Exercise Session 2:

Teodor Fredriksson

September 2020

Exercise 1: Find a phrase-structure grammar for each of these languages:

1. The set consisting of the bit strings 0,1 , and 11 .

Solution: We need to find a grammar G such that $L(G)=\{0,1,11\}$, This language is finite so only need the starting values

$$
\begin{aligned}
& S \rightarrow 0 \\
& S \rightarrow 1 \\
& S \rightarrow 11
\end{aligned}
$$

2. All sets of bit strings containing only 1 s .

Solution: We need to find a grammar G such that $L(G)=\{1,11, \ldots, \underbrace{11 \ldots 1}_{n}\}$.

$$
\begin{aligned}
& S \rightarrow 1 \\
& S \rightarrow 1 S
\end{aligned}
$$

3. All sets of bit strings that start with 0 and end with 1 .

Solution: We need to find the grammar G such that $L(G)=\{01,001,011, .$.

$$
\begin{aligned}
& S \rightarrow 0 A \\
& A \rightarrow 0 A \\
& A \rightarrow 1 A \\
& A \rightarrow \lambda
\end{aligned}
$$

4. All sets of bit strings that starts with a 0 followed by an even number of 1 s

Solution: We need to find the grammar G such that $L(G)=\{011,01111, \ldots, 0 \underbrace{11 \ldots 1}_{2 n}\}$

$$
\begin{aligned}
& S \rightarrow 0 A \\
& A \rightarrow 11 A \\
& A \rightarrow \lambda
\end{aligned}
$$

Exercise 2: Express each of these sets using a regular expression.

1. All sets consisting of strings 0,11 , and 010 .

Solution: A string of this set is either 0,11 or 010 so we simply write $0|11| 010$.
2. All sets of bit strings of three 0s followed by two or more 0s

Solution: To be clear, this is the same as saying that we need at least five 00000 , to represent the uncertain amount of 0 s that follow we need to end the regular expression with 0^{*}. So in conclusion the regular expression is 000000*
3. All sets of bit strings of odd length

Solution: An odd number can be written as $2 k+1$ for integers k. So the first bit is represented by $0 \mid 1$. This needs to be followed by uncertain amount of even strings. Thus the regular expression would be $(0 \mid 1)((0 \mid 1)(0 \mid 1)) *$
4. All sets of bit strings that contain exactly one 1 .

Solution: The string can start or end with an uncertain amount of 0 s as long as there is exactly one 1 , therefore the regular expression is $0^{*} 10^{*}$
5. Empty bit string and all sets of bit strings ending in 1 and not containing 000.

Solution: So the string cannot end wit 0001 , but 01 or 001 or you can have several 1 s in a row. The regular expression would be $(1|01| 001)$ *

Exercise 3: Let $V=\{S, A, B, a, b\}$ and $T=\{a, b\}$. Find the language generated by the grammar (V, T, S, P) when the set of P of productions consists of:

1. $S \rightarrow A B, A \rightarrow a b, B \rightarrow b b$.

Solution:

$$
S \rightarrow A B \rightarrow \underbrace{a b}_{A} \underbrace{b b}_{B}=a b b b
$$

Thus $L(G)=\{a b b b\}$
2. $S \rightarrow A B, S \rightarrow a A A \rightarrow a, B \rightarrow b a$

Solution:

$$
\begin{aligned}
& S \rightarrow a A \rightarrow a \underbrace{a}_{A}=a a \\
& S \rightarrow A B \rightarrow \underbrace{a}_{A} \underbrace{b a}_{B}=a b a
\end{aligned}
$$

Thus $L(G)=\{a a, a b a\}$
3. $S \rightarrow A B, S \rightarrow A A A \rightarrow a B, A \rightarrow a b, B \rightarrow b$

Solution:

$$
\begin{aligned}
& S \rightarrow A B \rightarrow \underbrace{A}_{a B} B \rightarrow a \underbrace{B}_{b} \underbrace{B}_{b} \rightarrow a b b \\
& S \rightarrow A A \rightarrow \underbrace{A}_{a B} \underbrace{A}_{a B} \rightarrow a \underbrace{B}_{b} a \underbrace{B}_{b}=a b a b
\end{aligned}
$$

Exercise 4: Explain what the productions are in a grammar if the "BackusNaur form" for productions is as follows:

```
expression \(::=(\) expression \() \mid\)
    expression + expression
    variable
    variable \(::=x \mid y\)
```

Exercise 5: Draw a diagram belonging to the table below. The starting state

Table 1:

State	f		g	
	Input		Input	
0	1	0	1	
s_{0}	s_{0}	s_{4}	1	1
s_{1}	s_{0}	s_{3}	0	1
s_{2}	s_{0}	s_{2}	0	0
s_{3}	s_{1}	s_{1}	1	1
s_{4}	s_{1}	s_{0}	1	0

is state s_{0}. what is the output for " $1110010101 " ?$

Solution:We start at s_{0}

$$
\begin{array}{lll}
\text { In }=1, s_{0} \rightarrow s_{4}, & \text { Out }=1 \\
\text { In }=1, s_{4} \rightarrow s_{0}, & \text { Out }=0 \\
\text { In }=1, s_{0} \rightarrow s_{4}, & \text { Out }=1 \\
\text { In }=0, s_{4} \rightarrow s_{1}, & \text { Out }=1 \\
\text { In }=0, s_{1} \rightarrow s_{0}, & & \text { Out }=0 \\
\text { In }=1, s_{0} \rightarrow s_{4}, & & \text { Out }=1 \\
\text { In }=0, s_{4} \rightarrow s_{1}, & \text { Out }=1 \\
\text { In }=1, s_{1} \rightarrow s_{3}, & \text { Out }=1 \\
\text { In }=0, s_{3} \rightarrow s_{1}, & \text { Out }=1 \\
\text { In }=1, s_{1} \rightarrow s_{3}, & & \text { Out }=1
\end{array}
$$

So the output sequence is 1011011111
Exercise 6: Construct a deterministic finite state automation that recognizes the set of all bit strings beginning with 01

Solution: We need to find M with $L(M)=\{01 x\}$ where x is any string. First we start out with and initial state s_{0}. Define s_{1} so that $s_{0} \xrightarrow{0} s_{1}$, then a final state s_{2} with $s_{1} \xrightarrow{1} s_{2}$. Finally we need a state s_{3} with $s_{3} \xrightarrow{0,1} s_{3}, s_{0} \xrightarrow{1} s_{3}$ and $s_{1} \xrightarrow{0} s_{3}$.

Exercise 7: Show that there is no finite-state automation with two states that recognizes the set of all bit strings that have one or more 1s bits and end with a 0 .

Solution: Assume there exists such a machine with $L(M)=\{10,110,000110, \ldots\}$ and start state s_{0} and another state s_{1}. because the empty string is noting the language but some strings are accepted, we must have s_{1} as the only final state, with at least one transition from s_{0} to s_{1}. Because the string 0 is not in the language, the transition from s_{0} to s_{1}. Because the string 0 is not in the language, the transition form s_{0} on input 0 must be to itself, so the transition from s_{0} on the input 1 must be to s_{1}. But this contradicts the fact that 1 is not in the language.

Exercise 8: Construct a state-machine representing a unit-delay machine, which produces as output the input string delayed by a 0 , that is, it produces as output bit string $0 x_{1} x_{2} \ldots x_{k-1}$ given the input bit string $x_{1} x_{2} \ldots x_{k}$?

Solution:

Table 2:

State	f		g	
	Input		Input	
	0	1	0	1
s_{0}	s_{2}	s_{1}	0	0
s_{1}	s_{1}	s_{2}	1	1
s_{2}	s_{2}	s_{2}	0	0

