
Python for Data Scientists
L7 : Program efficiency 



Efficiency of programs (Poll)

Since computer are fast and even getting more faster, do you 
think efficient programs does matter?

A B

Yes No



Efficiency of programs

• A program can be implemented in many different ways 

• you can solve a problem using only a handful of different 
algorithms 

• would like to separate choices of implementation from choices 
of more abstract algorithm 



How to evaluate efficiency of programs

• measure with a timer 

• count the operations 

• abstract notation of order  of growth 



How to evaluate efficiency of programs: 
measure with a timer 

use the time module :

import  time

def f1(x):
return x*x/54

t0 = time.perf_counter()
f1(50000000000)
t1 = time.perf_counter()

print("t0= ",t0, ", t1= ", t1)

t0=  0.0501374 , t1=  0.0501609



How to evaluate efficiency of programs: 
measure with a timer 

• running time varies between algorithms 

• running time varies between implementations

• running time varies between computers 

• running time is not predictable based on small inputs 

time varies for different inputs but cannot really 

express a relationship between inputs and time



How to evaluate efficiency of programs: 
count the operations 

f1(x) → 2 operations

f2(x) → 1 + 4x operations
• 1 assignment

• 4x mathematical operations

def f1(x):
return x*x/54

def f2(x):
sum = 0
for i in range(x+1):

sum += i
return sum



How to evaluate efficiency of programs: 
count the operations 

• count depends on algorithm 

• count depends on implementations 

• count independent of computers 

• no clear definition of which operations to count 

count varies for different inputs



How to evaluate efficiency of programs:

• timing and counting evaluate implementations 

• timing evaluates machines 

→How to evaluate algorithm 

→How to evaluate scalability 

→How to evaluate in terms of input size 



Efficiency in terms of size of input

Example: Function that searches for an element in a list 

• when e is first element in the list : BEST CASE 

• when e is not in list : WORST CASE 

• when look through about half of the elements in list : 
AVERAGE CASE

def search_for_elmt(L, e):
for i in L:

if i == e:
return True

return False



BEST, AVERAGE, WORST CASES

• best case: minimum running time over all possible inputs of a 
given size

• average case: average running time over all possible inputs of 
a given size

• worst case: maximum running time over all possible inputs 



How to evaluate efficiency of programs: 
Orders of growth

Aims:

• Evaluate program’s efficiency when input is very big 

• Express the growth of program’s run time as input size grows 

• Put an upper bound on growth – as tight as possible 

• No need to be precise: “order of” not “exact” growth 

• Look at largest factors in run time (which section of the 
program will take the longest to run?) 

→ tight upper bound on growth, as 

function of size of input, in worst case 



Measuring order of growth: Big OH 
notation

Big Oh notation measures an upper bound on the asymptotic 
growth : called order of growth 



Measuring order of growth: Big OH 
notation

• Big Oh or O() is used to describe worst case 

• worst case occurs often and is the bottleneck when a program runs 

• express rate of growth of program relative to the input size 

• evaluate algorithm NOT machine or implementation



Big OH notation : O()

Answer = 1 → 1 operation

While → n(1 + 2 + 2) op

Return → 1 op

number of steps: 2 + 5n

worst case asymptotic complexity: 
• ignore additive constants 

• ignore mulAplicative constants 

→ O(n)

def fact_iter(n):
answer = 1
while n > 1:

answer *= n
n -= 1

return answer



Big OH notation

• Given an expression for the number of operations needed to 
compute an algorithm, want to know asymptotic behavior as 
size of problem gets large 

• Focus on term that grows most rapidly in a sum of terms 

• Ignore multiplicative constants, since want to know how rapidly 
time required increases as increase size of input



Simplification examples

• drop constants and multiplicative factors 

• focus on dominant terms

Examples:

n^2 + 2n + 2 
n^2 + 100000n + 3^1000 
log(n) + n + 4 
0.0001*n*log(n) + 300n 
2n^30 + 3^n  

O(n^2)

O(n^2)
O(n)  

O(n*log(n)) 
O(3^n)  



Types of orders of growth



Analyze programs and their complexity 
(Poll)

Addition for O():
• used with sequential statements 

• O(f(n)) + O(g(n)) is O( f(n) + g(n) ) 

for i in range(n):
print('a')

for j in range(n*n):
print('b')

O(n) + O(n*n) = O(n+n^2) = O(n^2)



Analyze programs and their complexity 
(Poll)

multiplication for O():
• used with nested statements/loops 

• O(f(n)) * O(g(n)) is O( f(n) * g(n) ) 

O(n)*O(n^2) = O(n*n^2) = O(n^3)

for i in range(n):
for j in range(n*n):

print('b')



Complexity classes

• O(1) 

• O(log n) 

• O(n) 

• O(n log n) 

• O(n^c) 

• O(c^n)



Constant complexity

• O(1) denotes constant running time 

• complexity independent of inputs 



Logarithmic complexity

• O(log n) denotes logarithmic running time

• complexity grows as log of size of one of its inputs 

• example:  (next lecture)
• bisection search 

• binary search of a list 



Linear complexity

• O(n) denotes linear running time 

• Examples:
• searching a list in sequence to see if an element is present 

• iterative loops 



Log-Linear complexity

• O(n log n) denotes log-linear running time 

• many practical algorithms are log-linear and very commonly 
used log-linear algorithm is merge sort (next lecture)



Polynomial complexity

• O(n^c) denotes polynomial running time (c is a constant) 

• most common polynomial algorithms are quadratic, i.e., 
complexity grows with square of size of input 

• commonly occurs when we have nested loops or recursive 
function calls



Exponential complexity

• O(c^n) denotes exponential running rime (c is a constant being 
raised to a power based on size of input) 

• recursive functions where more than one recursive call for each 
size of problem 

• many important problems are inherently exponential 
• unfortunate, as cost can be high 

• will lead us to consider approximate solutions as may provide 
reasonable answer more quickly 



Complexity classes: ordered low to high

https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/


Complexity growth



Recap: Complexity classes 

• O(1) : code does not depend on size of problem 

• O(log n) : reduce problem in half each time through process 

• O(n) : simple iterative or recursive programs 

• O(n log n) : log-linear running time 

• O(n^c) :nested loops or recursive calls 

• O(c^n) : multiple recursive calls at each level



Examples (Poll)

What is the best and the worst cases for this example?

def fib_iter(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

a = 0
b = 1
for i in range(n-1):

tmp = a
a = b
b = tmp + b

return b

O(1)

O(1)

O(1)

O(n)

A- O(n) O(1)
B- O(1) O(n)
C- None of the above



Examples (Poll)

What is the worst cases for this example?

def fib_recur(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib_recur(n-1) + fib_recur(n-2)

A- O(n)
B- O(n^2)
C- O(2^n)

def fib_recur(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib_recur(n-1) + fib_recur(n-2)



Big-O of Algorithms and lists (Poll) 

Expensive Python list operations

• insert(i, x)

→ O(n)



Big-O of Algorithms and lists (Poll) 

Expensive Python list operations

• remove(i) 

→ O(n)



Big-O of Algorithms and lists (Poll) 

Expensive Python list operations

• extend()

→ O(k)



Time complexity of Python Data structure

Operation Worst case

Copy O(n)

Append O(1)

Pop last O(1)

Remove O(n)

Get item O(1)

Set item O(1)

Iteration O(n)



Time complexity of Python Data structure

Operation Worst case

Multiply O(nk)

X in L O(n)

Get length O(1)

Sort O(nlogn)



Time complexity of Python Data structure

What about the other Data structures?

(Assignment 4)



Summary

• Compare efficiency of algorithms 
• notation that describes growth 

• lower order of growth is better 

• independent of machine or specific implementation 

• Use Big Oh 
• describe order of growth 

• upper bound 

• worst case analysis 


