
Python for Data Scientist
L4: Functions,

decomposition & abstraction

How to write a code?

So far…
• Know python syntax

• know how to write a code for each problem

• each code is a sequence of instructions

How to write a code?

Problems with this approach
• easy to understand and write for small-scale problems

• messy for larger problems

• hard to keep track of details

Good code

• more code not necessarily a good thing

• measure good programmers by the amount of functionality

• introduce functions

• mechanism to achieve decomposition and abstraction

Decomposition

Divide code into modules
• are self-contained

• used to break up code

• intended to be reusable

• keep code organized

• keep code coherent

How to achieve decomposition?
→ functions

Abstraction

Piece of code as a black box
• cannot see details

• do not need/want to see details

• hide tedious coding details

How to achieve abstraction?
→ function specifications or docstrings

Functions

• A function is a reusable block of code designed to perform a
certain task which only runs when it is called.

• You can pass data, known as parameters, into a function.

• A function can return data as a result.

Functions

def multiplication(x,y):
"""
:param x: first parameter
:param y: second parameter
:return: the result for multiplying x and y
""“
rslt = x * y
return rslt

print(multiplication(5,9))

function characteristics:

• Keyword : def

• has a name

• has parameters(0 or more)

• has a docstring(optional but

recommended)

• has a body

• Returns something

Calling the function using its name

and values for parameters

Functions: Variables

Formal parameter gets bound to the value of actual parameter
when function is called

def multiplication(x,y):
"""
:param x: first parameter
:param y: second parameter
:return: the result for multiplying x

and y
"""
return x*y

x= 5
y= 9
z= multiplication(x,y)

Formal

parameters

Actual

parameters

Main program code:

• Initializes the variables

• Call the function

• Assigns return of the function to variable z

Functions: Variables
def f(x):

"""
:return: the result for multiplying

x by itself
"""
x *= x
return x

x= 4
y=f(x)
print(y)

f scope:

x -> 4

Global scope:

x -> 4

f -> code for multiplying a

number by itself

y ->

Functions: Variables
def f(x):

"""
:return: the result for multiplying

x by itself
"""
x *= x
return x

x= 4
y=f(x)
print(y)

f scope:

x -> 16

Global scope:

x -> 4

f -> code for multiplying a

number by itself

y -> 16

Functions: Return

• only one return executed inside a function

• code inside function but after return statement not executed

• has a value associated with it, given to function caller

• Python returns the value None, if no return is given

Functions as arguments (Poll)
def f_a():

print ('inside f_a’)

def f_b(y):
print ('inside f_b')
return y

def f_c(z):
print ('inside f_c')
return z()

print (f_a())
print (5 + f_b(2))
print (f_c(f_a))

: calling f_a with no parameters

: calling f_b with one parameter

: calling f_c with one parameter which is a function

arguments can take on any

type, even functions

What will be the result for each print?

A B C

None
7
7

7
None
7

None
7
None

Functions as arguments
def f_a():

print ('inside f_a’)

def f_b(y):
print ('inside f_b')
return y

def f_c(z):
print ('inside f_c')
return z()

print (f_a())
print (5 + f_b(2))
print (f_c(f_a))

f_a scope:Global scope:

f_a -> some code

f_b -> some code

f_c -> some code

-> None

Functions as arguments
def f_a():

print ('inside f_a’)

def f_b(y):
print ('inside f_b')
return y

def f_c(z):
print ('inside f_c')
return z()

print (f_a())
print (5 + f_b(2))
print (f_c(f_a))

f_b scope:

y -> 2

Global scope:

f_a -> some code

f_b -> some code

f_c -> some code

-> None

-> 7

Functions as arguments
def f_a():

print ('inside f_a’)

def f_b(y):
print ('inside f_b')
return y

def f_c(z):
print ('inside f_c')
return z()

print (f_a())
print (5 + f_b(2))
print (f_c(f_a))

f_c scope:

z -> f_a

Global scope:

f_a -> some code

f_b -> some code

f_c -> some code

-> None

-> 7

-> None

f_a scope:

Call by reference or call by value

In C, Java and some other language, passing a value to a
function can be :

• by value : the function receives a copy of the argument objects passed
to it by the caller, stored in a new location in memory.

• by reference : the function receives reference to the argument objects
passed to it by the caller, both pointing to the same memory location.

Neither of these two concepts are applicable in Python

→ the values are sent to functions by means of object reference

Pass-by-object-reference in Python

In Python, values are passed to function by object reference:

• if object is immutable: than the modified value is not available outside
the function.

• if object is mutable: than modified value is available outside the
function.

Pass-by-object-reference in Python

def value(x):
x = 10
print(x, id(x))

x = 0
value(x)

print(x, id(x))

x = 10

id = 140709803749936

x = 0

id = 140709803749616

A new object is created in the memory

because integer objects are immutable

Pass-by-object-reference in Python

A new object is not created in the

memory because list objects are

mutable

def value(l):
l.append(4)
print(l, id(l))

l = [1,2,3]
value(l)

print(l, id(l))

l = [1,2,3,4]

id = 2040455189064

l = [1,2,3,4]

id = 2040455189064

Local and global variables

def f_c():
x *= x

x = 10
f_c()
print(x)

UnboundLocalError: local variable 'x' referenced before

assignment

Inside a function, cannot modify a variable

defined outside

Local and global variables

• A global variable can be reached
and modified anywhere in the
code

• Local variables can only be
reached in their scope.

Code block 1

Code block 2

Code block 3

XX

Y

Local and global variables

def f_c():
global x
x *= x

x = 10
f_c()
print(x) • The global variable x can be used all throughout the program,

inside functions or outside.

• A global variable can be modified inside a function and change

for the entire program

Functions: Example

What will be the output of this program?

def f_a(x):
def f_b():

x = 'newValue'
x *= x
print('f_a: x =', x)
f_b()
return x

x = 3
z = f_a(x)
print(z)

Functions: example

We will use http://www.pythontutor.com/ to solve this problem

http://www.pythontutor.com/

Functions: example

Functions: example

Functions: example

Functions: example

Functions: example

Functions: example

Functions: example

Functions: example

Functions: example

Functions: example

Functions: example

Functions with default values

• Default value will be substituted if an appropriate actual
argument is passed when the function is called.

• If the actual argument is not provided, the default value will be
used inside the function.

Functions with default values

def Hello(name='Guest'):
print ("Hello dear " + name)
return

Hello()
name = "Alex"
Hello(name)

Hello dear Guest
Hello dear Alex

Functions with command line arguments

• They are arguments which are added after the function call in
the same line.

• If you call a Python script from a shell, the arguments are
placed after the script name. The arguments are separated by
spaces.

• Inside the script these arguments are accessible through the list
variable sys.argv.

Functions with command line arguments

import sys

for eachArg in sys.argv:
print(eachArg)

Functions with variable length of
parameters

• A function with an arbitrary number of arguments (called a
variadic function): is a function of indefinite arity.

• The asterisk "*" is used to define a variable number of
arguments.

Functions with variable length of
parameters

def varfun(x):
print(x)

varfun("Python", "for", "data", "scientist")

TypeError: varpafu() takes 1 positional argument but 4 were given

def varfun(*x):
print(x)

varfun("Python", "for", "data", "scientist") ('Python', 'for', 'data', 'scientist')

Functions with * in the function call

→ An argument will be unpacked : the elements of the list or
tuple are singularized

def f(x,y,z):
print(x,y,z)

p = (0,1,2)
f(*p)

0 1 2

Functions with ** in the function call

def f(a,b,x,y):
print(a,b,x,y)

t = (47,11)
d = {'x':'extract','y':'yes'}
f(*t, **d)

47 11 extract yes

Generators

• A generator : special type of function which does not return a
single value, instead it returns an iterator object with a
sequence of values.

• In a generator function, a yield statement is used rather than a
return statement.

Generators
def myGenerator():

print('First element')
yield 10

print('Second element')
yield 20

print('Third element')
yield 30

gen = myGenerator()
x =next(gen)
print(x)

x =next(gen)
print(x)

x =next(gen)
print(x)

First element
10
Second element
20
Third element
30

Generators

• yield : returns a value and pauses the execution while maintaining the
internal states

• return : returns a value and terminates the execution of the function.

Advantage of generators :

• Elements are generated dynamically.

• The next item is generated only after the first is consumed, it is more memory

efficient than the iterator.

Generators
def myGenerator():

print('First element')
yield 10
return

print('Second element')
yield 20

print('Third element')
yield 30

gen = myGenerator()
x =next(gen)
print(x)

x =next(gen)
print(x)

x =next(gen)
print(x)

x =next(gen)
StopIteration
First element
10

Generators: Exception Handling

• A program suddenly terminates if it encounters an exception
(wrong input, …) → may cause damage to system resources.

→ Solution: the exceptions should be properly handled so that an
sudden termination of the program is prevented.

Generators: Exception Handling

Python uses try and except keywords to handle exceptions:

try :

#statements in try block

except (type of exception):

#executed when error in try block

Generators: Exception Handling

def loopGenerator(x):
for i in range(x):

yield i

it=loopGenerator(6)

while True:
try:

print ("Received on next(): ",next(it))
except StopIteration:

break

try..except block will handle the StopIteration error. It will

break the while loop once it catches the StopIteration

error.

Defined functions

• Python includes many built-in functions.

• These functions perform a predefined task and can be called
upon in any program.

Lambda functions

• a small anonymous function.

• can take any number of arguments, but can only have one
expression.

lambda <arguments> : <expression>

Lambda functions

x = lambda a, b : a * b
print(x(2, 3))

Use lambda functions when an anonymous function is

required for a short period of time.

Lambda functions

def myfunc(n):
print(n)
return lambda a : a * n

mydoubler = myfunc(2)

print(mydoubler(5))

Lambda functions are mostly used as an anonymous function inside

another function.

Lambda functions (Poll)

What will be the output of this code:

A- 2

B- 2.0

C- none of the above

func = lambda x: return x
print(func(2))

A lambda function can’t contain the return statement. In

a lambda function, statements like return, pass will

raise a SyntaxError exception.

Lambda functions (Poll)

What will be the output of this code:

A- syntaxError

B- 0

C- 15.0

print((lambda x: (x + 3) * 5 / 2)(3))

Map function

• Calls the specified function for each item of an iterable

• returns a list of results.

def square(x):
return x*x

numbers=[1, 2, 3, 4]
sqrList=map(square, numbers)

while True:
try:

print ("Received on next(): ",next(sqrList))
except StopIteration:

break

Received on next(): 1
Received on next(): 4
Received on next(): 9
Received on next(): 16

Map with Lambda Expression

def square(x):
return x*x

numbers=[1, 2, 3, 4]
sqrList=map(square, numbers)

while True:
try:

print ("Received on next(): ",next(sqrList))
except StopIteration:

break

sqrList = map(lambda x: x*x, [1, 2, 3, 4])

Map with Built-in Function

l1 = [1, 2, 3, 4, 5]
l2 = [6, 7, 8, 9, 10]
powers=list(map(pow, l1, l2))

print(powers)

Filter function

Calls the specified function which returns Boolean for each item
of the specified iterable

def prime(x):
for d in range(2,x):

if x % d ==0:
return False

else:
return True

rslt=filter(prime, range(15))
print ('Prime numbers:', list(rslt))

Prime numbers: [3, 5, 7, 9, 11, 13]

Reduce function

• Receives two arguments, a function and an iterable object

• Returns a single value.

import functools
def multiplication(x,y):

print("x=",x," y=",y)
return x*y

fact=functools.reduce(multiplication, range(1, 5))
print ('Factorial of 4: ', fact)

x= 1 y= 2
x= 2 y= 3
x= 6 y= 4
Factorial of 4: 24

Reduce function (Poll)

What will be the output of this code:

A- 6

B- 3

C- syntaxError

from functools import reduce
l = [1, 2, 3]
reduce(lambda x, y: x * y, l)

List comprehension

• Very concise way to create a new list by performing an
operation on each item in the existing list.

• Faster than processing a list using the for loop.

[expression for item in iterable]

List comprehension

Example (1):

Create a list of squares of the numbers between 1 and 5?

for loop
l1 = []

for i in range(6):
l1.append(i*i)

print(l1)

[0, 1, 4, 9, 16, 25]

list comprehension
l1= [x*x for x in range(6)]

print(l1)

List comprehension :

Example (2):

Combinations of items from two lists (list of integers, list of
strings) in the form of a tuple are added in a new list.

numList=[1,2,3]
alphaList=["a", "b", "c"]
CombList=[(x,y) for x in numList for y in alphaList]
print(CombList)

[(1, 'a'), (1, 'b'), (1, 'c'), (2, 'a'), (2, 'b'), (2, 'c'), (3, 'a'), (3, 'b'), (3, 'c')]

List comprehension: if…else

Example (3):

Return a list of strings where you specify if the numbers between
1 and 10 are odd or even numbers

l=[str(i)+" = Even" if i%2==0 else str(i)+" = Odd" for i in range(11)]
print(l)

['0 = Even', '1 = Odd', '2 = Even', '3 = Odd', '4 = Even', '5 = Odd', '6 = Even', '7 = Odd', '8 = Even', '9 = Odd', '10 = Even']

Next Module

Object oriented programming!

