
Python for Data Scientists
L8: Algorithms, searching 

and sorting
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Iterative and recursion algorithms
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Iterative algorithms

• looping constructs (while and for loops) lead to iterative 
algorithms 

• can capture computation in a set of state variables that update 
on each iteration through loop 
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Iterative algorithms

• “multiply x * y” is equivalent to “add x to itself y times” 

• capture state by 
• result  0

• an iteration number starts at y 

y  y-1 and stop when y = 0 
• a current value of computation (result)

result  result + x 
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Iterative algorithms

def multiplication_iter(x, y):
result = 0
while y > 0:

result += x
y -= 1

return result
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Recursion

The process of repeating items in a 
self-similar way 
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Recursion

• recursive step : think how to reduce problem to a 
simpler/smaller version of same problem 

• base case : 

• keep reducing problem until reach a simple case that can be 
solved directly 

• when y = 1, x*y = x 
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Recursion : example

x * y = x + x + x + … + x

= x + x + x + … + x

= x + x * (y-1)

y items

y - 1 items

Recursion reduction

def multiplication_rec(x, y):
if y == 1:

return x
else:

return x + multiplication_rec(x, y-1)
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Recursion : example
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Recursion : example
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Recursion : example
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Recursion

• each recursive call to a function 
creates its own scope/environment 

• flow of control passes back to 
previous scope once function call 
returns value 
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Recursion vs Iterative algorithms

• recursion may be simpler, more intuitive  

• recursion may be efficient for programmer but not for computers

def fib_iter(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

a = 0
b = 1
for i in range(n-1):

tmp = a
a = b
b = tmp + b

return b

def fib_recur(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib_recur(n-1) + fib_recur(n-2)

O(2^n)

O(n)
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Recursion : Proof by induction

How do we know that our recursive code will work ?

→ Mathematical Induction

To prove a statement indexed on integers is true for all values of n:
• Prove it is true when n is smallest value (e.g. n = 0 or n = 1) 

• Then prove that if it is true for an arbitrary value of n, one can show that it 
must be true for n+1 
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Recursion : Proof by induction

• x * y = x + x * (y-1)

• Proof:
• If y =1, x * 1 = x + x * (1-1) → True

• Suppose that it is correct for some n : x * n = x + x * (n-1), lets prove it 
for n+1

x * (n+1) = x * n + x

= x + x * (n-1) + x

= x + x * n  → True

Thus by induction, code correctly returns answer 
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Recursion with multiple base cases

Example: Fibonacci 
• Fibonacci sequence where each number is the sum of the two 

preceding ones, starting from 0 and 1.

• The beginning of the sequence is thus:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ….

Base cases: Fib(0) = 0 and Fib(1) = 1 

Recursive case : Fib(n) = Fib(n-1) + Fib(n-2), 

for n > 1

def Fib(n):
if n == 0 

return 0
elif n == 1:

return 1
else:

return Fib(n-1) + Fib(n-2)

print(Fib(9))
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Algorithmic Paradigms
Greedy algorithms

Divide and Conquer Algorithms

Dynamic programming
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Greedy algorithms

• A greedy algorithm sometimes works well for optimization 
problems. 

• It works in phases, at each phase:
• You take the best you can get right now, regardless of future 

consequences.

• You hope that by choosing a local optimum at each step, you will end 
up at a global optimum.
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Greedy algorithms

Suppose you want to count out a certain amount of money, using 
the fewest possible bills and coins

→Greedy solution : At each step, take the largest possible bill or 

coin that does not overshoot

Example: To make $6.39, you can choose:

• a $5 bill

• a $1 bill, to make $6

• a 25¢ coin, to make $6.25

• A 10¢ coin, to make $6.35

• four 1¢ coins, to make $6.39

→ Optimum solution
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Greedy algorithms

• In some (fictional) monetary system, “krons” come in 1 kron, 7
kron, and 10 kron coins

→ Greedy solution to count out 15 krons:

• A 10 kron piece

• Five 1 kron pieces, for a total of 15 krons

A better solution would be to use two 7 kron pieces and one 1 kron

piece! 

→The greedy algorithm results in a solution, but not in an optimal 

solution 20



Greedy algorithms

• Locally Optimal (greedy part)

• irreversible 

• Simple and appealing, but don’t always give the best solution

• Application scenarios:  
• Playing chess by making best move without lookahead
• Giving fewest number of coins as change
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Dynamic programming

• Dynamic Programming (DP) is an algorithm design technique 
for optimization problems: often minimizing or maximizing.

• DP solves problems by combining solutions to sub-problems.
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Dynamic programming: knapsack

Problem: Knapsack 

• Given n objects and a “knapsack.” 

• Item i has weight 𝑤𝑖> 0 and has value 𝑣𝑖
• Knapsack has capacity of W. 

• Goal:  maximize total value without overfilling knapsack
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Dynamic programming: knapsack

Application scenarios: 

• Packing goods of high value (or high importance) in a 
container. 

• Allocating bandwidth to messages in a network. 

• Placing files in fast memory. The values indicate access 
frequencies. 

• In a simplified model of a consumer, the capacity is a budget, 
the values are utilities, and the consumer asks himself what 
he could buy to maximize his happiness.
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Dynamic programming: knapsack (Poll)

Which one of these greedy solutions is the optimal one:

1- Greedy by value: Repeatedly add item with maximum 𝑣𝑖. 
• Example: S={(3,5),(2,3),(2,3)}, W=4 ?

2- Greedy by weight: Repeatedly add item with minimum 𝑤𝑖.

• Example: S={(1,1),(3,2),(4,8)}, W=4 ?

3- Greedy by ratio: Repeatedly add item with maximum ratio 𝑣𝑖/𝑤𝑖 .

• Example: S={(3,5),(2,3),(2,3)}, W=4 ?

None of greedy algorithms is optimal! 25



Dynamic programming: knapsack

• OPT(i, w) = max profit subset of items 1, …, i with weight limit w. 

• Case 1:  OPT does not select item i. 

OPT selects best of { 1, 2, …, i-1 } using weight limit w  

• Case 2:  OPT selects item i. 

new weight limit = w – 𝑤𝑖

OPT selects best of { 1, 2, …, i–1 } using this new weight limit 

0 if i = 0

OPT(i, w) = OPT(i-1,w) if 𝑤𝑖 > w

max{OPT(i-1,w), 𝑣𝑖 +OPT(i-1,w- 𝑤𝑖)}  otherwise
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Dynamic programming: knapsack

Example:

• n = 4 (# of elements)

• W = 5 (max weight)

• Elements (weight, value):

(2,3), (3,4), (4,5), (5,6)
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Example:

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

Initialize the base cases

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Dynamic programming: knapsack

n = 4 (# of elements)

W = 5 (max weight)
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i = 1

vi = 3

wi = 2

w = 1

w-wi = -1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

i = 1

vi = 3

wi = 2

w = 2

w-wi = 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3

2 0

3 0

4 0
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3

2 0

3 0

4 0

i = 1

vi = 3

wi = 2

w = 5

w-wi = 3

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0

3 0

4 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0

3 0

4 0

i = 2

vi = 4

wi = 3

w = 1

w-wi = -2

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0

3 0

4 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0

3 0

4 0

i = 2

vi = 4

wi = 3

w = 2

w-wi = -1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3

3 0

4 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], vi + M [ i – 1, w – wi] }.
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3

3 0

4 0

i = 2

vi = 4

wi = 3

w = 3

w-wi = 0

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4

3 0

4 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4

3 0

4 0

i = 2

vi = 4

wi = 3

w = 4

w-wi = 1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4

3 0

4 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4

3 0

4 0

i = 2

vi = 4

wi = 3

w = 5

w-wi = 2

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0

4 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0

4 0

i = 3

vi = 5

wi = 4

w = 1..3

w-wi = -3..-1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4

4 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4

4 0

i = 3

vi = 5

wi = 4

w = 4

w-wi = 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5

4 0
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5

4 0

i = 3

vi = 5

wi = 4

w = 5

w-wi = 1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0

i = 4

vi = 6

wi = 5

w = 1..4

w-wi = -4..-1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }

40



Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5

i = 4

vi = 6

wi = 5

w = 5

w-wi = 0

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

IF (𝑤𝑖 > w) 
M [ i, w] ← M [ i – 1, w] 
ELSE 
M [ i, w] ← max { M [ i – 1, w], 𝑣𝑖 + M [ i – 1, w – 𝑤𝑖] }
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Dynamic programming: knapsack

Example:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

We’re DONE!!  

The max possible value that can be carried in this knapsack is $7

The optimal knapsack should contain: 

Item 1 and Item 2 42



Dynamic programming

• Reduce time by increasing the amount of space

• Solve the problem by solving sub-problems of increasing size 
and saving each optimal solution in a table (usually).

• The table is then used for finding the optimal solution to larger 
problems. 

• Time is saved since each sub-problem is solved only once.
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Dynamic Programming versus Greedy

Dynamic programming can be viewed as restricted exhaustive 
search, but also as an extension of the greedy paradigm.

→ Instead of following only one path of currently optimal 
decisions, we follow all such paths that might bring us to the 
optimum which is feasible only if there are not too many paths 
to follow.
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Divide and Conquer

Consider how people find information in a phone book or dictionary
1.the goal is to search for a word w in region of the book

2.the initial region is the entire book

3.at each step pick a word x in the middle of the current region

4.there are now two smaller regions: the part  before x and the part after x

5.if w comes before x, repeat the search on the region before x, otherwise 
search the region following x (go back to step 3)
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Divide and Conquer

• Divide-and-conquer.
• Break up problem into several parts.

• Solve each part recursively.

• Combine solutions to sub-problems into overall solution.

• Most common usage.
• Break up problem of size n into two equal parts of size ½n.

• Solve two parts recursively.

• Combine two solutions into overall solution in linear time.

• Applications:
• Binary search

• Merge sort
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Divide and Conquer vs DP and Greedy 
Algorithms

• Both the greedy approach and dynamic programming extend 
solutions from smaller sub-instances incrementally to larger 
sub-instances. 

• Divide and Conquer approach still follows the pattern of 
reducing a given problem to smaller instances of itself, but it 
makes jumps rather than incremental steps. 

47



Searching and sorting 
algorithms

48



Search algorithms

Goal: finding an item or group of items with specific properties 
within a collection of items  

49



Search algorithms

Linear search 
• brute force search 

• list does not have to be sorted 

Binary search 
• list MUST be sorted to give correct answer 

50



Linear search: unsorted list (Poll)

def linear_search(L, element):
found = False
for i in range(len(L)):

if element == L[i]:
found = True

return found

Worst case: must go through all the list to decide that the element is 

not here

O(len(L))
O(1)

→ O(n), where n is 
the length of the list
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Linear search: sorted list (Poll)

def search(L, element):
for i in range(len(L)):

if L[i] == element:
return True

if L[i] > element:
return False

return False

Must only look until reach a number greater than element 

O(len(L))
O(1)

→ O(n), where n is 
the length of the list
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Binary search: Sorted list

1. Pick an index, i, that divides list in half 

2. Check if L[i] == element 

3. If not, check if L[i] is larger or smaller than element. 

4. Depending on answer, search left or right half of L for element

→ A new version of a divide-and-conquer algorithm :

Break into smaller version of problem (smaller list), plus some 

simple operations 

Answer to smaller version is answer to original problem

53



11 13 3122 39 42 50 6759 79 90 99v

L:

Mid:

R:

1

6

12

1      2       3     4  5      6       7     8  9 10    11 12

v(Mid) <= x

So throw away the left 

half…

target x = 65
Binary search: Sorted list
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12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

9

12

x < v(Mid)

So throw away the right 

half…

1      2       3     4  5      6       7     8  9 10    11 12

target x = 65
Binary search: Sorted list
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12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

7

9

v(Mid) <= x

So throw away the left 

half…

1      2       3     4  5      6       7     8  9 10    11 12

target x = 65
Binary search: Sorted list
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12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

7

8

9

v(Mid) <= x

So throw away the left 

half…

1      2       3     4  5      6       7     8  9 10    11 12

target x = 65
Binary search: Sorted list
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12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

8

8

9

Done because

R-L = 1

1      2       3     4  5      6       7     8  9 10    11 12

target x = 65
Binary search: Sorted list
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Binary search: Sorted list
def bisect_search(L, e):

def bisect_search_helper(L, e, low, high):
if high == low:

return L[low] == e
mid = (low + high)//2
if L[mid] == e:

return True
elif L[mid] > e:

if low == mid: #nothing left to search
return False

else:
return bisect_search_helper(L, e, low, mid - 1)

else:
return bisect_search_helper(L, e, mid + 1, high)

if len(L) == 0:
return False

else:
return bisect_search_helper(L, e, 0, len(L) - 1)

print(bisect_search([1,4,7,9,13,25,45,76], 45))

Every comparison reduces our 

“search space” by a factor 2, hence 

we are done after O(log n) time. 
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Sort Algorithms

• Goal: efficiently sort a list of elements

• Several methods…
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Sort algorithms: Bogosort

Bogosort (permutation sort, stupid sort, slowsort, shotgun 
sort, random sort, monkey sort, bobosort or shuffle sort) : 

• is a highly inefficient sorting algorithm based on the generate and 
test paradigm. 

• The function successively generates permutations of its input until it 
finds one that is sorted.

61



Sort algorithms: Bogosort (Poll)

import random

def bogoSort(l):
n = len(l)
nb_it =0
while (is_sorted(l) == False):

shuffle(l)
nb_it+=1

return (l, nb_it)

def is_sorted(l):
n = len(l)
for i in range(0, n - 1):

if (l[i] > l[i + 1]):
return False

return True

def shuffle(l):
n = len(l)
for i in range(0, n):

r = random.randint(0, n - 1)
l[i], l[r] = l[r], l[i]

best case: O(n) where n is len(l) to check if sorted 
worst case: O(?) it is unbounded if really unlucky 
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Sort algorithms: Bubble sort

Bubble sort: it compares repeatedly adjacent elements 
and swaps them if they are in the wrong order. The pass through 
the list is repeated until the list is sorted.

• compare consecutive pairs of elements 

• swap elements in pair such that smaller is first 

• when reach end of list, start over again 

• stop when no more swaps have been made
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Sort algorithms: Bubble sort (Poll)

def bubbleSort(l):
n = len(l)
for i in range(n-1):

for j in range(0, n-i-1):
if l[j] > l[j+1] :

l[j], l[j+1] = l[j+1], l[j]

O(len(l))
O(len(l))

→ O(𝑛2), where n is 
the length of the list
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Sort algorithms: Selection sort

Selection sort: is an in-place comparison sorting algorithm

• first step: 
• extract minimum element 

• swap it with element at index 0 

• subsequent step 
• in remaining sublist, extract minimum element 

• swap it with the element at index 1 

• keep the left portion of the list sorted 
• at i’th step, first i elements in list are sorted 

• all other elements are bigger than first i elements
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Sort algorithms: Selection sort (Poll)

def selection_sort(l):
for i in range(len(l)):

min_idx = i
for j in range(i + 1, len(l)):

if l[min_idx] > l[j]:
min_idx = j

l[i], l[min_idx] = l[min_idx], l[i]
return l

O(len(l))

O(len(l))
→ O(𝑛2), where n is 
the length of the list
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Sort algorithms: Merge sort

Merge sort is a divide and conquer algorithm, it is a comparison-
based sorting algorithm

• if list is of length 0 or 1, already sorted 

• if list has more than one element, split into two lists, and sort each 

• merge sorted sublists
• look at first element of each, move smaller to end of the result 

• when one list empty, just copy rest of other list
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Sort algorithms: Merge sort
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Sort algorithms: Merge sort

def mergeSort(l):
if len(l) > 1:

mid = len(l) // 2
L = l[:mid]
R = l[mid:]
mergeSort(L)
mergeSort(R)

i = j = k = 0
while i < len(L) and j < len(R):

if L[i] < R[j]:
l[k] = L[i]
i += 1

else:
l[k] = R[j]
j += 1

k += 1

while i < len(L):
l[k] = L[i]
i += 1
k += 1

while j < len(R):
l[k] = R[j]
j += 1
k += 1

return l

Use http://www.pythontutor.com/visualize.html#mode=display
to better understand each step
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Sort algorithms: Merge sort

• at first recursion level 
• n/2 elements in each list 
• O(n) + O(n) = O(n) where n is len(L) 

• at second recursion level 
• n/4 elements in each list 
• two merges O(n) where n is len(L) 

• each recursion level is O(n) where n is len(L) 

• dividing list in half with each recursive call 
• O(log(n)) where n is len(L) 

• overall complexity is O(n log(n)) where n is len(L) 
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Sorting algorithms

• bogo sort 
• randomness, unbounded O() 

• bubble sort 
• O(n^2) 

• selection sort 
• O(n^2) 

• guaranteed the first i elements were sorted 

• merge sort 
• O(n log(n)) 

→ O(n log(n)) is the fastest a sort can be  
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