
Python for Data Scientists
L7 : Program efficiency

Efficiency of programs (Poll)

Since computer are fast and even getting more faster, do you
think efficient programs does matter?

A B

Yes No

Efficiency of programs

• A program can be implemented in many different ways

• you can solve a problem using only a handful of different
algorithms

• would like to separate choices of implementation from choices
of more abstract algorithm

How to evaluate efficiency of programs

• measure with a timer

• count the operations

• abstract notation of order of growth

How to evaluate efficiency of programs:
measure with a timer

use the time module :

import time

def f1(x):
return x*x/54

t0 = time.perf_counter()
f1(50000000000)
t1 = time.perf_counter()

print("t0= ",t0, ", t1= ", t1)

t0= 0.0501374 , t1= 0.0501609

How to evaluate efficiency of programs:
measure with a timer

• running time varies between algorithms

• running time varies between implementations

• running time varies between computers

• running time is not predictable based on small inputs

time varies for different inputs but cannot really

express a relationship between inputs and time

How to evaluate efficiency of programs:
count the operations

f1(x) → 2 operations

f2(x) → 1 + 4x operations
• 1 assignment

• 4x mathematical operations

def f1(x):
return x*x/54

def f2(x):
sum = 0
for i in range(x+1):

sum += i
return sum

How to evaluate efficiency of programs:
count the operations

• count depends on algorithm

• count depends on implementations

• count independent of computers

• no clear definition of which operations to count

count varies for different inputs

How to evaluate efficiency of programs:

• timing and counting evaluate implementations

• timing evaluates machines

→How to evaluate algorithm

→How to evaluate scalability

→How to evaluate in terms of input size

Efficiency in terms of size of input

Example: Function that searches for an element in a list

• when e is first element in the list : BEST CASE

• when e is not in list : WORST CASE

• when look through about half of the elements in list :
AVERAGE CASE

def search_for_elmt(L, e):
for i in L:

if i == e:
return True

return False

BEST, AVERAGE, WORST CASES

• best case: minimum running time over all possible inputs of a
given size

• average case: average running time over all possible inputs of
a given size

• worst case: maximum running time over all possible inputs

How to evaluate efficiency of programs:
Orders of growth

Aims:

• Evaluate program’s efficiency when input is very big

• Express the growth of program’s run time as input size grows

• Put an upper bound on growth – as tight as possible

• No need to be precise: “order of” not “exact” growth

• Look at largest factors in run time (which section of the
program will take the longest to run?)

→ tight upper bound on growth, as

function of size of input, in worst case

Measuring order of growth: Big OH
notation

Big Oh notation measures an upper bound on the asymptotic
growth : called order of growth

Measuring order of growth: Big OH
notation

• Big Oh or O() is used to describe worst case

• worst case occurs often and is the bottleneck when a program runs

• express rate of growth of program relative to the input size

• evaluate algorithm NOT machine or implementation

Big OH notation : O()

Answer = 1 → 1 operation

While → n(1 + 2 + 2) op

Return → 1 op

number of steps: 2 + 5n

worst case asymptotic complexity:
• ignore additive constants

• ignore mulAplicative constants

→ O(n)

def fact_iter(n):
answer = 1
while n > 1:

answer *= n
n -= 1

return answer

Big OH notation

• Given an expression for the number of operations needed to
compute an algorithm, want to know asymptotic behavior as
size of problem gets large

• Focus on term that grows most rapidly in a sum of terms

• Ignore multiplicative constants, since want to know how rapidly
time required increases as increase size of input

Simplification examples

• drop constants and multiplicative factors

• focus on dominant terms

Examples:

n^2 + 2n + 2
n^2 + 100000n + 3^1000
log(n) + n + 4
0.0001*n*log(n) + 300n
2n^30 + 3^n

O(n^2)

O(n^2)
O(n)

O(n*log(n))
O(3^n)

Types of orders of growth

Analyze programs and their complexity
(Poll)

Addition for O():
• used with sequential statements

• O(f(n)) + O(g(n)) is O(f(n) + g(n))

for i in range(n):
print('a')

for j in range(n*n):
print('b')

O(n) + O(n*n) = O(n+n^2) = O(n^2)

Analyze programs and their complexity
(Poll)

multiplication for O():
• used with nested statements/loops

• O(f(n)) * O(g(n)) is O(f(n) * g(n))

O(n)*O(n^2) = O(n*n^2) = O(n^3)

for i in range(n):
for j in range(n*n):

print('b')

Complexity classes

• O(1)

• O(log n)

• O(n)

• O(n log n)

• O(n^c)

• O(c^n)

Constant complexity

• O(1) denotes constant running time

• complexity independent of inputs

Logarithmic complexity

• O(log n) denotes logarithmic running time

• complexity grows as log of size of one of its inputs

• example: (next lecture)
• bisection search

• binary search of a list

Linear complexity

• O(n) denotes linear running time

• Examples:
• searching a list in sequence to see if an element is present

• iterative loops

Log-Linear complexity

• O(n log n) denotes log-linear running time

• many practical algorithms are log-linear and very commonly
used log-linear algorithm is merge sort (next lecture)

Polynomial complexity

• O(n^c) denotes polynomial running time (c is a constant)

• most common polynomial algorithms are quadratic, i.e.,
complexity grows with square of size of input

• commonly occurs when we have nested loops or recursive
function calls

Exponential complexity

• O(c^n) denotes exponential running rime (c is a constant being
raised to a power based on size of input)

• recursive functions where more than one recursive call for each
size of problem

• many important problems are inherently exponential
• unfortunate, as cost can be high

• will lead us to consider approximate solutions as may provide
reasonable answer more quickly

Complexity classes: ordered low to high

https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Complexity growth

Recap: Complexity classes

• O(1) : code does not depend on size of problem

• O(log n) : reduce problem in half each time through process

• O(n) : simple iterative or recursive programs

• O(n log n) : log-linear running time

• O(n^c) :nested loops or recursive calls

• O(c^n) : multiple recursive calls at each level

Examples (Poll)

What is the best and the worst cases for this example?

def fib_iter(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

a = 0
b = 1
for i in range(n-1):

tmp = a
a = b
b = tmp + b

return b

O(1)

O(1)

O(1)

O(n)

A- O(n) O(1)
B- O(1) O(n)
C- None of the above

Examples (Poll)

What is the worst cases for this example?

def fib_recur(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib_recur(n-1) + fib_recur(n-2)

A- O(n)
B- O(n^2)
C- O(2^n)

def fib_recur(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib_recur(n-1) + fib_recur(n-2)

Big-O of Algorithms and lists (Poll)

Expensive Python list operations

• insert(i, x)

→ O(n)

Big-O of Algorithms and lists (Poll)

Expensive Python list operations

• remove(i)

→ O(n)

Big-O of Algorithms and lists (Poll)

Expensive Python list operations

• extend()

→ O(k)

Time complexity of Python Data structure

Operation Worst case

Copy O(n)

Append O(1)

Pop last O(1)

Remove O(n)

Get item O(1)

Set item O(1)

Iteration O(n)

Time complexity of Python Data structure

Operation Worst case

Multiply O(nk)

X in L O(n)

Get length O(1)

Sort O(nlogn)

Time complexity of Python Data structure

What about the other Data structures?

(Assignment 4)

Summary

• Compare efficiency of algorithms
• notation that describes growth

• lower order of growth is better

• independent of machine or specific implementation

• Use Big Oh
• describe order of growth

• upper bound

• worst case analysis

