
Python for Data Scientists
L3: Branching & iteration

Branching & iteration

By default, statements in the script are executed sequentially
from the first to the last.

Branching & iteration

The sequential flow can be altered in two ways:

• Conditional execution

• Repetitive execution

Control flow-branching

if <condition>:

<expression>

<expression>

….

if <condition>:

<expression>

<expression>

…

else:

<expression>

<expression>

…

if <condition>:

<expression>

<expression>

…

elif <condition>:

<expression>

<expression>

…

else:

<expression>

<expression>

…

Control flow-branching

<condition> has a value True or False

• > (<) : greater (less)

• >= (<=): greater or equal (less or equal)

• == : equal

• != : not equal

Control flow-branching

Test

condition

of if

Body of if
False

True

• evaluate expressions in that block if <condition>

is True

• the elif condition is used to include multiple

conditional expressions between if and else.

Test

condition

of elif

Body of elif

True

Body of else

False

Control flow-branching

Indentation in Python: helps to denote blocks of code
x = float(input("Enter a number for x: "))
y = float(input("Enter a number for y: "))
op = str(input("Enter a operation for op: "))

if op == '+':
print('this is an addition', x+y)

elif op == '-':
print('this is a subtraction’, x-y)

elif op == '*':
print('this is a multiplication', x*y)

elif op == '/':
if y == 0:

print('error: division by 0')
else:

print('this is a division', x/y)
print('Thank you')

Enter a number for x: 2
Enter a number for y: 4
Enter a number for op: /
this is a subtraction 0.5
Thank you

Short Hand If

You can put if on the same line as the statement if you only have
one statement to execute

x = int(input("Enter a number for x: "))
if x>0: print('x is a positive number')

Short Hand If ... Else

If you have only one statement to execute, one for if, and one for
else, you can put it all on the same line:

x = int(input("Enter a number for x: "))
y = int(input("Enter a number for y: "))
print("x is greater than y") if x > y else print("y is greater than x")

Short Hand If ... Else

You can also have multiple else statements on the same line:

x = int(input("Enter a number for x: "))
y = int(input("Enter a number for y: "))
print("x is greater than y") if x > y else print("y is greater than x") if x < y else
print("y is equal to x")

While Loop

While <condition>:

<expression>

<expression>

….

While Loop

While <condition>:

<expression>

<expression>

….

Condition

Remaining body of

a loop

Enter loop

Exit loop

False

True

• <condition> evaluates to a Boolean

• if <condition> is True, do all the steps inside the

while code block

• check <condition> again

• repeat until <condition> is False

While Loop

x = int(input("Enter a number for x: "))
result=1

while x > 1:
result = result * x
x = x - 1

print(result)

Enter a number for x: 4
24

While loop (Poll)

What will be the output of this code:

• A: Done.
• B: ('three', 3)

('two', 2)
('one', 1)
Done.

• C ['three’, 3]
['two’, 2]
['one’, 1]
Done.

d = {'one': 1, 'two': 2, 'three': 3}
while d:

print(d.popitem())
print('Done.') The .popitem() method removes one key-

value pair from d and returns it as a tuple

For Loop

for <variable> in range (<someNumber>):

<expression>

<expression>

….

For Loop

for <variable> in range (<someNumber>):

<expression>

<expression>

….

Last item

reached?

Remaining body of

a loop

For each item of the sequence

Exit loop

True

False

• each time through the loop, <variable> takes a

value

• first time, <variable> starts at the smallest value

• next time, <variable> gets the prevvalue + 1

• range(start,stop,step)

For Loop (Poll)

sum= 0

for i in range(0, 10, 3):
sum+= i

print(sum)

• Start :0
• Stop: 10
• Step : 3

A B C

45 18 55

Infinite loop

Loop that runs forever and can be stopped only by killing the
program or restarting the computer:

• forgetting to update the variable that controls the loop

• accidentally incrementing a counter that should be decremented

i = 0
while i <= 10:

print(i)

Nested for Loop

• If a loop (for loop or while loop) contains another loop in its body
block, we say that the two loops are nested.

• If the outer loop is designed to perform m iterations and the
inner loop is designed to perform n repetitions, the body block
of the inner loop will get executed m X n times.

Loop over String

word='Python'
index = 0
while index < len(word):

letter = word[index]
print (letter)
index = index + 1

for char in word:
print (char)

Loop over List

for num in numbers:
print (num)

for i in range(len(numbers)):
print(numbers[i])

Loop over tuple

tup = ((1, "chalmers"), (4, "university"), (9, "python"), (1, "course"))

words = ()
for t in tup:

if t[0] == 1:
words = words + (t[1],)
unique_words = len(words)

print(unique_words,' : ',words)

2 : ('chalmers', 'course')

Loop over dictionary

dict={ 1:100, 2:200, 3:300 }
for pair in dict.items():

print (pair)

dict={ 1:100, 2:200, 3:300 }
for k,v in dict.items():

print("key=", k, ", value=", v)

key= 1 , value= 100
key= 2 , value= 200
key= 3 , value= 300

(1, 100)
(2, 200)
(3, 300)

dict={1:100, 2:200, 3:300}
for k in dict.keys():

print(k, dict.get(k))

1 100
2 200
3 300

Else in a Loop

• Python allows the else keyword to be used with the for and
while loops too.

• The else block appears after the body of the loop.

• The statements in the else block will be executed after all
iterations are completed.

Else in a Loop

for x in range(3):
print ("iteration num",x+1, " in for loop")

else:
print ("else block in loop")

print ("Out of loop")

iteration num 1 in for loop
iteration num 2 in for loop
iteration num 3 in for loop
else block in loop
Out of loop

Else in a Loop

iteration num 1 in while loop
iteration num 2 in while loop
iteration num 3 in while loop
else block in loop
Out of loop

x=0
while x<3:

x=x+1
print ("iteration num",x, " in while loop")

else:
print ("else block in loop")

print ("Out of loop")

Break statement in a loop

• immediately exits whatever loop it is in

• skips remaining expressions in code block

• exits only innermost loop!

Break statement in a loop

Test

expression of

loop

Break?

Remaining body of

a loop

Enter loop

Exit loop

Yes

False

True

No

Break statement in a loop (Poll)

for num in range(1,10):
print ("Num = ", num)
if num==4:

break
print ("Out of loop")

Num = 1
Num = 2
Num = 3
Num = 4
Out of loop

A B C

4 9 10

What will be the last number to be printed?

Break statement in a loop (Poll)

for i in range(1, 4):
for j in range(1,5):

print('Hello')
break

How many time ‘hello’ will be printed?

A B C

3 1 12

Continue statement in a loop

• The continue statement is somewhat opposite to the break.

• It skips the remaining statements in the current loop and starts
the next iteration.

Continue statement in a loop

Test

expression of

loop

continue?

Remaining body of

a loop

Enter loop

Exit loop

Yes

False

True

No

Continue statement in a loop

num=0
while num<6:

num=num+1
if num==4:

continue
print ("Num : ", num)

print ("Out of loop")

Num : 1
Num : 2
Num : 3
Num : 5
Num : 6
Out of loop

Continue statement in a loop (Poll)

num=int(input("enter a number"))
d=2
while num>1:

if num % d==0:
print (d)
num=num/d
continue

d=d+1

continue causes the division of the input number by the same
value of the divisor repetitively. The next value of the divisor is
taken only after the division is not possible.
enter a number30
2
3
5

what happens in this program and what will be the last printed value of d if num = 30?

A B C

5 3 2

Pass statement

• The pass is used as a dummy place holder whenever a
syntactical requirement of a certain programming element is to
be fulfilled without assigning any operation.

• Python interpreter ignores pass

Pass statement

for num in range(1,6):
if num==4:

pass
else:

print ("Num : ", num)

Num : 1
Num : 2
Num : 3
Num : 5

For vs While Loops

• For loops
• Know number of iterations

• can end early via break

• uses a counter

• Can rewrite a for loop using a while loop

• While loops
• Unbounded number of iterations

• can end early via break

• can use a counter but must initialize before loop and increment it inside
loop

• may not be able to rewrite a while loop using a for loop

Looping techniques in Python

• Python supports various looping techniques by certain inbuilt
functions, in various sequential containers.

• These methods are primarily very useful in competitive
programming and in various project which require a specific
technique with loops maintaining the overall structure of code.

Looping techniques in Python

Where they are used ?

• useful in the places where we don’t need to actually manipulate
the structure and ordering of overall container

• Useful where we only need to print the elements for a single
use instance, no inplace change occurs in the container.

Looping techniques in Python:
enumerate()

enumerate(): loop through the containers printing the index
number along with the value present in that particular index.

for key, value in enumerate(['Python', 'for', 'data', 'scientist']):
print(key, value)

0 Python
1 for
2 data
3 scientist

Looping techniques in Python: zip()

zip(): combine 2 similar containers(list-list or dict-dict) printing
the values sequentially. The loop exists only till the smaller
container ends.

What is your name? I am apple.
What is your color? I am red.
What is your shape? I am a circle.

questions = ['name', 'color', 'shape']
answers = ['apple', 'red', 'a circle']

for question, answer in zip(questions, answers):
print('What is your {0}? I am {1}.'.format(question, answer))

Looping techniques in Python: items()

items(): loop through the dictionary printing the dictionary key-
value pair sequentially.

The key value pair using items is :
un one
deux two

d = {"un": "one", "deux": "two"}

print("The key value pair using items is : ")
for i, j in d.items():

print(i, j)

Looping techniques in Python: sorted()

sorted(): print the container in a sorted order without sorting the
original list.

The list in sorted order is :
0 0 1 2 4 4 7

l = [0, 2, 4, 7, 0, 1, 4]

print("The list in sorted order is : ")
for i in sorted(l):

print(i, end=" ")

Looping techniques in Python: sorted() &
set()

set() can be combined with sorted() to remove duplicate occurrences.

The list in sorted order (without duplicates) is :
0 1 2 4 7

l = [0, 2, 4, 7, 0, 1, 4]

print("The list in sorted order (without duplicates) is : ")
for i in sorted(set(l)):

print(i, end=" ")

Looping techniques in Python: reversed()

reversed(): print the values of container in the reversed order
without doing any changes to the original list

The list in reversed order is :
4 1 0 7 4 2 0

l = [0, 2, 4, 7, 0, 1, 4]

print ("The list in reversed order is : ")
for i in reversed(l) :

print (i,end=" ")

Switch-case statement

switch (month) {
case 1: monthString = "January";

break;
case 2: monthString = "February";

break;
case 3: monthString = "March";

break;
case 4: monthString = "April";

break;
case 5: monthString = "May";

break;
case 6: monthString = "June";

break;
case 7: monthString = "July";

break;
case 8: monthString = "August";

break;
case 9: monthString = "September";

break;
case 10: monthString = "October";

break;
case 11: monthString = "November";

break;
case 12: monthString = "December";

break;
default: monthString = "Invalid month";

break;
}

• It allows to control the flow of a program based on
the value of a variable or an expression

• How it works:
• Compiler generates a jump table for switch case

statement

• The switch variable/expression is evaluated once

• Switch statement looks up the evaluated
variable/expression in the jump table and directly
decides which code block to execute.

• If no match is found, then the code under default case is
executed

Python does not have a switch or case statement!

Switch-case statement

Solutions:

• use a series of if-else-if blocks

• Implement switch statement by using a dictionary mapping

Switch-case statement

• Look up against the switcher
dictionary mapping.

• If a match is found, the
associated value is printed,
else a default string (‘Invalid
month’) is printed.

• The default string helps
implement the ‘default case’
of a switch statement.

switcher = {
1: "January",
2: "February",
3: "March",
4: "April",
5: "May",
6: "June",
7: "July",
8: "August",
9: "September",
10: "October",
11: "November",
12: "December"

}

print (switcher.get(2, "Invalid month"))
print (switcher.get(19, "Invalid month"))

