Exercise Session 2:

Teodor Fredriksson

September 2020

Exercise 1: Find a phrase-structure grammar for each of these languages:

1. The set consisting of the bit strings 0, 1, and 11.

Solution: We need to find a grammar G such that $L(G) = \{0, 1, 11\}$, This language is finite so only need the starting values

- $\begin{array}{l} S \rightarrow 0 \\ S \rightarrow 1 \\ S \rightarrow 11 \end{array}$
- 2. All sets of bit strings containing only 1s.

Solution: We need to find a grammar G such that $L(G) = \{1, 11, \dots, \underbrace{11\dots 1}_{n}\}.$

$$S \to 1$$

 $S \to 1S$

3. All sets of bit strings that start with 0 and end with 1.

Solution: We need to find the grammar *G* such that $L(G) = \{01, 001, 011, ..\}$

$$S \to 0A$$
$$A \to 0A$$
$$A \to 1A$$
$$A \to \lambda$$

4. All sets of bit strings that starts with a 0 followed by an even number of 1s

Solution: We need to find the grammar G such that $L(G) = \{011, 01111, ..., 0 \underbrace{11...1}_{2n}\}$

$$S \to 0A$$
$$A \to 11A$$
$$A \to \lambda$$

Exercise 2: Express each of these sets using a regular expression.

1. All sets consisting of strings 0, 11, and 010.

Solution: A string of this set is either 0, 11 or 010 so we simply write 0|11|010.

2. All sets of bit strings of three 0s followed by two or more 0s

Solution: To be clear, this is the same as saying that we need at least five 00000, to represent the uncertain amount of 0s that follow we need to end the regular expression with 0^* . So in conclusion the regular expression is 000000^* .

3. All sets of bit strings of odd length

Solution: An odd number can be written as 2k + 1 for integers k. So the first bit is represented by 0|1. This needs to be followed by uncertain amount of even strings. Thus the regular expression would be (0|1)((0|1)(0|1))*

4. All sets of bit strings that contain exactly one 1.

Solution: The string can start or end with an uncertain amount of 0s as long as there is exactly one 1, therefore the regular expression is $0*10^*$

5. Empty bit string and all sets of bit strings ending in 1 and not containing 000.

Solution: So the string cannot end wit 0001, but 01 or 001 or you can have several 1s in a row. The regular expression would be (1|01|001)*

Exercise 3: Let $V = \{S, A, B, a, b\}$ and $T = \{a, b\}$. Find the language generated by the grammar (V, T, S, P) when the set of P of productions consists of:

1. $S \rightarrow AB, \ A \rightarrow ab, \ B \rightarrow bb.$

Solution:

$$S \to AB \to \underbrace{ab}_A \underbrace{bb}_B = abbb$$

Thus $L(G) = \{abbb\}$

2. $S \rightarrow AB, \ S \rightarrow aA \ A \rightarrow a, \ B \rightarrow ba$

Solution:

$$S \to aA \to a \underbrace{a}_{A} = aa$$
$$S \to AB \to \underbrace{a}_{A} \underbrace{ba}_{B} = aba$$

Thus $L(G) = \{aa, aba\}$

3. $S \rightarrow AB, \ S \rightarrow AA \ A \rightarrow aB, \ A \rightarrow ab, \ B \rightarrow b$

Solution:

$$S \to AB \to \underbrace{A}_{aB} \xrightarrow{B} a \xrightarrow{B}_{b} \xrightarrow{B}_{b} \xrightarrow{B} abb$$
$$S \to AA \to \underbrace{A}_{aB} \xrightarrow{A}_{aB} \xrightarrow{A} a \xrightarrow{B}_{b} \xrightarrow{B} a \xrightarrow{B}_{b} = abab$$

Exercise 4: Explain what the productions are in a grammar if the "Backus-Naur form" for productions is as follows:

 $\begin{aligned} \text{expression} &::= (\text{expression})| \\ & \text{expression} + \text{expression}| \\ & \text{variable} \\ & \text{variable} &::= x|y \end{aligned}$

Exercise 5: Draw a diagram belonging to the table below. The starting state

	State	f		g	
	State	Input		Input	
		0	1	0	1
	s_0	s_0	s_4	1	1
	s_1	s_0	s_3	0	1
	s_2	s_0	s_2	0	0
	s_3	s_1	s_1	1	1
	s_4	s_1	s_0	1	0

Table 1:

is state s_0 . what is the output for "1110010101"?

Solution:We start at s_0

$$In = 1, s_0 \to s_4, Out = 1$$

$$In = 1, s_4 \to s_0, Out = 0$$

$$In = 1, s_0 \to s_4, Out = 1$$

$$In = 0, s_4 \to s_1, Out = 1$$

$$In = 0, s_1 \to s_0, Out = 0$$

$$In = 1, s_0 \to s_4, Out = 1$$

$$In = 0, s_4 \to s_1, Out = 1$$

$$In = 1, s_1 \to s_3, Out = 1$$

$$In = 0, s_3 \to s_1, Out = 1$$

$$In = 1, s_1 \to s_3, Out = 1$$

$$In = 1, s_1 \to s_3, Out = 1$$

So the output sequence is 1011011111

Exercise 6: Construct a deterministic finite state automation that recognizes the set of all bit strings beginning with 01

Solution: We need to find M with $L(M) = \{01x\}$ where x is any string. First we start out with and initial state s_0 . Define s_1 so that $s_0 \xrightarrow{0} s_1$, then a final state s_2 with $s_1 \xrightarrow{1} s_2$. Finally we need a state s_3 with $s_3 \xrightarrow{0,1} s_3$, $s_0 \xrightarrow{1} s_3$ and $s_1 \xrightarrow{0} s_3$.

Exercise 7: Show that there is no finite-state automation with two states that recognizes the set of all bit strings that have one or more 1s bits and end with a 0.

Solution: Assume there exists such a machine with $L(M) = \{10, 110, 000110, ...\}$ and start state s_0 and another state s_1 . because the empty string is noting the language but some strings are accepted, we must have s_1 as the only final state, with at least one transition from s_0 to s_1 . Because the string 0 is not in the language, the transition from s_0 to s_1 . Because the string 0 is not in the language, the transition form s_0 on input 0 must be to itself, so the transition from s_0 on the input 1 must be to s_1 . But this contradicts the fact that 1 is not in the language. **Exercise 8:** Construct a state-machine representing a unit-delay machine, which produces as output the input string delayed by a 0, that is, it produces as output bit string $0x_1x_2...x_{k-1}$ given the input bit string $x_1x_2...x_k$?

Solution:

Table 2:

State	f		g	
State	Input		Input	
	0	1	0	1
s_0	s_2	s_1	0	0
s_1	s_1	s_2	1	1
s_2	s_2	s_2	0	0