Exercise 1. What is the complexity of the following two code snippets (expressed with BigO)?

```
if (condition) \(\{\)
    int \(a=5 ;\)
\} else \{
        int \(b=10 ;\)
\}
```

Solution: The if-statement is just a declaration of iether $\mathrm{a}=5$ or $\mathrm{b}=10$ os it requires only finite number of iterations. so it has complexity $O(1)$.

Exercise 2.

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& \quad \text { for }(j=0 ; j<N ; j++)\{ \\
& \quad \text { sequence of statements of } O(1)
\end{aligned}
$$

Solution: Each statement inside the inner loop requires a finite number of iterations, let denote these iterations c. Since we perform thense statements for $j=0,1, \ldots, N-1$, the statements are performed N times. The outer loop for ($i=0 ; i<N ; i++$) also performs N times, so the total number of operations is $T(n)=N \cdot c N=c N^{2}$ so the complexity is $O\left(N^{2}\right)$.

Exercise 3: What is the complexity?

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& \quad \text { for }(j=i ; j<N ; j++)\{ \\
& \quad \text { sequence of statements of } O(1)
\end{aligned}
$$

Solution: Focus on the inner loop first.
$i=0$ then we would perform N operations
$i=1$ then we would perform $N-1$ operations
$i=N-1$ then we would perform 1 operation.
$i=N$ then it would be zero operations.
Thus, the total number of iterations is
$1+2+\ldots+(N-1)+N=\frac{(N+1) N}{2}=\frac{N^{2}+N}{2}$ and this is $O\left(N^{2}\right)$
Exercise 3: Calculate the complexity of the factorial function below.
The Factorial is define as $x!=x(x-1) \cdot \ldots \cdot 1$ for all natural numbers $x,\{0,1,2, \ldots$, where
$0!=1$
$1!=1$
and
$2!=2 \cdot 1!=2 \cdot 1$
$3!=3 \cdot 2!=3 \cdot 2 \cdot 1$
Now cosider the code that computes n !
int factorial(int n) \{
if $(n==0)\{$ return 1;
\}
else\{ return $n *$ factorial $(n-1)$

Solution:

Let $T(n)$ be the time complexity of factorial above. The comparison if $\mathrm{n}==0$ cost one unit and in the else statement, the multiplication with cost n cost 1 operation and calling the factorial $(n-1)$ is 1 operation. In turn, calling factorial $(n-1)$
costs $T(n-1)$.

So we get recursive formula
$T(n)=T(n-1)+3$.

Futhermore if we replace $T(n-1)$ with $T(n-2)+3$ and so on, then we end up with
$T(n)=T(n-1)+3$
$T(n-1)=T([n-1]-1)+3$

$$
\begin{aligned}
& =T(n-1-1)+3+3 \\
= & T(n-2)+3+3 \\
= & T(n-3)+3+3+3
\end{aligned}
$$

$T(k)=T(n-k)+3 k$
If $k=n$ we get
$T(n)=T(0)+3 n$
$T(n)=1+3 n$
and $T(n)=1+3 n$ is $O(n)$.

Exercise 4: One of the two software packages A or B should be choosen to process data collections, containing each up to 10^{9} records. Average processing time of the package A is $T_{A}(n)=0.001 n$ milliseconds and the average processing time of the package B is $T_{B}(n)=500 \sqrt{n}$ miliseconds. Which algorithm has better performance in a "Big-O sense"?Work out exact conditions when these packages outperform each other.

Solution: In "Big-O sense" $T_{A}(n)$ is $O(n)$ and $T_{B}(n)$ is $O(\sqrt{n})$ so B is better than A. Otherwise we have that B outperforms A when $T_{A} \geq T_{B}$ and

$$
\begin{aligned}
& 0.001 n \geq 500 \sqrt{n} \\
& \Rightarrow n \geq 500 \sqrt{n} / 0.001 \\
& \Rightarrow n \geq 5 \cdot 10^{5} \sqrt{n} \\
& \Rightarrow n / \sqrt{n} \geq 5 \cdot 10^{5} \\
& \Rightarrow \sqrt{n} \geq 5 \cdot 10^{5} \\
& \Rightarrow(\sqrt{n})^{2} \geq 25 \cdot 10^{10} \\
& \Rightarrow n \geq 25 \cdot 10^{10}
\end{aligned}
$$

So B is only better when $n \geq 25 \cdot 10^{10}$ but $10^{9}<25 \cdot 10^{10}$ so for processing up $10{ }^{9}$ to data items, software package A is the better choice.

Exercise 5: Assume that the method randomValue requires a constant number of c computational steps to produce each output value, and that the method goodSort takes
$n \log n$ computational steps to sort the array. Determine the Big-Oh complexity for the following fragments of code taking into account only the above computational steps:

```
for (i=0;i<n;i++ )
    for (j=0; j<n; j++)
        a[j] = randomValue(i);
    goodSort(a);
}
```

Solution: For the inner loop we compute the randomValue n times so the number of iterations for the inner loop is $n \cdot c$. Then after the inner lopp is done, goodSort is used and requires $n \log n$ operations. So to compute the inner loop and then run goodSort it takes a total of $c n+n \log n$ operations. Since the inner loop and goodSort is performed n times we get the total complexity $n(c n+n \log n)=c n^{2}+n^{2} \log n$.
Because $n^{2} \log n$ is the dominant term we have that the complexity of this code is $O\left(n^{2} \log n\right)$.

Exercise 6: You have programs A, B, C that have complexities of $O(\log n), O(\sqrt{n})$, and
$O\left(n^{3}\right)$ respectively. Each algorithm spends 15 seconds to process 200 data items. What would the time be for each algorithm spend to process 30000 items

Solution: We can assume, where C, D, E are real constants. Because we have the complexities above we can do the following approximations:
$T_{A}=C \log n$
$T_{B}=D \sqrt{n}$
$T_{C}=E n^{3}$

Find C, D, E

$$
\begin{aligned}
& T(200)=C \log 200=15 \\
& \quad \Rightarrow C=15 / \log 200=1.96 \\
& T(200)=D \sqrt{200}=15 \\
& \quad \Rightarrow D=15 / \sqrt{200}=1.06 \\
& T(200)=E \cdot 200^{3}=15 \\
& \quad \Rightarrow E=15 / 200^{3}=1.9 \cdot 10^{-6}
\end{aligned}
$$

Now calulate $T_{A}(30000), T_{B}(30000), T_{C}(30000)$
$T_{A}(30000)=1.96 \cdot \log 30000=8.78$
$T_{B}(30000)=1.06 \cdot \sqrt{30000}=183.60$
$T_{C}(30000)=1.9 \cdot 10^{-6} \cdot 30000^{3}=51300000$
thus, it takes 8.78 seconds for algorithm $A, 183.60$ seconds for algorithm B and 51300000 seconds for algorithm C to process 30000 items.

