
Python for Data Scientists
L10: Non-Linear Data Structures

Shirin Tavara

1



Outline of the lecture

Recap
Stack and Queue

Local search
Using arrays and linked lists

Non-linear data structures
Graphs and trees
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Stack

• Last-In-First-Out (LIFO)

• Has Push(key), Pop(), Top(), Size(), Get(), and IsEmpty() operations.
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push

pop



Stack implementation using list
stack = []

# pushing elements in the stack
stack.append(‘1') 
stack.append(‘2') 
stack.append(‘3') 

print(stack) 

# popping elements from stack LIFO
print('pop first element',stack.pop())
print('pop second element',stack.pop())
print('pop third element',stack.pop())

print(stack) 

>> [‘1’, ‘2', ‘3’]

>> pop first element 3
>> pop second element 2
>> pop third element 1

>>[]

The items in list are stored next to each other in 
memory, if the stack grows bigger than the block of 
memory that currently hold it, then Python needs to do 
some memory allocations. This can lead to 
some append() calls taking much longer than other 
ones. 



Stack implementation using list
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Stack class



Stack implementation using collections.deque

>> deque(['1', '2', '3’]) 

>> pop first element 3
>> pop second element 2
>> pop third element 1

>> deque([])

from collections import deque

stack = deque()

# pushing elements in the stack
stack.append('1')
stack.append('2')
stack.append('3')

print(stack)

# poping elements from stack LIFO
print(‘pop first element',stack.pop())
print(‘pop second element',stack.pop())
print(‘pop third element',stack.pop())

print(stack)

Deque is preferred over list in the cases 
where we need quicker append and pop 
operations from both the ends of the 
container, as deque provides an O(1) time 
complexity for append and pop operations as 
compared to list which provides O(n) time 
complexity.



Stack implementation using queue module
from queue import LifoQueue

# Initializing a stack
stack = LifoQueue(maxsize = 3)

# qsize() show the number of elements 
in the stack
print(stack.qsize())

# pushing elements in the stack
stack.put('1')
stack.put('2')
stack.put('3')

#Return True if there are maxsize
items in the queue.
print("Full: ", stack.full())
print("Size: ", stack.qsize())

# popping elements from stack LIFO
print(‘pop first element',stack.get())
print(‘pop second element',stack.get())
print(‘pop third element',stack.get())

# return True if the queue is empty, 
False if not
print("Empty: ", stack.empty())

>> 0
>> Full:  True
>> Size:  3
>> pop first element 3
>> pop second element 2
>> pop third element 1
>> Empty:  True



Queue

• It stores items in a First-In/First-Out (FIFO) manner

• Some of the operations are enqueue() and dequeue() 

enqueue

dequeue



Queue implementation using list

queue = [] 

# Adding elements to the queue 
queue.append('1') 
queue.append('2') 
queue.append('3') 

print(queue) 

# Removing elements from the queue 
print('dequeue first element', queue.pop(0)) 
print('dequeue second element', queue.pop(0)) 
print('dequeue third element', queue.pop(0)) 

print(queue) 

>> ['1', '2', ‘3’]

>> dequeue first element 1
>> dequeue second element 2
>> dequeue third element 3

>> []



Queue implementation using collections.deque

>> deque(['1', '2', '3’])

>> dequeue first element 1
>> dequeue second element 2
>> dequeue third element 3

>> deque([])

from collections import deque

q = deque()

# Adding elements to a queue
q.append('1')
q.append('2')
q.append('3')

print(q)

# Removing elements from a queue
print('dequeue first element', q.popleft())
print('dequeue second element', 
q.popleft())
print('dequeue third element', q.popleft())

print(q)



Queue implementation using queue module

>> 0

>> Full:  True

>> dequeue first element 1
>> dequeue second element 2

>> dequeue third element 3

from queue import Queue

q = Queue(maxsize = 3)

print(q.qsize())

# Adding of element to queue
q.put('1')
q.put('2')
q.put('3')

print("Full: ", q.full())

# Removing element from queue
print('dequeue first element', q.get())
print('dequeue second element', 
q.get())
print('dequeue third element', q.get())



Non-Linear Data Structures

Why we need non-linear data structures?

What are the examples that we can solve using a non-linear data 
structure?
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Local Search Problems

Dictionary search:

We want to find all the words with letter 
“a”.
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Local Search Problems

Range searches:

• Find a prime number between 2 and 20

• Find all emails received in July
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Local Search Problems

Nearest Neighbor:

Find the house in your neighborhood which has the height closest to 
your house.
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Local Search

We want to have a data structure that can

• Store elements with keys from a linearly ordered set.
Examples of such sets: 

• A word sorted by alphabetical order

• A date or height

• Support operations
• RangeSearch(a,b): returns all elements whose keys are between a and b.

• NearestNeighbour(c): returns all elements closest to c on either side in the 
data structure.
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5 8 12 23 39 41 46 59 75

Local Search - Example

RangeSearch(10,50):

5 8 12 23 39 41 46 59 75

NearestNeighbour(30): 

5 8 12 23 39 41 46 59 75

10 < < 50

30
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We want to have a data structure that is Dynamic.

We want the possibility to modify the data structure and have the 
support for operations such as

• add(a)/insert(a):  Adds an element with key “a”

• remove(b)/delete(b): deletes the element with key “b”

Local Search – Desired Property
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5 8 12 23 39 41 46 59 75

Local Search - Example

Insert(24):

5 8 12 23 24 39 41 46 59 75

delete(41): 

5 8 12 23 24 39 46 59 75
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Question – Poll

Given the following queries for an empty data structure:

insert(3),

inset(13),

insert(32), 

insert(9),

delete(13), 

insert(20), 

What will be the result of NearestNeighbour(10)?
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Question – Poll

Given the following queries for an empty data structure:

insert(3),

inset(13),

insert(32), 

insert(9),

delete(13), 

insert(20), 

What will be the result of NearestNeighbour(10)?

3 9 13 20 32

21



Local Search using Hash Tables

Storing and looking up the elements are very quick in hash tables
• Insert -> O(1)

• delete -> O(1)

What about searching? 
• RangeSearch?

• NearestNeighbours?

5 30

23

12
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Local Search using Arrays

Searches in an array: Possible but slow!

• RangeSearch: 
• Scan through the array and find the elements in the range that we want

• e.g., RangeSearch(6,22)

8 12 5 20 1 23

23



Local Search using Arrays

• RangeSearch: 
• e.g., RangeSearch(6,22)

8 12 5 20 1 23

O(n)
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Local Search using Arrays

• RangeSearch: 

• NearestNeighbour:
• Like the range search, we need to scan through the entire array   

• e.g., NearestNeighbour(6)

8 12 5 20 1 23

O(n)
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Local Search using Arrays

• RangeSearch: 

• NearestNeighbour:   
• e.g., NearestNeighbour(6)

8 12 5 20 1 23

O(n)

O(n)
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Local Search using Arrays

• RangeSearch: 

• NearestNeighbour:   

• Insert: 
• E.g.,  insert(9) 

8 12 5 20 1 23

O(n)

O(n)
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Local Search using Arrays

• RangeSearch: 

• NearestNeighbour:   

• Insert: 
• If we have an expandable array, we can add elements to it

• E.g.,  insert(9)

8 12 5 20 1 23 9

O(n)

O(n)

O(1)
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Local Search using Arrays

• RangeSearch: 

• NearestNeighbour:   

• Insert: 

• Delete:
• Deleting will leave a gap, but we can do it in O(1) by moving the last element 

into the gap

• E.g., delete (12)

8 12 5 20 1 23

O(n)

O(n)

O(1)
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Local Search using Arrays

• RangeSearch: 

• NearestNeighbour:   

• Insert: 

• Delete: without find and shifting 
• E.g., delete (12)

8 12 5 20 1 23

O(n)

O(n)

O(1)

O(n)

O(n)

O(1)

O(1)

30



Local Search using sorted Arrays

• It allows us to do a binary search

• For a range search:
• Binary search to find the left end of the range

• Scan through to find the right end of the range

• Return everything in the middle

• For nearest neighbor: (in a similar manner)
• Binary search to find what we want

• Return the elements on either side of the query
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Local Search using sorted Arrays

• RangeSearch: 

• NearestNeighbour:   

• What about updates in the sorted array?
• Insert? The array still needs to remain sorted! This may destroy the sorted 

order!

• Delete?

1 5 8 12 20 23

O(n)

O(n)

Sorted array

O(log(n))

O(log(n))

Array Sorted Array

32
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Local Search using sorted Arrays

• RangeSearch: 

• NearestNeighbour:   

• Insert: 

• Delete? 
• It will leave a gap and we need to fill it! We cannot just move the last element 

into the gap since it will destroy the sorted order!

1 5 8 12 20 23

O(n)

O(n)

O(1)

Sorted array

O(log(n))

O(log(n))

O(n)

Array Sorted array
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Local Search using sorted Arrays

• RangeSearch: 

• NearestNeighbour:   

• Insert: 

• Delete: 

O(n)

O(n)

O(1)

O(1)

O(log(n))

O(log(n))

O(n)

O(n)

Array Sorted array
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Local Search using Linked List

• RangeSearch: 
• Scan through the list

• NearestNeighbour: 
• Scan through the list  

• Insert: 

• Delete: 

O(n)

8

next

11

next

22

next

18

35

RangeSearch(1,10)



Local Search using Linked List

• RangeSearch: 
• Scan through the list

• NearestNeighbour: 
• Scan through the list  

• Insert: 

• Delete: 

O(n)

O(n)

36

8

next

1111

next

2

next

1818

NearestNeighbour(16)



Local Search using Linked List

• RangeSearch: 
• Scan through the list

• NearestNeighbour: 
• Scan through the list  

• Insert: 

• Delete: 

O(n)

O(n)

O(1)

37

8

next

11

next

2

next

1825

next



Local Search using Linked List

• RangeSearch: 
• Scan through the list

• NearestNeighbour: 
• Scan through the list  

• Insert: 

• Delete: 

O(n)

O(n)

O(1)

O(1)

38

8

next

11

next

2

next

18

Searches are slow and we cannot do 
binary searches in linked lists! 



Binary Search

• We want a data structure for a local search problem

• Array and linked list were not suitable

• Search in a sorted array is fast, but updates are not!

1 5 8 12 20 23 35

39

X <12 X >12



Binary Search

Binary search in a sorted array 

1 5 8 12 20 23 35

40

X < 23 X > 23



Binary Search Tree

1 5 8 12 20 23 35

12

5

1 8

23

20 35

41

Search in a binary search tree is as good as a sorted array, but it 
is easier to insert into.



Non-linear data structure

• The data items are not organized sequentially; Elements could be 
connected to more than one element to reflect a special relationship 
among these items. 

• It can not be traversed during a single run
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Graphs

A graph is presented by a pair of objects which are connected by links. 
• The interconnected objects are represented by points termed as vertices

• The links that connect the vertices are called edges. 
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Graph

Graph G(V, E)

• V: Nodes or vertices
V={a, b, c, d, e, f}

• E: Edges between pairs of nodes
E={(a,b),(a,d),(b,c),(c,f),(d,f),(d,e),(e,f)}

• Graph size parameters:
n= |V|, m=|E|

• Symmetric relationships:
(a,b) and (b,a) are identical for undirected graphs

• Degree of a node: number of edges connected to the node
deg(d)=3, deg(c)=2

• Path: A path is a sequence of nodes with the property that each consecutive pair is joined by an 
edge in G

Path: b, c, f, e
Not Path: b, c, f, a

e

b

d

a c

f

G

d

c

44



Graph

Directed Graph Directed and weighted Graph

f

g

Undirected and weighted graph

3

8

4

2 2

81

3 4

25
4

7 1

6

4

5

45

Asymmetric relationship 
between nodes

Asymmetric relationship 
between nodes

Symmetric relationship 
between nodes

• A node and an edge are incident if the edge contains this node. 
• Two vertices(nodes) joined by an edge are called adjacent



Graph - Applications

• Google Maps

• Google search

• Social networks
• Twitter, Facebook

• Recommendation systems
• Netflix, YouTube, Facebook

• Logistics of delivering goods

• Driving directions

a km

b km

c km

n km

d km

m km
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Graph representation – Adjacency Matrix

1 2 3 4 5 6

4

1

5

6 2

3

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 0 1 0

0 0 1 0 1 0

0 0 1 1 0 1

1 0 0 0 1 0

1

2

3

4

5

6
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Adjacency Matrix - Implementation

A=[n][n], where 𝑛 is #nodes

𝑎 𝑖 [𝑗] =
1 if node 𝑖 is connected to node 𝑗

0 otherwise

48

• Space proportional to 𝑛2.
• Checking if (u, v) is an edge takes O(1) time. 
• Identifying all incident edges of a vertex O(n)
• Finding all edges in G requires O(n2) time

1 2 3 4 5 6

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 0 1 0

0 0 1 0 1 0

0 0 1 1 0 1

1 0 0 0 1 0

1

2

3

4

5

6



Graph representation – Adjacency List

4

1

5

6 2

3

1

2

3

4

5

6

6

1 3

2 4

3 5

3 4

1 5

5

6

2

1 linked list per node

49

Space Complexity?

• Each node “u” requires deg(u) space.

• Exactly two representations of each edge in undirected 

graphs, thus sum of the size of all the lists is 2m.

• Size of the node-indexed array is n. 

Thus space is only O(m + n)

Other operations:

• Checking if (u, v) is an edge takes O(deg(u)) time.

• Identifying all edges takes O(m + n) time.



Graph representation

Graph Adjacency Matrix Adjacency List

Space complexity 𝑂(|𝑉|2) or 𝑂 𝑛2 𝑂(|𝑉| + |𝐸|)

IsConnected(𝑛𝑖 , 𝑛𝑗 ) O(1) O(|V|)

Add(𝑛𝑘) 𝑂( 𝑉 2) O(1)

GetAdjacent(𝑛𝑘) O(|V|) O(|E|)

𝑁𝑜𝑡𝑒 |𝑉| = 𝑛
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Question – Poll

Which of the graph representation is more efficient for implementing 
dense and sparse graphs, respectively?

1. Adjacency matrix for sparse graphs and adjacency list for dense 
ones

2. Adjacency matrix for dense graphs and adjacency list for sparse 
ones

3. Both are good for both types of graphs

4. None of them works for these types of graphs
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Graph representation

Graph Adjacency Matrix Adjacency List

Space complexity 𝑂(𝑛2) 𝑂(𝑛 + 𝑚)

Sparse GraphsDense Graphs

52

Is it obvious from 𝑂(𝑛2) for Adjacency matrix vs O(m + n) for Adjacency list?
Max deg(u) = n-1 for any u in G. 
Thus m ≤ n(n-1)/2 implies m ≤ 𝑛2

Therefore O(m + n) is never worse than O(n2)
Much better for sparse graphs, i.e., when m ≪ n2



General Trees

An undirected graph is a tree if it is connected and does 
not contain a cycle.

Connected graph: an undirected graph is connected if 
for every pair of nodes u and v, there is a path from u to 
v.

Cycle: a cycle is a path v1, v2, …, vk-1, vk in which v1 = vk,

k > 2, and the first k-1 nodes are all distinct.

53

Cycle: 1-2-4-5-3-1
Not a cycle: 1-3-8-7-3-1



Node Data Type In A Tree

In a tree a node is sort of a data type that stores:
• Key or values to compare to

• Pointers to the children

• Pointers to the parent node (optional)

54

Root node

6

4

12 8

41

50 7

5 15



Binary Tree

Binary tree represents the nodes connected by edges. 
• One node is marked as Root node.

• Every node other than the root is associated with one parent node.

• Each node can have at most two child nodes.

1

5

1 3

9

2 4

Root

A Subtree A Subtree



Node Data Type In A Binary Tree

Node is sort of a data type that stores:
• Key or values to compare to

• A pointer to the left child

• A pointer to the right child

• A pointer to a parent node (optional)

56



Binary Search Tree

Binary Search Tree (BST) are a special type of tree data structure whose 
InOrder traversal gives a sorted list of nodes or vertices.

InOrder traversal:

Walking on the tree with the order

left, root, right

57



Binary Search Tree

• Root node

• Each node has two child nodes
• Left: Keys less than or equal to parent’s key

• Right: Keys larger than parent’s key

Important property of BST

• A’s key is larger than the keys of its left subtree

• A’s key is smaller than the keys of its right subtree

Root node

A

C

B D

F

E G

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)
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Question - Poll

According to the binary search tree’s property, which of the following 
trees satisfies the properties?

12

23

20 35

5

1 8

A

12

11

10

20

15 28

C

9

9

12

9

8 10

25

20 28

B

11
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Question - Poll

According to the binary search tree’s property, which of the following 
trees satisfies the properties?

12

23

20 35

5

1 8

A

12

11

10

20

15 28

C

9

9

12

9

8 10

25

20 28

B

11
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Binary Search Tree – Find() operation

12

5

1 8

23

20 35

61

Inputs: A key and root node

Output: the node with the given key

Find(key, Root) -> node

e.g., Find(8)



Binary Search Tree - Find operation

Find(key, Root) -> node

e.g., Find(8)

12

5

1 8

23

20 35

62

8 < 12

5 < 8

8 = 8
we are done!



Binary Search Tree - Find operation

Find(key, Root) -> node
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Next operation

Input: a node

Output: returns the node with the next largest key

Next(node) -> node_NextMax

Binary Search Tree - Operations
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Next operation

Example1: Next(12)

Binary Search Tree - Operations

12

5

1 8

23

20 35

17

Null
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Next operation

Example2: Next(8)

Binary Search Tree - Operations

12

5

1 8

23

20 35

Null
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Next operation

Next(node) -> the node with the next largest key

Consider both scenarios
• N has a right child 

• N does not have a right child

Binary Search Tree - Operations
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RangeSearch operation

Example: RangeSearch(7,22)
• Search for the first element in the range

• Find the Next element

• Continue until Next is not valid

Binary Search Tree - Operations

12

5

1 8

23

20 358

12

20
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RangeSearch operation

Binary Search Tree - Implementation

69

A list that stores everything we find



Insert operation

insert(k, R) -> adds a node with Key “k” to the tree

e.g., insert (7)

Binary Search Tree - Operations

12

5

1 8

23

20 35

7

70

7



Insert operation

insert(k, R) -> adds a node with Key “k” to the tree

insert(k, R):

n <- Find(k, R) 

Add the new node with key "k" as a child of n

Binary Search Tree - Operations
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Binary Search Tree - Operations

Delete operation

delete(n): delete the node n
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Binary Search Tree - Operations

Delete operation

delete(n)

e.g., delete (23)

Cannot just remove the node since 
it has child nodes

12

5

1 8

23

20 35
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Delete operation

delete(n)

Case 1:

• Next(n)=a does not have left or right 
child

• Replace n with Next(n)=a

Binary Search Tree - Operations

n

a

a

delete(n)

74



Delete operation

delete(n)

Case 2:

• Next(n)=a has a right child

• Replace n with Next(n)=a

• Promote RightChild(a)=b

Binary Search Tree - Operations

a

b

n

a

b

delete(n)
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Binary Search Tree - Operations

Delete operation

delete(n)

Note “a” does not have any left child!
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Question - Poll

What will be the result tree after query delete(3)?

10

8

4 9

11

6

75

(1)

8

4 9

11

106

75

(2)

4

8

9

11

10

6

75

(3)

3

8

9

11

10

4

6

75
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Question - Poll

What will be the result tree after query delete(3)?

10

8

4 9

11

6

75

(1)

8

4 9

11

106

75

(2)

4

8

9

11

10

6

75

(3)

3

8

9

11

10

4

6

75
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Binary Search Tree – Runtime

Find(x)

O(Depth of the tree)

x
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Question - Poll

What is the order of fast search in 
the tree?

1) a -> b -> c -> d

2) a -> d -> b -> c

3) d -> a -> b -> c

4) c -> b -> d -> a

b

a

c

d
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Question - Poll

What is the order of fast search in 
the tree?

1) a -> b -> c -> d

2) a -> d -> b -> c

3) d -> a -> b -> c

4) c -> b -> d -> a

b

a

c

d

Root, Depth1

Depth 3

Depth 4

Depth 6
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Binary Search Tree

Runtime

Worse case scenario depth(n)

How to fix this? b

82



Binary Search Tree – Balanced Trees

Desired property: 

• Left and right subtrees have 
almost the same size

• Cut the search space in two

• Subtree has half the size of its 
parent

• O(log(n))
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How insert and delete operations would work for a balanced tree?

• They might destroy the balance

How to solve the issue?

• Rebalance the tree and maintain the balance by rearranging

How to rearrange to maintain the sorting property?

• Use rotations 

Binary Search Tree – Balanced Trees

84



Binary Search Tree - Rotations

B

A

𝑆𝑢𝑏𝑇𝑟𝑒𝑒1 𝑆𝑢𝑏𝑇𝑟𝑒𝑒2

𝑆𝑢𝑏𝑇𝑟𝑒𝑒3

A

B

𝑆𝑢𝑏𝑇𝑟𝑒𝑒2 𝑆𝑢𝑏𝑇𝑟𝑒𝑒3

𝑆𝑢𝑏𝑇𝑟𝑒𝑒1

Rotations

𝑆𝑢𝑏1 < 𝐴 < 𝑆𝑢𝑏2 < 𝐵 < 𝑆𝑢𝑏3
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Tree Traversal

InOrder traversal:

left – root – right

Output: 9, 2, 8, 1, 7, 3, 6

Sort(Output) = 1,2,3,6,7,8,9

86

1

2
9 8

3
7 6

6

2
1 3

8
7 6

Binary Tree

Binary Search Tree



MergeSum

87

6

2
1 5

5
7

3

0
2

3
1

9

2
3 5

8
7 1

6+3

2+0 5+3

Merged Tree



Advantages of trees and graphs 

• Search complexity: 
• Array or linked list: since they are linear structures the time required to search 

a “linear” list is proportional to the size of the data set. 

• Trees: fast search (O(log n) comparisons to find a particular node)

•Representation:
• Linked lists: a node could at most have two pointers (one to its next and one 

to its previous node) 

• Graphs: a node could have more than two pointers.



Trees applications

• Store hierarchical data, like folder structure, organization structure…

• Allow fast search, insert, delete on a sorted data and finding closest 
item

• Find shortest path trees which are used in routers and bridges 
respectively in computer networks



Graphs applications

• Web graph.
• Node:  web page.

• Edge:  hyperlink from one page to another

• Social network graph.
• Node:  people.

• Edge:  relationship between two people


