
Python for Data Scientists
L2: Data types and Data

Structure in Python

Variables

• When creating a variable, the interpreter will reserve some
space in the memory to store values.

• Python variables are usually dynamically typed
/* C code */

int a = 1;

int b = 2;

int c = a + b;

python code

a = 1

b = 2

c = a + b

Variables

There are certain rules or naming conventions for naming
variables:

• Reserved key words such as if, else, and so on cannot be used for
naming variables

• Variable names can begin with _, $, or a letter

• Variable names can be in lower case and uppercase

• Variable names cannot start with a number

• White space characters are not allowed in the naming of a variable

Variables

Syntax:

<variable name>= < expression >

Single assignment
• city='London’
• money = 100.75
• count=4

Multiple assignment
• a = b = c = 1

Data types

• Refers to a given type along with a collection of operations for
manipulating values of the given type.

• Programming languages commonly provide data types as part
of the language itself.

Data types

Python has the following data types built-in by default, in these
categories:

• Text type: str

• Numeric types: int, float

• Sequence types: list, tuple

• Mapping type: dict

• Set Type: set

• Boolean type: bool

Data Structure

• A particular way of storing and organizing data in a computer so
that it can be used efficiently and effectively.

• A group of data elements grouped together under one name
(example: an array of integers)

Numeric: Integers

Integers : Zero, positive and negative whole numbers without a
fractional part

• ranges: −231 to (231-1)) and long integers

Numeric: float

Float: Positive and negative real numbers with a fractional part
denoted by the decimal symbol or the scientific notation using e

• ranges approximately : -10 to 10308 and has 16 digits of precision.

• Example : 5,32 or 532e-2

Numeric

Arithmetic Operators
• + : Addition

• - : Subtraction

• * : Multiplication

• / : Division

• % : Modulus

• ** : Exponent

• // : Floor division

Boolean

Boolean data type
• <variable name>=<'True' or 'False’>

Boolean

Logic operators on Booleans values
• not x -> True if x is False or False if x is True

• x and y -> True if both are True

• x or y -> True if either or both are true

String

String data types
• <variable name>= <String sequence>

• Single quotes ‘ ’ or double quotes “ ” can be used to denote a string

Example:

print('Welcome to the "Python for Data Scientists"
course')
print("Welcome to the 'Python for Data Scientists'
course")

Welcome to the "Python for Data Scientists" course
Welcome to the 'Python for Data Scientists' course

Strings

String is an immutable:

str = 'Hello'
print(id(str))
str = 'Hi'
print(id(str))

str

'Hello'

'Hi'

2670734128560

2670734128432

Strings

Square brackets used to perform indexing into a string to get the
value at a certain position (index).

film = 'Joker’

Index: 01234 -> indexing starts at 0

Index: -5-4-3-2-1 -> last element at index -1

film[0] -> evaluates to ‘J’

film[-1] -> evaluates to ‘r’
→ Similar to other programming languages, strings in

Python are arrays of bytes representing unicode characters.

→ Python does not have a character data type (a single

character is a string with a length of 1).

Strings

Slicing for substrings
• can slice strings using [start:stop:step]

• if give two numbers, [start:stop], step=1 by default

film = 'Joker'
print(film[0:2])
print(film[:3])
print(film[3:])
print(film[::3])
print(film[::])
print(film[::-2])

-> Jo
-> Jok
-> er
-> Je
-> Joker
-> rkJ

Strings (Poll)

Example: suppose we have the following string : film=‘Joker’ and
we would like to replace the first upper case letter with a lower
case.

Which of the flowing statement is correct

A- film[0]='j’

B- film='j'+film[1:]

-> TypeError: 'str' object does not support item assignment

Strings

String methods:

film = 'joker jokeR'
print(film.count('o'))
print(film.count('o',3,5))
print(film.find("ke"))
print(film.rfind("ke"))
print(film.lower())
print(film.upper())
print(film.capitalize())
print(film.title())
print(film.swapcase())

2
0
2
8
joker joker
JOKER JOKER
Joker joker
Joker Joker
JOKER JOKEr

All string methods do not change the

original string (returns new values)

Conversion functions

• ord() : convert a character value to ASCII code

• chr() : convert ASCII code to character

• int() : convert into the int data type

• float() : convert into the float data type

Arrays

• Arrays in Python are a compact way of collecting basic data
types (all the entries in an array must be of the same data type).

• Arrays are not all that popular in Python, unlike the other
programming languages such as C++ or Java.

• For python, you need to import a module named “array“

Arrays

• array(data type, value list) : create an array with data type and
value list specified in its arguments.

• append() : add the value mentioned in its arguments at
the end of the array.

• insert(i,x) : add the value at the position specified in its
argument.

Arrays

• pop() : removes the element at the position mentioned in its
argument and returns it.

• remove() : remove the first occurrence of the value mentioned
in its arguments.

• index() : returns the index of the first occurrence of value
mentioned in arguments.

• reverse() : reverses the array.

Arrays
import array
arr = array.array('i', [1, 5, 8])

print("The new created array is : ", end=" ")
for i in range(0, 3):

print(arr[i], end=" ")

print("\r")
arr.append(0);
print("The appended array is : ", end="")
for i in range(0, 4):

print(arr[i], end=" ")

print("\r")
arr.insert(3, 7)
print("The array after insertion is : ", end="")
for i in range(0, 5):

print(arr[i], end=" ")

The new created array is : 1 5 8
The appended array is : 1 5 8 0
The array after insertion is : 1 5 8 7 0

Arrays

The popped element is : 8
The array after popping is : 1 5 7 0
The array after removing is : 0 7 5

print("The popped element is : ", end="")
print(arr.pop(2));
print ("The array after popping is : ",end="")
for i in range (0,4):

print (arr[i],end=" ")

print("\r")
arr.remove(1)
arr.reverse()
print("The array after removing is : ", end="")
for i in range(0, 3):

print(arr[i], end=" ")

Arrays: Slicing

https://www.geeksforgeeks.org/python-arrays/

https://www.geeksforgeeks.org/python-arrays/

Numpy arrays

• provide a high-performance multidimensional array object, and
tools for working with these arrays.

• NumPy’s library of algorithms written in C can operate on this
memory without any type checking or other overhead

• use much less memory than built-in Python sequences

• NumPy operations perform complex computations on entire
arrays without the need for python loops

Lists

• ordered sequence of information, accessible by index

• a list is denoted by square brackets, []

• a list contains elements
• usually homogeneous (ie, all integers)

• can contain mixed types (not common)

[1,2,3,4]
['Joker', 'Titanic', 'Ace Age']
[2.5, 'Joker', [1,2,3]]

Lists

In Python, lists are similar to arrays:

Book: Data structure and Algorithms using Python, Rance D.Necaise,
ISBN 978-0-470-61829-5.

The abstract and physical views of a list implemented using an array

Lists

Memory allocation of Elements in List:

l = [1,2,[1,5]]
print(id(l[0]))
print(id(l[1]))
print(id(l[2]))
print(id(l[2][0]))
print(id(l[2][1]))

140705827549456 140705827549488 2121859027528

2121859028040
140705827549456
140705827549488
2121859027528
140705827549456
140705827549584

l= 2121859028040

1 2

140705827549456 140705827549584

5

Lists

• Lists are mutable

• in operator

numbers = [1,2,3,4]
numbers[0]=5
print(numbers)

print(5 in numbers)

[5, 2, 3, 4]

True

Lists

• List operations

• List slices

a = [1, 2, 3]
b = [4, 5, 6]
c = a + b
d = a * 3

c[1:3]
c[:3]
c[3:]
c[:]

c=[1, 2, 3, 4, 5, 6]
d=[1, 2, 3, 1, 2, 3, 1, 2, 3]

[2, 3]
[1, 2, 3]
[4, 5, 6]
[1, 2, 3, 4, 5, 6]

Lists

List methods
• append: adds a new element to the end of a list

• extend: takes a list as an argument and appends all of the elements

• sort: arranges the elements of the list from low to high

l = ['a', 'b', 'c']
l.append('d’)

l2 = ['e', 'd']
l.extend(l2)

l.sort()
sorted(l)

• calling sort() mutates the list, returns nothing

• calling sorted() does not mutate list, must assign

result to a variable

['a', 'b', 'c', 'd']
['a', 'b', 'c', 'd', 'e', 'd'']

Lists

Note:
• Insert is computationally expensive compared to append because you

need to shift elements internally to make room for new elements

Book: Data structure and Algorithms using Python, Rance D.Necaise,
ISBN 978-0-470-61829-5.

Lists

Note:

• List concatenation by addition is computationally expensive since a
new list must be created and objects are copied → extend to append
elements to an existing list is preferable.

Lists

Append a new item to the end of

the list (if the array is full)?

Book: Data structure and Algorithms using Python, Rance D.Necaise,
ISBN 978-0-470-61829-5.

Lists

Other methods
• sum: Adding up the elements of a list

• pop: modifies the list and returns the
element that was removed. If you don’t
provide an index, it deletes and returns the
last element.

• del: If you don’t need the removed value

• remove: If you know the element you want
to remove but not the index

numbers = [0,1,2,3,4]
l=sum(numbers)
l1 = numbers.pop(1)
del numbers[1]
numbers.remove(4)

10
1
[0, 3, 4]
[0, 3]

Lists

Lists and strings
• list: To convert from a string to a list of

characters

• split: to break a string into words

• delimiter: specifies which characters to
use as word boundaries

• join : puts a space between words

word = 'Python'
list1 = list(word)

sentence = 'I love Python'
delimiter = ' '
l = sentence.split(delimiter)

w = delimiter.join(l)

['P', 'y', 't', 'h', 'o', 'n']
['I', 'love', 'Python']
I love Python

Lists (Poll)

What will be the result for each print?

l = ['a', 'b', ['cc', 'dd', ['eee', 'fff']], 'g', 'h']

print(l[2][2])
A- eee
B- ['eee', 'fff']

print(l[-3][-1][-2])
A- eee
B- ['eee', 'fff']

List: Aliases

OOLanguages = ['python', 'java']
languages = OOLanguages
languages.append('C')
print(languages)
print(OOLanguages)

Languages

OOLanguages

python java C

List
0 1 2

OOLanguages is an alias for langauges: changing one changes the other!

Id = 2543685947976python java C

List
0 1 2

List: Cloning

OOLanguages = ['python', 'java']
languages = OOLanguages[:]
languages.append('C')
print(languages)
print(OOLanguages) Languages

OOLanguages

python java C

List
0 1 2

create a new list and copy every element using languages = OOLanguages[:]

python java

List
0 1

Id = 2181712270408

Id = 2181712269896

Tuples

• an ordered sequence of elements, can mix element types

• represented with parentheses

t = () # empty tuple
t1 = tuple() # empty tuple
t = ('a’, 1, 'c', 'd', 'e’) # tuple with 5 elements
t2 = ('a’,) # extra comma means a tuple with one element

Tuples

• Tuple concatenation

• Tuple slices

(1,2,3) + (4,5) # evaluates to (1,2,3,4,5)

t1=(1,'abc', 2.5, 'a')
t1[1:2]
t1[1:3]

('abc’,) -> extra comma means a tuple with one element
('abc', 2.5)

Tuples

Tuples are immutable

t1=(1,'abc', 2.5, 'a')
t1[0]=2

TypeError: 'tuple' object does not support item assignment

Tuples

Tuples operators
• + : concatenation

• * : Repetition

• in : Returns true if an item exists in the given tuple

• not in : Returns true if an item does not exist in the given tuple

Tuples

Tuples methods
• len() : number of elements in the tuple

• max() (min()) : if the tuple contains numbers, it will return the highest
(smallest) number. If it contains characters, it will return the one that
comes last (first) in alphabetic order

Tuples

• Conveniently used to swap variable value

• Used to return more than one value from a function

temp = x
x = y
y = temp

(x, y) = (y, x)

def quotientRemainder(x, y):
q = x //y
r = x % y
return (q, r)

Sets

• The set is a Python implementation of the set in Mathematics.

• A set object contains one or more items, not necessarily of the
same type, which are separated by comma and enclosed in curly
brackets {}.

set = {value1, value2, value3,...valueN}

Sets

A set doesn't store duplicate objects (Even if an object is added
more than once inside the curly brackets, only one copy is held in
the set object).

S1={1, 2, 2, 3, 4, 4, 5, 5}
print(S1)

{1, 2, 3, 4, 5}

Sets

• Sets are unordered.

• A set itself may be modified, but the elements contained in the
set must be of an immutable type.

Sets

set() function

s1=set("Python course")
print(s1)

s2=set([4,55,17])
print(s2)

s3=set((4,55,17))
print(s3)

{'o', 't', 'e', 'h', 'u', 'y', 'c', 's', 'n', ' ', 'P', 'r'}
{17, 4, 55}
{17, 4, 55}

Sets

Set operations:

• Union of two sets: s1|s2 or s1.union(s2)

• Intersection of two sets: s1&s2 or s1.intersection(s2)

• Difference of two sets: s1-s2 or s1.difference(s2)

• Symmetric Difference: s1^s2 or s1.symmetric_difference(s2)

Sets

Built-in Set Methods

#Adds a new element in the set object.
s1= {'python', 'java', 'C'}
s1.add('C++')
print(s1)

#Adds multiple items from a list or a tuple.
s1.update(['R', 'perl'])
print(s1)

#Creates a copy of the set object.
s2=s1.copy()
print(s2) {'java', 'python', 'C++', 'C'}

{'C', 'java', 'python', 'R', 'perl', 'C++'}
{'R', 'C', 'java', 'python', 'perl', 'C++'}

Sets

Built-in Set Methods

#Removes the contents of set object and results in an empty set.
s2.clear()
print(s2)

#Returns a set after removing an item from it. No changes are done
if the item is not present.
s1.discard('C+')
print(s1)

#Returns a set after removing an item from it. Results in an error
if the item is not present.
s1.remove('C')
print(s1)

set()
{'C', 'java', 'python', 'R', 'perl', 'C++'}
{'java', 'python', 'R', 'perl', 'C++'}

Sets (Poll)

What is the result of this statement:

A- {'b', 'r', 'a’}

B- {'q', 'r', 'x', 'u', 'b', 'a’}

C- {}

D- Set()

{'b', 'a', 'r'} & set('qux')

Frozen Sets

Exactly like a set, except that a frozenset is immutable:

You can perform non-modifying operations on a frozenset

Dictionaries

• A dictionary is like a list:
• List: indices have to be integers

• Dictionary: indices can be any type.

• Dictionary allows mapping between a set of indices (keys) and
a set of values. Each key maps to a value.

Dictionaries

• The association of a key and a value is called a key-value pair.

eng2fr = dict()
eng2fr = {'one': 'un', 'two': 'deux', 'three': 'trois'}
print(eng2fr)
print (eng2fr['two'])

{'one': 'un', 'two': 'deux', 'three': 'trois'}
deux

Dictionaries

Some methods
• len: it returns the number of key-value pairs

• in: tells you whether something appears as a key in the
dictionary

• values: returns the values as a list

len(eng2fr)
'one' in eng2fr
vals = eng2fr.values()

3
True
dict_values(['un', 'deux', 'trois'])

Dictionaries

Dictionary as a set of counters:

An advantage of the dictionary implementation is that we don’t have to know
ahead of time which letters appear in the string and we only have to make
room for the letters that do appear.

def histogram(s):
d = dict()
for c in s:

if c not in d:
d[c] = 1

else:
d[c] += 1

return d

h = histogram('brontosaurus')
print(h)

{'b': 1, 'r': 2, 'o': 2, 'n': 1, 't': 1, 's': 2, 'a': 1, 'u': 2}

Dictionaries

Looping and dictionaries

If you use a dictionary in a for statement, it traverses the keys of the
dictionary.

def print_hist(h):
for c in h:

print (c, h[c])

h = histogram('Python')
print_hist(h)

P 1
y 1
t 1
h 1
o 1
n 1

Dictionaries (Poll)

What is the result of this statement:

A- (200, 300)

B- 200

C- none of the above

d = {'foo': 100, 'bar': 200, 'baz': 300}
d['bar':'baz']

Which data type to use in your
program?

Arrays VS Lists

• Lists can hold homogeneous items → similar to arrays

• Fundamentally different in terms of the operations one can
perform on them:

• Arrays: operations can be performed on all its item individually

• Lists: can not perform operations on all its item individually

Arrays VS Lists
• Arrays :

• need to be declared

• very useful when dealing with a large collection of homogeneous data types → arrays
may be faster and uses less memory when compared to lists

• Are great for numerical operations

• Lists:
• provides a large set of operations for managing the items contained in the list

(inserting, searching, removing, extracting a subset of items, and sorting). The array
structure only provides a limited set of operations for accessing the individual
elements.

Tuples VS lists

Tuples: are immutable

→ This might be useful in situations where you might to pass the
control to someone else but you do not want them to manipulate
data in your collection

Sets VS lists

Sets : are a collection of distinct (unique) objects.

→ These are useful to create lists that only hold unique values in
the dataset.

→ It is an unordered collection but a mutable one, this is very
helpful when going through a huge dataset.

Dictionary

Dictionaries: useful when you need something similar to a
telephone book

→ Dictionaries contain key-value pairs instead of just single
elements.

Next modules

Data types and data structures more generally in computer
science!

