Python for Data Scientists
L7 : Program efficiency

Efficiency of programs (Poll)

Since computer are fast and even getting more faster, do you
think efficient programs does matter?

Yes No

Efficiency of programs

« A program can be implemented in many different ways

* yOou can solve a problem using only a handful of different
algorithms

« would like to separate choices of implementation from choices
of more abstract algorithm

How to evaluate efficiency of programs

* measure with a timer
 count the operations

 abstract notation of order of growth

How to evaluate efficiency of programs:
measure with a timer

use the time module :

import time

def f1(x):
return x*x/54

. t0= 0.0501374, t1= 0.0501609
t0 = time.perf_counter()

1 (50000000000)
tl = time.perf_counter()

print("te= ",te, ", tl= ", t1)

How to evaluate efficiency of programs:
measure with a timer

* running time varies between algorithms
* running time varies between implementations
* running time varies between computers

* running time is not predictable based on small inputs

time varies for different inputs but cannot really

express a relationship between inputs and time

How to evaluate efficiency of programs:
count the operations

f1(x) = 2 operations

def f1(x):
return x*x/54

def 1200: f2(x) = 1 + 4x operations
for i in range(x+1): * 1 assignment

sum += i « 4x mathematical operations

return sum

How to evaluate efficiency of programs:
count the operations

e count depends on algorithm
e count depends on implementations

e count independent of computers

* no clear definition of which operations to count

count varies for different inputs

How to evaluate efficiency of programs:

* timing and counting evaluate implementations
* timing evaluates machines
How to evaluate algorithm

ow to evaluate scalability
How to evaluate in terms of input size

2 4

Efficiency In terms of size of input

Example: Function that searches for an element in a list

def search _for_elmt(L, e):
for 1 in L:
if 1 == e:
return True
return False

« when e Is first element Iin the list : BEST CASE
 when eis not in list : WORST CASE

* when look through about half of the elements in list :
AVERAGE CASE

BEST, AVERAGE, WORST CASES

* best case: minimum running time over all possible inputs of a
given size

e average case: average running time over all possible inputs of
a given size

« WOrst case: maximum running time over all possible inputs

How to evaluate efficiency of programs:
Orders of growth

Aims:

« Evaluate program’s efficiency when input is very big

« Express the growth of program’s run time as input size grows
« Put an upper bound on growth — as tight as possible

* No need to be precise: “order of”’ not “exact” growth

* Look at largest factors in run time (which section of the
program will take the longest to run?)

—> tight upper bound on growth, as

function of size of input, in worst case

Measuring order of growth: Big OH
notation

Big Oh notation measures an upper bound on the asymptotic
growth : called order of growth

Measuring order of growth: Big OH
notation

* Big Oh or O() Is used to describe worst case

e Worst case occurs often and is the bottleneck when a program runs
» express rate of growth of program relative to the input size

 evaluate algorithm NOT machine or implementation

Big OH notation : O()

def fact iter(n):
answer =1
while n > 1:
answer *=
n -=1
return answer

n

Answer = 1 - 1 operation
While 2> n(1+2 + 2) op
Return = 1 op

number of steps: 2 + 5n

worst case asymptotic complexity:
* ignore additive constants

* ignore mulAplicative constants
- O(n)

Big OH notation

« Given an expression for the number of operations needed to
compute an algorithm, want to know asymptotic behavior as

size of problem gets large
* Focus on term that grows most rapidly in a sum of terms

* |gnore multiplicative constants, since want to know how rapidly
time required increases as increase size of input

Simplification examples

 drop constants and multiplicative factors
 focus on dominant terms

Examples:
N2 +2n+2 O(n”2)
n"2 + 100000n + 3721000 O(n”2)
log(n) + n + 4 O(n)
0.0001*n*log(n) + 300n O(n*log(n))

2n”30 + 3”n O(3”n)

Types of orders of growth

X
X%
ot
C
e
L, W

‘f
7 +— + é
f
!

Analyze programs and their complexity
(Poll)

Addition for O():
« used with sequential statements

* O(f(n)) + O(g(n)) 1s O(f(n) + g(n))
for i in range(n):
print('a’")

for j in range(n*n):
print('b")

O(n) + O(n*n) = O(n+n”2) = O(n”"2)

Analyze programs and their complexity
(Poll)

multiplication for O():
« used with nested statements/loops

* O(i(n)) * O(g(n)) I1s O(1(n) * g(n))

for i in range(n):
for j in range(n*n):
print('b")

O(n)*0O(n"2) = O(n*n”"2) = O(n"3)

Complexity classes

*« O(1)

* O(log n)

* O(n)

* O(nlog n)
* O(n*c)

* O(c™n)

Constant complexity

* O(1) denotes constant running time

« complexity independent of inputs

Logarithmic complexity

* O(log n) denotes logarithmic running time
« complexity grows as log of size of one of Its inputs

« example: (next lecture)
* bisection search
* binary search of a list

Linear complexity

* O(n) denotes linear running time

« Examples:
» searching a list in sequence to see Iif an element is present
* iterative loops

Log-Linear complexity

* O(n log n) denotes log-linear running time

* many practical algorithms are log-linear and very commonly
used log-linear algorithm is merge sort (next lecture)

Polynomial complexity

* O(n”*c) denotes polynomial running time (c is a constant)

* most common polynomial algorithms are quadratic, I.e.,
complexity grows with square of size of input

« commonly occurs when we have nested loops or recursive
function calls

Exponential complexity

* O(c™n) denotes exponential running rime (c is a constant being
raised to a power based on size of input)

e recursive functions where more than one recursive call for each
size of problem

* many important problems are inherently exponential

 unfortunate, as cost can be high

« will lead us to consider approximate solutions as may provide
reasonable answer more quickly

Complexity classes: ordered low to high

Big-O Complexity Chart
[Horribie] [sad] [Fair] [cood] [Exceltent]

Operations

O(n)

Elements https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Complexity growth
oss o0 [-a00 s e

0O(1) 1

O(log n) 1 2 3 6
O(n) 10 100 1000 1000000
O(n log n) 10 200 3000 6000000
O(n"2) 100 10000 1000000 1000000000000
0(27n) 1024 12676506 1071508607186267320948425049060 Good luck!!

00228229 0018105614048117055336074437503
40149670 8837035105112493612249319837881
3205376 5695858127594672917553146825187
1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
91457119647768654216/76604298316
52624386837205668069376

Recap: Complexity classes

* O(1) : code does not depend on size of problem

* O(log n) : reduce problem in half each time through process
* O(n) : simple Iterative or recursive programs

* O(n log n) : log-linear running time

* O(n”c) :nested loops or recursive calls

* O(c™n) : multiple recursive calls at each level

Examples (Poll)

What is the best and the worst cases for this example?

def fib_iter(n):

if n == 0: A-O(n) 0O(1)
return 0 B-O(1) Of(n)

elif n == 1: ()(1) C- None of the above
return 1

else:

0 o(1)

=

a

b

for i in range(n-1):
tmp = a

a=>b C)(n)
b =1tmp + b

return b ()(1)

Examples (Poll)

What is the worst cases for this example?

def fib_recur(n): A- O(n)
if n == 0: B- O(n"2)
return 0 C- O(2”n)
elif n == 1:
return 1
else:

return fib_recur(n-1) + fib_recur(n-2)

Big-O of Algorithms and lists (Poll)

Expensive Python list operations
* insert(i, X)

> O(n)

:'l.i
: ——

(a) §4|1?|5[] 186 e | o | o [0 [0 | o |0
5 1 2 3

4 5 i 7 8 ;9 0 N 12 13 14 15

o LR
E 3

4 5 i 7] 9 ;10 N 12 13 14 15

o [EEEFEEFEEEEEE
E 4]

10 N 12 13 14 15

Big-O of Algorithms and lists (Poll)

Expensive Python list operations
* remove(l)

- O(n)

Big-O of Algorithms and lists (Poll)

Expensive Python list operations

 extend()
- O(K)
] AR
o , "' ----------- __

. 0 1 2 3 4 5 ;.86 T

Time complexity of Python Data structure

Operation Worst case
Copy O(n)
Append O(1)
Pop last O(1)
Remove O(n)
Get item O(1)
Set item O(1)
lteration O(n)

Time complexity of Python Data structure

Operation Worst case
Multiply O(nk)
XinL O(n)

Get length O(1)

Sort O(nlogn)

Time complexity of Python Data structure

What about the other Data structures?
(Assignment 4)

Summary

« Compare efficiency of algorithms
 notation that describes growth
* lower order of growth is better
 independent of machine or specific implementation

« Use Big Oh
 describe order of growth
e upper bound
e worst case analysis

