– Effat Enti
– Leith Hobson
– Mujahid Khan
– Annan Lao
– Christian O'Neil
– Bhavya Shukla
– Chrysostomos Tsagkidis

• Canvas course web page:
– https://gu.instructure.com/courses/36697

• Workload to be expected:
– 7.5 ECTS course = ~200h

mailto:christian.berger@gu.se
mailto:richard.torkar@cse.gu.se
mailto:alexander.stotsky@chalmers.se
mailto:teodorf@chalmers.se
https://gu.instructure.com/courses/36697

Organizational Matters
• Teaching format (cf. Course PM):

– *new* everything via Canvas and Zoom – no on-site activities
– Course script: material, exercises + solutions
– Preparatory mini-lectures as videos on Canvas
– Introductory lectures on Mondays
– Exercises and solutions to quizzes on Tuesdays AM
– Exercises in smaller groups on Tuesdays PM
– Exercises on Thursdays AM
– Exercises on Fridays PM
– Exercise quizzes on Canvas
– 3 assignments
– Written exam

• Course Literature:
– Course script:

https://gu.instructure.com/courses/36697/files/3309442/download
– Rosen, Kenneth H.: “Discrete mathematics and its applications.” AMC 10

(2007): 12.
– Ross, Sheldon M.: “Introduction to probability and statistics for engineers

and scientists.” Academic Press, 2014.

https://gu.instructure.com/courses/36697/files/3309442/download

Organizational Matters
• Exercises:

– Help to deepen the knowledge from the in-class sessions and video lectures
– Multiple-choice exercises with various levels of difficulty
– To be submitted via Canvas
– May contain bonus questions

• 3 Assignments – mandatory:
– 1 ECTS per successfully passed assignment
– Group work up to three persons is allowed (though, individual submissions

are required!)

• Written exam:
– 4.5 ECTS
– Up to 10% of points can be substituted with correctly completed bonus

questions from exercises

• Further details are available in the CoursePM document available on
Canvas: https://gu.instructure.com/courses/36697

https://gu.instructure.com/courses/36697

Organizational Matters

• Canvas web learning platform:
– è you need to check this page regularly!
– General information
– Announcements of lectures
– Updates to supervision schedules
– Access to course script
– Access to video lectures
– Submission of exercises (quizzes)
– Submission of assignments
– Discussion forum to interact with TAs

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” – http://d3s.mff.cuni.cz/seminar/download/2007-05-02-Sery-

ProvableOSes.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
http://d3s.mff.cuni.cz/seminar/download/2007-05-02-Sery-ProvableOSes.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” – http://d3s.mff.cuni.cz/seminar/download/2007-05-02-Sery-

ProvableOSes.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

Source: Felienne Hermans: h2p://www.felienne.com/archives/2974

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
http://d3s.mff.cuni.cz/seminar/download/2007-05-02-Sery-ProvableOSes.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
http://www.felienne.com/archives/2974

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” – http://d3s.mff.cuni.cz/seminar/download/2007-05-02-Sery-

ProvableOSes.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
http://d3s.mff.cuni.cz/seminar/download/2007-05-02-Sery-ProvableOSes.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” –

https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” –

https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

Picture: Konstan/n Lanzet

4195835/3145727 = 1.3338204491362410025

4195835/3145727 = 1.3337390689020375894

Reference: Thomas Nicely: h:p://www.trnicely.net/pentbug/pentbug.html

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
http://www.trnicely.net/pentbug/pentbug.html

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” –

https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

Picture: Konstan/n Lanzet

4195835/3145727 = 1.3338204491362410025

4195835/3145727 = 1.3337390689020375894

Costs: $475,000,000

Reference: Thomas Nicely: h:p://www.trnicely.net/pentbug/pentbug.html

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
http://www.trnicely.net/pentbug/pentbug.html

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” –

https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” –

https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

Costs: > $1,600,000,000

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” –

https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Sets & Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” –

https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Sets & Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

ninja is an order of magnitude faster

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” –

https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Sets & Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patr ́ıcia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

What are we focusing on in this course
• Automata & Logic

– Why: Theoretical models for studying problem classes
– Examples:

• Turing machine: http://turingmachinesimulator.com/shared/swzhlitqsm
• Minecraft: https://youtu.be/7sNge0Ywz-M
• Excel: http://www.felienne.com/archives/2974

• Proofs
– Why: Systematically ensure code quality
– Examples:

• Microsoft Research: “Dafny” – https://www.rise4fun.com/Dafny/1TsT
• Coq Proving Assistant – http://wiki.c2.com/?CoqProofAssistant
• Ondrej Sery: “On Provably Correct Operating Systems” –

https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
• Code Complexity

– Why: To identify, evaluate, and monitor software quality
– Example:

• Phil Koopman: “A Case Study of Toyota Unintended Acceleration and Software Safety”:
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

• Sets & Graphs
– Why: Modeling and evaluating relations of entities expressed with nodes and edges
– Examples:

• Build systems for software: make, ant, maven, ninja, …
• Statistics

– Why: “The interdisciplinary field of statistics and software engineering specializing in the use of statistical methods for
controlling and improving the quality and productivity of the practices used in creating software.”1

– Examples:
• Francisco G. de Oliveira Neto, Richard Torkar, Patrícia D.L. Machado, Full modification coverage through automatic similarity-

based test case selection, Information and Software Technology (2016), doi: 10.1016/j.infsof.2016.08.008

1Panel on Statistical Methods in Software Engineering, National Research Council: “Statistical Software Engineering” National Academies Press.

http://turingmachinesimulator.com/shared/swzhlitqsm
https://youtu.be/7sNge0Ywz-M
http://www.felienne.com/archives/2974
https://www.rise4fun.com/Dafny/1TsT
http://wiki.c2.com/?CoqProofAssistant
https://pdfs.semanticscholar.org/cf8f/d5b9b90ee6ccd244a32966fbf5c87629250a.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

Organizational Matters

• Overall schedule for introductory lectures (Zoom):
– Mondays at 01:15pm
– August 31, 01:15pm – 3pm Introduction
– September 07, 01:15pm – 3pm Languages & Grammar
– September 14, 01:15pm – 3pm Graph Theory
– September 21, 01:15pm – 3pm Complexity
– September 28, 01:15pm – 3pm Proofs
– October 05, 01:15pm – 3pm Statistics
– October 12, 01:15pm – 3pm Statistics
– October 19, 01:15pm – 3pm Exercises

• Written exam: a 4 hours slot during October 24 – October
30

Organizational Matters
• Overall schedule for in-class sessions (Zoom):

– Tuesdays at 10:15am and Thursdays at 09:15am
– September 01, 10:15am – 12pm Logic & Exercises
– September 03, 09:15am – 12pm Logic & Exercises
– September 08, 10:15am – 12pm Solutions to Quiz & Bonus Questions
– September 10, 09:15am – 12pm Automata & Grammar (Exercises)
– September 15, 10:15am – 12pm Solutions to Quiz & Bonus Questions
– September 17, 09:15am – 12pm Graph Theory (Exercises)
– September 22, 10:15am – 12pm Solutions to Quiz & Bonus Questions
– September 24, 09:15am – 12pm Complexity (Exercises)
– September 29, 10:15am – 12pm Solutions to Quiz & Bonus Questions
– October 01, 09:15am – 12pm Proofs (Exercises)
– October 06, 10:15am – 12pm Solutions to Quiz & Bonus Questions
– October 08, 09:15am – 12pm Statistics (Exercises)
– October 13, 10:15am – 12pm Solutions to Quiz & Bonus Questions
– October 15, 09:15am – 12pm Statistics (Exercises)
– October 20, 10:15am – 12pm Exercises
– October 22, 09:15am – 12pm Exercises

• Written exam: a 4 hours slot during October 24 – October 30

Organizational Matters
• Overall schedule for supervision sessions (7 simultaneous Zoom

sessions):
– Tuesdays at 01:15pm and Fridays at 03pm
– September 01, 01:15pm – 3pm
– September 04, 03pm – 5pm
– September 08, 01:15pm – 3pm
– September 11, 03pm – 5pm
– September 15, 01:15pm – 3pm
– September 18, 03pm – 5pm
– September 22, 01:15pm – 3pm
– September 25, 03pm – 5pm
– September 29, 01:15pm – 3pm
– October 02, 03pm – 5pm
– October 06, 01:15pm – 3pm
– October 09, 03pm – 5pm
– October 13, 01:15pm – 3pm
– October 16, 03pm – 5pm
– October 20, 01:15pm – 3pm
– October 23, 03pm – 5pm

Exercises & Assignments and Deadlines

• Our deadlines are firm – always submit well in advance!
• Exercises:

– Exercise 1: September 06, 5pm: Logic
– Exercise 2: September 11, 5pm: Language & Automata
– Exercise 3: September 18, 5pm: Graph Theory
– Exercise 4: September 25, 5pm: Complexity & Sorting
– Exercise 5: October 02, 5pm: Proofs
– Exercise 6: October 21, 11:59pm: Statistics

• Mandatory assignments:
– Assignment 1: September 20, 5pm: Automata
– Assignment 2: October 04, 5pm: Program Complexity
– Assignment 3: October 21, 11:59pm: Statistics

Tour through Canvas

First in-class task

• Assign yourself to one of the Tuesday sessions:

• https://gu.instructure.com/courses/36697/groups#tab-
9894

https://gu.instructure.com/courses/36697/groups

Next: Logic

• Homework:
1. Start watching some video snippets on Canvas
2. Start reading about “Logic” in the course script

• See you tomorrow for “Logic”

Thank you.

Material to start with:
Start here (Canvas):
https://gu.instructure.com/courses/36697
Course script:
https://gu.instructure.com/courses/36697/files/3309442/download

https://gu.instructure.com/courses/36697
https://gu.instructure.com/courses/36697/files/3309442/download

