Supervision Session

Friday 2020-09-04

Some revision:

Predicate Logic:

Universe of discourse: Really important, because the output results depend on that.

\mathbb{Z}^{+}: Set of positive integers $\{1,2,3, \ldots\}$
\mathbb{Z}^{*} : Set of nonzero integers $\{\ldots,-3,-2,-1,1,2,3, \ldots\}$

Quantifiers:

Universal quantification: \forall (reads to "for all", "for every", "given any"...)
Existential quantification: \exists (reads to "there exists", "there is at least one", "for some"...)

Statement	When is True	When is False
$\forall P(x)$	$P(\mathrm{x})$ is true for every x	There is an x for which $\mathrm{P}(\mathrm{x})$ is false
$\exists P(x)$	There is an x for which $\mathrm{P}(\mathrm{x})$ is true	$\mathrm{P}(\mathrm{x})$ is false for every x

Exercises:

1. Express "Some birds can sing"

Indicative answer:

By this statement we can recognize the following:

- there are some animals that are birds
- and that they can sing

We denote as: x to be an animal ($x \in A$)
Let $B(x)$ and $S(x)$ be the statements " x is a bird" and " x can sing" respectively.

So the statement can be rephrased to: " x is a bird and x can sing", thus:

$$
B(x) \wedge S(x)
$$

Therefore the overall statement "some birds can sing" translates to:

$$
\exists x(B(x) \wedge S(x))
$$

2. Let $P(x)$ denote the statement " $x \leq 4$." What are these truth values?
a) $P(0)$
b) $P(4)$
c) $P(6)$

Answer:
a) T
b) T
c) F
3. Determine the truth value of each of these statements if the domain for all variables consists of all integers (\mathbb{Z}).
a) $\forall n\left(n^{2} \geq 0\right)$
b) $\exists n\left(n^{2}=2\right)$
c) $\forall n\left(n^{2} \geq n\right)$
d) $\exists n\left(n^{2}<0\right)$

Answer:
a) T
b) F
c) T
d) F
4. Translate these statements into English, where $C(x)$ is " x is a comedian" and $F(x)$ is " x is funny" and the domain consists of all people.
a) $\forall x(C(x) \rightarrow F(x))$
b) $\forall x(C(x) \wedge F(x))$
c) $\exists x(C(x) \rightarrow F(x))$
d) $\exists x(C(x) \wedge F(x))$

Answers:

a) Every comedian is funny
b) Every person is a funny comedian
c) There exists at least one person such that if he/she is a comedian, then he/she is funny
d) Some comedians are funny
5. Express each of these statements using quantifiers:
a) Every Software Engineering \& Management first year student must take the DIT022 course
b) Some drivers do not obey the speed limit
c) No one can keep a secret
d) There is a rabbit which is faster than all tortoises

Answers:
a)

Let $F(x)$ be " x is a first year student"

Let $C(x)$ be " x must take DIT022 as a course"
Universe of discourse: All SE\&M students

Alternative way of the sentence: if x is a first year student, then must take the DIT022 course.

$$
\forall x(F(x) \rightarrow C(x))
$$

b)

Let $P(x)$ be " x obeys the speed limit"
Universe of discourse: All drivers

$$
\exists x(\neg P(x))
$$

c)

Let $P(x)$ be " x can keep a secret"
Universe of discourse: All people

$$
\neg \exists x P(x) \equiv \forall x(\neg P(x))
$$

d)

We denote as x being a rabbit and y being a tortoise
Let $P(x, y)$ be: " x is faster than y "

$$
\exists x(\forall y P(x, y))
$$

6. Let $P(x)$ be the statement " x can speak Russian" and let $Q(x)$ be the statement "x knows Java "
Express each ofthese sentences in terms of $P(x)$, $Q(x)$, quantifiers, and logical connectives. The domain for quantifiers consists of all students at your school.
a) There is a student at your school who can speak Russian and who knows Java.

$$
\exists x(P(x) \wedge Q(x))
$$

b) There is a student at your school who can speak Russian but who doesn't know Java.

$$
\exists x(P(x) \wedge \neg Q(x))
$$

c) Every student at your school either can speak Russian or knows Java.

$$
\forall x(P(x) \vee Q(x))
$$

7. Show whether each of these conditional statements is a tautology by using truth table.
a) $p \rightarrow(p \vee q)$

\mathbf{p}	\mathbf{q}	$p \vee q$	$\mathbf{p} \rightarrow(\mathbf{p} \mathbf{~ q})$
0	0	0	1
0	1	1	1
1	0	1	1
1	1	1	1

Since the column for $p \rightarrow(p \vee q)$ shows all the values to be 1 , this is a tautology.
b) $p \vee(q \wedge r)$

\mathbf{p}	\mathbf{q}	\mathbf{r}	$\mathbf{q} \wedge \mathbf{r}$	$\mathbf{p V}(\mathbf{q} \wedge \mathbf{r})$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	0	1	0	0
1	0	0	0	1
1	1	1	1	1
1	1			1

This is not a tautology since the column also contains false values.

Do we know what is this called?

- Since the column has both truth and false values(or 0 and 1), this is neither a tautology nor a contradiction. It is therefore, a contingency.

