Exercise Session 1:

Teodor Fredriksson

September 2020

Exercise 1 Let p and q be the propositions "Swimming at the New Jersey shore is allowed" and "Sharks have been spotted near the shore ", respectively

Express each of these as an English sentence. a). $p \Rightarrow \neg q$, b). $\neg q \Rightarrow p$, c). $p \Leftrightarrow q$

Solution: We have two propositions

p := "Swimming at the New Jersey shore is allowed"
q := "Sharks have been spotted near the shore"

What is $\neg q$?

 $\neg q =$ "Sharks have not been spotted near the shore"

- **a.**) If swimming at the New Jersey Shore is allowed then Sharks have not been spotted near the shore.
- **b.)** If sharks have not been spotted near the shore then swimming is allowed.
- c.) Swimming is allowed iff sharks have been spotted near the shore.

Exercise 2 Determine whether each of these conditional statements is true of false.

- a). If 1 + 1 = 2 then 2 + 2 = 5.
- **b).** If 1 + 1 = 3 then 2 + 2 = 4.
- c). If 1 + 1 = 3 then 2 + 2 = 5.
- d). If monkeys can fly, then 1 + 1 = 3

First define

p := 1 + 1 = 2 q := 2 + 2 = 5 r := 1 + 1 = 3 s := 2 + 2 = 4t := "Monkeys can fly"

a). We can express these mathematically as $p \Rightarrow q$. Here p is True and q is False. Thus we get the truth table

p	q	$p \Rightarrow q$
Т	F	F

b). We can express this mathematically as $r \Rightarrow s$. Here r is False and s is True. Thus we get the truth table

r	S	$r \Rightarrow s$
F	Т	Т

c). We can express this mathematically as $r \Rightarrow q$. Here r is False and q is False. Thus we get the truth table

r	q	$r \Rightarrow q$
F	F	Т

d). We can express this mathematically as $t \Rightarrow r$. Here *u* is False (Ever seen a flying Monkey?) and *q* is False. Thus we get the truth table

t	r	$t \Rightarrow r$
F	F	Т

Exercise 3: Construct the truth table for the following conditional statement:

$$(p \lor \neg q) \Rightarrow (p \land q)$$

Solution: The smallest building stones would be p and q. $\neg q$ has the truth table

p	q	$\neg q$
Т	Т	F
Т	F	Т
F	Т	F
Т	Т	F

The truth table for $p \wedge q$ can be copied from the appendix

<i>p</i>	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Truth table for $p \vee \neg q$ can be constructed by lookig at the truth table of $p \ \lor q$ from the appendix

p	$\neg q$	$p \vee \neg q$
Т	F	Т
Т	Т	Т
F	F	F
F	Т	Т

Truth table for $(p \lor \neg q) \Rightarrow p \land q$ can be constructed by looking at the truth table fir $p \Rightarrow q$ in the appendix

$p \lor \neg q$	$p \wedge q$	$(p \lor \neg q) \Rightarrow p \land q$
Т	Т	Т
Т	F	F
F	F	Т
Т	F	F

p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \lor \neg q) \Rightarrow p \land$
					q
Т	Т	F	Т	Т	Т
Т	F	Т	Т	F	F
F	Т	F	F	F	Т
F	F	Т	Т	F	F

Exercise 4: Show that $\neg(p \Rightarrow q)$ and $p \land \neg q$ are logically equivalent.

Solution 1: To get the truth table for $\neg(p \Rightarrow q)$ we can simply copy it from appendix.

p	q	$p \Rightarrow q$	$\neg (p \Rightarrow q)$
Т	Т	Т	F
Т	F	F	Т
F	Т	Т	F
F	F	Т	F

The truth table for $p \land \neg q$ can be found by comparing to $p \land q$.

p	q	$\neg q$	$p \land \neg q$
Т	Т	F	F
Т	F	Т	Т
F	Т	F	F
F	F	Т	F

Since they share the same truth tables they are equivalent

Solution 2:

$$\neg (p \Rightarrow q) = \neg (\neg p \lor q) \quad [p \Rightarrow q = \neg p \lor q], \text{ see appendix p.145 of Course Script.}$$
$$= \neg (\neg p) \land \neg q \text{ according to the second De Morgan law } [\neg (p \lor q) = \neg p \land \neg q].$$
$$= p \land \neg q \text{ since } \neg (\neg p) = p.$$

Exercise 5: Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.

Solution:

Exercise 6: Determine wheter $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$ is satisfiable.

Solution: Recall that a compund proposition is **satisfiable** if there is an assignment of truth values to its vriables that makes it true.

p	q	r	$\neg q$	$(p \vee \neg q)$
Т	Т	Т	F	Т
Т	F	Т	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	F	F	F
F	F	F	Т	Т

Table 1: Truth table for $(p \lor \neg q)$

<i>p</i>	q	r	$\neg r$	$(q \lor \neg r)$
Т	Т	Т	F	Т
Т	F	Т	F	F
F	Т	Т	F	Т
F	F	Т	F	F
Т	Т	F	Т	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	Т	Т

Table 2: Truth table for $(q \lor \neg r)$

p	q	r	$\neg p$	$(r \lor \neg p)$
Т	Т	Т	F	Т
Т	F	Т	F	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т
Т	Т	F	F	F
Т	F	F	F	F
F	Т	F	Т	Т
F	F	F	Т	Т

Table 3: Truth table $(r \vee \neg p)$

p	q	r	$(p \lor \neg q)$	$(q \lor \neg r)$	$(p \vee \neg q) \wedge (q \vee$
					$\neg r)$
Т	Т	Т	Т	Т	Т
Т	F	Т	Т	F	F
F	Т	Т	F	Т	F
F	F	Т	Т	F	F
Т	Т	F	Т	Т	Т
Т	F	F	Т	Т	Т
F	Т	F	F	Т	F
F	F	F	Т	Т	Т

Table 4: Truth table for $(p \lor \neg q) \land (q \lor \neg r)$

<i>p</i>	q	r	$(p \lor \neg q) \land (q \lor$	$(r \lor \neg p)$	$(p \vee \neg q) \land (q \vee$
			$ \neg r)$		$\neg r) \land (r \lor \neg p)$
Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	F
F	Т	Т	F	Т	F
F	F	Т	F	Т	F
Т	Т	F	Т	F	F
Т	F	F	Т	F	F
F	Т	F	F	Т	F
F	F	F	Т	Т	Т

Table 5: Truth table for $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$

p	q	r	$((p \lor \neg q) \land ((q \lor \neg r) \land$
			$(r \lor \neg p)))$
Т	Т	Т	Т
Т	F	Т	F
F	Т	Т	F
F	F	Т	F
Т	Т	F	F
Т	F	F	F
F	Т	F	F
F	F	F	Т

Hence $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$ is satisfiable.

Exercise 7: Express the statement "Some students in this class has visited" using predicates and quantifiers.

Solution: Let x denote a person. We can rephrase the statement as: There exists a person or several people x who are students in this class and who have also visited Mexico.

This statement can be divided into two statements. Let

M(x) := "x has visited Mexico" S(x) := "x is a student in this class.

Thus, the full statements can be written as $\exists x(S(x) \land M(x))$

Exercise 8: Express the statement "Every student in this class has visited Mexico" using predicates and quantifiers.

Solution: Let x denote a person. We can rephrase the statement as: If you are a student in the class, it implies that you have been to either Canada or Mexico. Thus we can divide the statement into the following three statements.

S(x) = x is a student in this class. M(x) = x has visited Mexico. C(x) = x has visited Canada.

so we can write

= For every person x if x is a student in this class then x has visited Mexico or Canada = $\forall x(S(x) \Rightarrow (C(x) \lor M(x)))$