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Exercise 1 Let p and ¢ be the propositions ” Swimming at the New Jersey shore
is allowed” and ”Sharks have been spotted near the shore ”, respectively

Express each of these as an English sentence.
a). p = ¢, b). "g=p, c).p & ¢

Solution: We have two propositions

p =" Swimming at the New Jersey shore is allowed”

q := 7 Sharks have been spotted near the shore”
What is =g ?

—q = 7Sharks have not been spotted near the shore”

a.) If swimming at the New Jersey Shore is allowed then Sharks have not been
spotted near the shore.

b.) If sharks have not been spotted near the shore then swimming is allowed.

c.) Swimming is allowed iff sharks have been spotted near the shore.



Exercise 2 Determine whether each of these conditional statements is true of
false.

a). If1+1=2then2+2=5.
b). If 1 +1=3then 2+2=4.
c). f1+1=3then 242 =5.
d). If monkeys can fly, then 1 +1 =13

First define

p=1+1=2
qg:=2+2=5
r:=14+1=3
§:=242=4

t :="Monkeys can fly’

a). We can express these mathematically as p = ¢. Here p is True and ¢ is
False. Thus we get the truth table

p=4q

q
F F

EIES

b). We can express this mathematically as r = s. Here r is False and s is
True. Thus we get the truth table

r S r=3S

F T T

c). We can express this mathematically as r = ¢. Here r is False and ¢ is
False. Thus we get the truth table

r=q

q
F F T

d). We can express this mathematically as ¢t = r. Here u is False (Ever seen
a flying Monkey?) and ¢ is False. Thus we get the truth table

o~

r t=r

F F T




Exercise 3: Construct the truth table for the following conditional statement:

(p V-q) = (pAq)

Solution: The smallest building stones would be p and q. —¢ has the truth table

R
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The truth table for p A g can be copied from the appendix

PAQq
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Truth table for p V —¢ can be constructed by lookig at the truth table of
p Vg from the appendix

P -q pV g
T F T
T T T
F F F
F T T

Truth table for (pV —q) = pA g can be constructed by looking at the truth
table fir p = ¢ in the appendix

pV g PAg (pvV—-q)=phg

T T T

T F F

F F T

T F F

P q —q PV g PAq (pV—q) = pA
q

T T F T T T

T F T T F F

F T F F F T

F F T T F F




Exercise 4: Show that =(p = ¢) and p A —q are logically equivalent.

Solution 1: To get the truth table for —(p = ¢) we can simply copy it from
appendix.

p q pP=q -(p=9q)
T T T F
T F F T
F T T F
F F T F

The truth table for p A =g can be found by comparing to p A q.

q PA g

55| eS| W | WSS
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Since they share the same truth tables they are equivalent
Solution 2:

—(p=q) = ~(-pVyq) [p=q = —pVq, see appendix p.145 of Course Script.
=(=p) A —q according to the second De Morgan law [-(pV ¢) = —p A —q].

= p A-—q since =(—p) = p.



Exercise 5: Show that =(p V (=p A ¢)) and —p A —¢q are logically equivalent.

Solution:

=(pV(=pAq)

= —p A=(=p A q)

-p A (=(=p) V —q)
-p A(pV—q)

(=p A p)V(=p A—q)
FV(=p A —q)

-p A—q

De Morgan I
De Morgan 1
—(op) =p
Distributive law I
Negation law 1
Identity law 1



Exercise 6: Determine wheter (p VvV —q) A (¢ V —r) A (r V —p) is satisfiable.

Solution: Recall that a compund proposition is satisfiable if there is an as-
signment of truth values to its vriables that makes it true.
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Table 1: Truth table for (p V —q)
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Table 2: Truth table for (¢ Vv —r)
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Table 3: Truth table (r vV —p)



P q r (pV—q) (qV—r) (pgﬁq) AgV
-7

T T T T T T

T F T T F F

F T T F T F

F F T T F F

T T F T T T

T F F T T T

F T F F T F

F F F T T T

Table 4: Truth table for (p VvV —q) A (¢ V —r)

P q r (pV-qg)A(qV | (rV-p) (pV—-g)A(gV
) —r)A(rV—p)

T T T T T T

T F T F T F

F T T F T F

F F T F T F

T T F T F F

T F F T F F

F T F F T F

F F F T T T

Table 5: Truth table for (pV —q) A (qV —r) A (rV —p)
p q r (V=) A((gV=r)A
(rV -p)))

T T T T

T F T F

F T T F

F F T F

T T F F

T F F F

F T F F

F F F T

Hence (pV —q) A (qV —r) A (r V —p) is satisfiable.




Exercise 7: Express the statement ”Some students in this class has visited”
using predicates and quantifiers.

Solution: Let x denote a person. We can rephrase the statement as: There
exists a person or several people x who are students in this class and who have
also visited Mexico.

This statement can be divided into two statements. Let

M(z) :="x has visited Mexico’

S(x) :="x is a student in this class.

Thus, the full statements can be written as Jx(S(z) A M(x))

Exercise 8: Express the statement ”"Every student in this class has visited
Mexico” using predicates and quantifiers.

Solution: Let = denote a person. We can rephrase the statement as: If you
are a student in the class, it implies that you have been to either Canada or
Mexico. Thus we can divide the statement into the following three statements.

S(x) = x is a student in this class.
M(z) = z has visited Mezxico.
C(z) = z has visited Canada.

SO we can write

= For every person z if z is a student in this class then x has visited Mexico or Canada
=Va(S(z) = (C(x) V M(x)))



