
DIT374 Python for Data
Scientists

Period I, 2020

Organization

Staff

Dag Wedelin (Examiner): dag@chalmers.se

Marwa Naili (Course responsible): naili@chalmers.se

Shirin Tavara (Lecturer): tavara@chalmers.se

David Bosh (TA): davidbos@chalmers.se

Schedule:

• Lectures: Monday and Wednesday at 10-12

See the TimeEdit:

https://cloud.timeedit.net/chalmers_test/web/public/ri10Q603570007
QQ51ZZ156004yYW46976406008Q655.html

Schedule

https://cloud.timeedit.net/chalmers_test/web/public/ri10Q603570007QQ51ZZ156004yYW46976406008Q655.html

Lab sessions: Wednesday and Friday at 13-15
• Supervised work on assignments

Schedule

Online teaching: all lectures, labs and

office hours will be online via Zoom

Lab sessions:
• Slack DIT374: https://join.slack.com/t/dit374/shared_invite/zt-gl0v30d0-

Gcw8IwwQJmN42ZJW2KiZew

• Use this link for the queue: http://www.waglys.com/sipfdc

Schedule

https://join.slack.com/t/dit374/shared_invite/zt-gl0v30d0-Gcw8IwwQJmN42ZJW2KiZew
http://www.waglys.com/sipfdc

• The official course webpage is the Canvas page :
• https://canvas.gu.se/courses/36872

• Slides, assignments and data will be posted after the lectures
via the canvas site

Course Website

https://canvas.gu.se/courses/36872

• Assignments will be posted on Canvas on Monday

• Deadlines: 1 week

• Do not submit an incomplete Assignment! We are available to help
you, and you can receive a short extension if you contact us.

Assignments

• Grading scale: Pass with Distinction (VG), Pass (G) and Fail (U)

• A passing grade for the entire course requires at least a passing
grade for all assignments, both the assignments that are graded
as pass/fail and those that that graded as VG/G/U.

Grading

• [1] C. Horstmann: Python for everyone 3rd ed., ISBN: 978-1-119-63829-2:
https://www.chalmersstore.se/utlandsk-litteratur/python-for-everyone-1.html
[2] Python tutorial: https://docs.python.org/3/tutorial/
[3] Python 3 course: http://www.python-course.eu/python3_course.php

• [4] w3schools, Python: https://www.w3schools.com/python/default.asp
[5] NumPy & SciPy references: http://docs.scipy.org/doc/

• [6] W. Mckinney: Python for Data Analysis, 2nd Edition. ISBN: 9781491957660:
https://www.amazon.com/gp/product/1491957662/ref=as_li_qf_asin_il_tl?ie=UTF
8&tag=amazonaffi048-
20&creative=9325&linkCode=as2&creativeASIN=1491957662&linkId=ca87c0dc5
2af4fefb49377651641428d

Literature

Books are highly recommended, but it is possible to

complete the course without buying any one of

them.

https://www.chalmersstore.se/utlandsk-litteratur/python-for-everyone-1.html
https://docs.python.org/3/tutorial/
http://www.python-course.eu/python3_course.php
https://www.w3schools.com/python/default.asp
http://docs.scipy.org/doc/
https://www.amazon.com/gp/product/1491957662/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=amazonaffi048-20&creative=9325&linkCode=as2&creativeASIN=1491957662&linkId=ca87c0dc52af4fefb49377651641428d

• Need 2-3 Volunteers

• If you’re interested in being a student representative, please
send me an email!

Student representatives

Course content

Polls

Do you have any programming knowledge?

A B C

Yes Yes but not much No

Polls

Did you use Python as a programming language before?

A B C

Basic Advance no

Polls

Do you have any knowledge about Data science?

A B

Yes No

Topics

Three main topics:

1. Programing with Python
• Basics of python

• Object oriented programming

2. Data structure and algorithms
• Orientation about algorithms and algorithm design principles

• Data structure

3. Data science
• Python for Data Science

Learning Goals

• Make efficient use of predefined data structures in Python

• Construct simple programs using classes and objects

• Analyze the efficiency of different algorithms, for example
searching and sorting

• Use a standard library of data structures and algorithms in
Python for solving tasks within the area of data science.

Programming language

https://www.informationq.com/computer-language-
and-its-types/computer-language-and-its-types/

• Programming language : a vocabulary and set of grammatical
rules for instructing a computer to perform specific tasks.

• Computer programs can be written in high and low level
languages depending on the task and the hardware being used.

https://www.informationq.com/computer-language-and-its-types/computer-language-and-its-types/

• Used to write programs that relate to the specific architecture
and hardware of a particular type of computer.

• Closer to the native language of a computer, making them
harder for programmers to understand.

Programming language: Low level
language

Machine language:

• Fundamental language of the computer’s processor

• All programs are converted into machine language before they
can be executed.

• Consists of combination of 0’s and 1’s

Programming language: Low level
language

Assembly language:

• Uses symbolic operation code to represent the machine
operation code.

• Still used for developing code for specialist hardware, such
as device drivers

Programming language: Low level
language

https://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html

https://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html

• Written in a form that is close to our human language, enabling
the programmer to just focus on the problem being solved.

• No particular knowledge of the hardware is needed since it
creates programs that are portable and not tied to a particular
computer or microchip.

Programming language: High level
language

Programming Languages Phylogeny (Simplified)

Fortran (1954), IBM (Backus)

Algol (1958)

Scheme (1975)
CPL (1963), U Cambridge

Combined Programming Language

BCPL (1967), MIT
Basic Combined Programming Language

B (1969), Bell Labs

C (1970), Bell Labs

C++ (1983), Bell Labs

Java (1995)

Objective C

Simula (1967)

Python (1990),
Guido van Rossum

ABC (~1980)

BASIC (1963)

Smalltalk (1971),
PARC

LISP (1957)

History of High level programming languages

http://www.cs.virginia.edu/cs216

Fortran: First language that introduced variables,
loops, procedures, statement labels and much
more.
The newest version, Fortran 90, has converged
toward other popular programming languages.

Algo : the first to have block structure,
recursion, and a formal definition.
it is the ancestor of most contemporary
languages.

C: The implementation language of Unix.
Still in use, but usually superseded by C++ (An
object-oriented extension of C).
Relatively low-level.

Java: A neat, cleaned up, sized-down reworking
of C++.
Full object orientation

Python

Guido van Rossum: "I remembered all my experience and some
of my frustration with ABC. I decided to try to design a simple
scripting language that possessed some of ABC's better
properties, but without its problems.”

Python

• Python is the most widely used data science programming
language.

• It supports multiple paradigms, from functional to structured and
procedural programming.

Python (3 versions)

• Version 1 (January 1994):
• Included functional programming tools (lambda, map, filter and reduce)
• Support complex numbers

• Version 2 (October 2000):
• Introduced list comprehensions and generators
• Unification with Python’s types (written in C) and classes (written in

python) into one hierarchy

• Version 3 (December 2008):
• Still follow object oriented, structured, and functional programming

paradigms but within such broad choices (the details were intended to
be more obvious in Python 3.0 than they were in Python 2.x).

Python is slow!!

Python is Dynamically Typed rather than Statically Typed:
• At the time the program executes, the interpreter doesn't know the type

of the variables that are defined.
/* C code */

int a = 1;

int b = 2;

int c = a + b;

C Addition
1.Assign <int> 1 to a

2.Assign <int> 2 to b

3.call binary_add<int, int>(a, b)

4.Assign the result to c

python code

a = 1

b = 2

c = a + b

Python Addition
1.Assign 1 to a

•1a. Set a->PyObject_HEAD->typecode to integer

•1b. Set a->val = 1

2.Assign 2 to b (same as 1)

3.call binary_add(a, b)

•3a. find typecode in a->PyObject_HEAD

•3b. a is an integer; value is a->val

•3c. find typecode in b->PyObject_HEAD

•3d. b is an integer; value is b->val

•3e. call binary_add<int, int>(a->val, b->val)

•3f. result of this is result, and is an integer.

4.Create a Python object c

•4a. set c->PyObject_HEAD->typecode to integer

•4b. set c->val to result

Python is slow!!

Python is Dynamically Typed rather than Statically Typed:
• Python's object model can lead to inefficient memory access

http://jakevdp.github.io/blog/2014/0
5/09/why-python-is-slow/

http://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/

Programming language

https://spectrum.ieee.org/ns/IEEE_TPL_2019/index/2019/1/1/1/1/1/5/1/75/1/50/1/100/1/5

0/1/75/1/75/1/20/1/50/1/40/1/50/

Why Python?

• Extensive selection of libraries

• Code simplicity

• High flexibility

• Platform independence

• Constant support from the

developer community

• Lot of documentation

https://spectrum.ieee.org/ns/IEEE_TPL_2019/index/2019/1/1/1/1/1/5/1/75/1/50/1/100/1/50/1/75/1/75/1/20/1/50/1/40/1/50/

Why Python for data science

Dealing with complex problems and involves four major steps -
data collection & cleaning, data exploration, data modeling and
data visualization.

https://www.heliossolutions.co/blog/why-choose-python-for-

artificial-intelligence-and-machine-learning/

https://www.heliossolutions.co/blog/why-choose-python-for-artificial-intelligence-and-machine-learning/

Python interpreter

• Python is an interpreted language.

• The python interpreter runs a program by executing one
statement at a time.

• The standard interactive python interpreter can be invoked on
the commend line:

Python interpreter

Running python programs can be done by calling python with a
.py file as a first argument

Software

You have multiple options when installing Python (Make sure to
get version 3.7 or later, https://www.python.org/downloads/)

• Anaconda (https://www.anaconda.com/products/individual#linux)
Python distribution, which includes several useful libraries. (Installation:
https://docs.continuum.io/anaconda/install/)

• The editor PyCharm
(https://www.jetbrains.com/pycharm/download/#section=windows)

• miniconda (https://docs.conda.io/en/latest/miniconda.html)
• Jupyter Notebooks (included in Anaconda)
• Spyder (included in Anaconda)
• …

https://www.python.org/downloads/
https://www.anaconda.com/products/individual#linux
https://docs.continuum.io/anaconda/install/
https://www.jetbrains.com/pycharm/download/#section=windows
https://docs.conda.io/en/latest/miniconda.html

Software

• All software are free and can be downloaded from the web.

• Here are some instructions
at https://it.portal.chalmers.se/itportal/GenStud/Python

https://it.portal.chalmers.se/itportal/GenStud/Python

Your first Python program

1- Open Navigator

2- Run python In a

Jupyter Notebook

3- Create a new

Notebook with the

Python version
you installed

Your first Python program

• In the first line of the
Notebook, type :
print('Welcome to the
python course')

• Save your Notebook by
clicking the save and
checkpoint icon (or select
File and Save and
Checkpoint in the top
menu).

• Run your new program by
clicking the Run button (or
selecting Cell - Run All
from the top menu).

Documentation: https://jupyter-notebook.readthedocs.io/en/stable/

https://jupyter-notebook.readthedocs.io/en/stable/

Your first Python program

Input/Output: Print

Print function allows to write into the standard output

The use of print is different according to the version

of the python program: 2.x and 3.x

print "Python for Data Scientist"

SyntaxError: Missing parentheses in call to 'print'. Did you
mean print("Python for Data Scientist")?

print ("Python for Data Scientist")

Python for Data Scientist

Output: Print

The arguments of the print function are the following ones:

print(value1, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

x = 3.14
print('x = ', x)

print ('x = \n', x)

y = 4
print(x, y, sep=';')

x = 3.14
x =
3.14

3.14 ; 4

Print

• The output of the print function is send to the standard output stream
(sys.stdout) by default.

• By redefining the keyword parameter "file" we can send the output into
a different stream e.g. sys.stderr or a file:

f = open('example.txt', 'w')
print("Welcome to the python for Data Scientist course", file=f)
f.close()

import sys
output into sys.stderr:
...
print("Error: 42", file=sys.stderr) Error: 42

Formatted Output: printf

https://www.python-course.eu/python3_formatted_output.php

https://www.python-course.eu/python3_formatted_output.php

Formatted Output: printf

%8.2f?

→ [flags][width][.precision]type

Example:

https://www.python-course.eu/python3_formatted_output.php

https://www.python-course.eu/python3_formatted_output.php

Formatted Output: The string method
‘format’

print('price_x:{0:5d}, price_y:{1:8.3f}'.format(345,33.9897))

price_x: 345, price_y: 33.990
https://www.python-course.eu/python3_formatted_output.php

https://www.python-course.eu/python3_formatted_output.php

Input: input()

input([prompt])

number = input("Enter number ")
name = input("Enter name ")

print("\n")
print("Printing type of an input value")
print("type of number", type(number))
print("type of name", type(name))

Enter number 4
Enter name Alex

Printing type of a input value
type of number <class 'str'>
type of name <class 'str'>

whatever you enter as input, the
input() function always converts it

into a string.

Input: input()

first_number = int(input("Enter first number "))
second_number = int(input("Enter second number "))

print("\n")
print("First Number:", first_number)
print("Second Number:", second_number)
sum1 = first_number + second_number
print("Addition of two number is: ", sum1)

Enter first number 5
Enter second number 8

First Number: 5
Second Number: 8
Addition of two number is: 13

Input/output: from a file

f = open("file.txt", "r")

#read: returns the whole text, but you can also specify how many
characters you want to return
print(f.read())

#readline: read one line of the file:
print(f.readline())
print(f.readline())

#It is a good practice to always close the file when you are done
with it.
f.close()

Input/output: from a file

f = open("file2.txt", "a")
f.write("Hello!")
f.close()

#open and read the file after the appending:
f = open("file2.txt", "r")
print(f.read())

f = open("file2.txt", "w")
f.write("Hello again!")
f.close()

#open and read the file after writing:
f = open("file2.txt", "r")
print(f.read())

To create a new file in Python, use

the open() method, with one of the following

parameters:

"x" - Create - will create a file, returns an error if

the file exist

"a" - Append - will create a file if the specified

file does not exist

"w" - Write - will create a file if the specified file

does not exist

Basics of python

Basics of Python:
• Data types and structure

• Branching and iteration

• Functions, decomposition and abstraction

• Object oriented programming

