
Python for Data Scientists
L11 : Invariants, Graph Traversal,

BFS, and DFS
Shirin Tavara

1

Applications of trees and graphs

Recap of graphs, trees, binary search tree

Invariants

Graph traversal
Breadth first search, depth first search

Outline of the lecture

2

ReCap - Binary Trees

Binary tree represents the nodes connected by edges.
• A Root node.

• Every node has one parent node, except the root node.

• Each node has at most two child nodes.

Root

Alexander

Emil

Alex Alice

Anders

Bob Richard

3

Syntax Tree

Sentence: “I like the course”

course

I

the

like

The sentence

Sentence

Noun
Phrase

Verb
Phrase

Verb
Noun

Phrase

Determiner Noun

Structure of the sentence

4

Syntax Tree

Expression: 5 4𝑦 + 10
×

5

× 10

4 𝑦

+

5

Binary Search Tree

BST for accessing keywords of programming languages with different
costs considering the frequency that keywords are accessed

Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. Algorithms (1st Edition). McGraw-Hill Higher Education. 2008.

6

Hierarchy

Geographical hierarchy

World

Africa Europe

…

Asia

Benin Angola …Sweden Italy …China Japan

TokyoBeijingRomeStockholmLuandaPorto-Novo

……

7

Graph Applications - World Wide Web

Web Graph
Node: web page.
Edge: hyperlink from one page to another.

8

Graph Applications - Social Network

Social network graph.
• Node: people.

• Edge: relationship between two people.

https://cdn0.tnwcdn.com/wp-content/blogs.dir/1/files/2013/11/social-network-links-730x410.jpg

9

Graph Applications - Ecological Food Web

Food web graph
• Node = species.

• Edge = from prey to predator.
(victim to killer)

10

Some Other Graph Applications

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

11

Traversal order in a binary tree

• PreOrder traversal
Root-left subtree- right subtree

• InOrder traversal
Left subtree- root- right subtree

• PostOrder traversal
Left subtree- right subtree - root

12

Binary tree : binarytree package
from binarytree import Node
root = Node(2)
root.left = Node(4)
root.right = Node(8)

Getting binary tree
print('Binary tree :', root)

Getting list of nodes
print('List of nodes :', list(root))

Getting inorder of nodes
print('Inorder of nodes :', root.inorder)

Checking tree properties
print('Size of tree :', root.size)
print('Height of tree :', root.height)

Get all properties at once
print('Properties of tree : \n', root.properties)

Binary tree :
2

/ \
4 8

List of nodes : [Node(2), Node(4), Node(8)]

Inorder of nodes : [Node(4), Node(2), Node(8)]

Size of tree : 3
Height of tree : 1
Properties of tree :
{'height': 1, 'size': 3, 'is_max_heap': False, 'is_min_heap':

True, 'is_perfect': True, 'is_strict': True, 'is_complete': True,
'leaf_count': 2, 'min_node_value': 2, 'max_node_value': 8,
'min_leaf_depth': 1, 'max_leaf_depth': 1, 'is_bst': False,
'is_balanced': True, 'is_symmetric': False}

13

Binary tree from a given list

from binarytree import build

List of nodes
nodes =[2, 4, 8, 16, 32, 64, None]

Builidng the binary tree
binary_tree = build(nodes)
print(binary_tree)

Getting list of nodes from binarytree
print(binary_tree.values)

___2___
/ \

_4 _8
/ \ /

16 32 64

[2, 4, 8, 16, 32, 64]

14

Random binary tree

from binarytree import tree

Create a random binary tree of any height
root = tree()
print(root)

Create a random binary tree of given height
rootRandom = tree(height = 3)
print(rootRandom)

Create a random perfect binary tree of
given height
rootRandomPer = tree(height = 3, is_perfect =
True)
print(rootRandomPer)

15

Binary Search Tree

from binarytree import bst

Create a random BST of any height
root = bst()
print('BST of any height : \n', root)

Create a random BST of given height
root2 = bst(height = 2)
print('BST of given height : \n', root2)

Create a random perfect BST of given height
root3 = bst(height = 2, is_perfect = True)
print('Perfect BST of given height : \n', root3)

16

2. Otherwise, recur down the tree
if data <= node.data:

node.left = insert(node.left, data)
else:

node.right = insert(node.right, data)
return node

def minValue(node):
current = node
loop down to find the lefmost leaf
while(current.left is not None):

current = current.left
return current.data

root = None
root = insert(root,7)
insert(root,1)
insert(root,6)
insert(root,8)
insert(root,4)
insert(root,9)
print ("Minimum value in BST is
:",(minValue(root)))
print(root.findval(9))
print(root.findval(11))

Binary Search Tree
class Node:

def __init__(self, key):
self.data = key
self.left = None
self.right = None

""" find a specific value in the tree """
def findval(root, lkpval):

if lkpval < root.data:
if root.left == None:

return str(lkpval) + " Not Found"
return root.left.findval(lkpval)

elif lkpval > root.data:
if root.right == None:

return str(lkpval) + " Not Found"
return root.right.findval(lkpval)

else:
print(str(root.data) + ' is found’)

def insert(node, data):
1. If the tree is empty, return a new, single

node
if node == None:

return (Node(data))
else:

17

Binary Search Trees – Measuring in 4 languages

https://aaronjwood.com/articles/binary-search-trees/ 18

https://aaronjwood.com/articles/binary-search-trees/

Graphs

A graph consists of:
• Nodes or vertices

• The links between the nodes, a set of pairs of vertices that are connected

Graph representation:
• Adjacency matrix

• Adjacency list

Graph Adjacency Matrix Adjacency List

Space complexity 𝑂(|𝑉|2) or 𝑂 𝑛2 𝑂(|𝑉| + |𝐸|)

IsConnected(𝑛𝑖 , 𝑛𝑗) O(1) O(|V|)

Add(𝑛𝑘) 𝑂(𝑉 2) O(1)

GetAdjacent(𝑛𝑘) O(|V|) O(|E|)

19

Graphs Implementation

Create the dictionary with graph
elements
graph = { "1" : ["2","3"],

"2" : ["1", "3", "4", "5"],
"3" : ["1", "2", "5", "7", "8"],
"4" : ["2", "5"],
"5" : ["2", "3", "4", "6"],
"6" : ["5"],
"7" : ["3", "8"],
"8" : ["3", "7"]
}

Print the graph
print(graph)

{'1': ['2', '3'], '2': ['1', '3', '4', '5'], '3': ['1', '2',
'5', '7', '8'], '4': ['2', '5'], '5': ['2', '3', '4', '6'],
'6': ['5'], '7': ['3', '8'], '8': ['3', '7']}

20https://insideaiml.com/article-details/Python---Graphs-928

https://insideaiml.com/article-details/Python---Graphs-928

Graphs: Display Graph Vertices
class graph:

def __init__(self,gdict=None):
if gdict is None:

gdict = []
self.gdict = gdict

Get the keys of the dictionary
def getVertices(self):

return list(self.gdict.keys())

gElements = { "1" : ["2","3"],
"2" : ["1", "3", "4", "5"],
"3" : ["1", "2", "5", "7", "8"],
"4" : ["2", "5"],
"5" : ["2", "3", "4", "6"],
"6" : ["5"],
"7" : ["3", "8"],
"8" : ["3", "7"]
}

g = graph(gElements)
print(g.getVertices())

['1', '2', '3', '4', '5', '6', '7', '8']

21https://insideaiml.com/article-details/Python---Graphs-928

https://insideaiml.com/article-details/Python---Graphs-928

Graphs: Display Distinct Graph Edges

class graph:
def __init__(self,gdict=None):

if gdict is None:
gdict = {}

self.gdict = gdict

def edges(self):
return self.findedges()

Find the distinct list of edges
def findedges(self):

edgename = []
for vrtx in self.gdict:

for nxtvrtx in self.gdict[vrtx]:
if {nxtvrtx, vrtx} not in edgename:

edgename.append({vrtx, nxtvrtx})
return edgename

gElements = { "1" : ["2","3"],
"2" : ["1", "3", "4", "5"],
"3" : ["1", "2", "5", "7", "8"],
"4" : ["2", "5"],
"5" : ["2", "3", "4", "6"],
"6" : ["5"],
"7" : ["3", "8"],
"8" : ["3", "7"]
}

g = graph(gElements)
print(g.edges())

[{'1', '2'}, {'1', '3'}, {'2', '3'}, {'2', '4'}, {'5', '2'},
{'5', '3'}, {'3', '7'}, {'8', '3'}, {'5', '4'}, {'5', '6'},
{'8', '7'}]

22https://insideaiml.com/article-details/Python---Graphs-928

https://insideaiml.com/article-details/Python---Graphs-928

Graphs : Adding A Vertex

class graph:
def __init__(self,gdict=None):

if gdict is None:
gdict = {}

self.gdict = gdict
def getVertices(self):

return list(self.gdict.keys())

Add the vertex as a key
def addVertex(self, vrtx):

if vrtx not in self.gdict:
self.gdict[vrtx] = []

gElements = { "1" : ["2","3"],
"2" : ["1", "3", "4", "5"],
"3" : ["1", "2", "5", "7", "8"],
"4" : ["2", "5"],
"5" : ["2", "3", "4", "6"],
"6" : ["5"],
"7" : ["3", "8"],
"8" : ["3", "7"]
}

g = graph(gElements)
print(g.getVertices())
g.addVertex("9")
print(g.getVertices())

['1', '2', '3', '4', '5', '6', '7', '8']
['1', '2', '3', '4', '5', '6', '7', '8', '9']

23https://insideaiml.com/article-details/Python---Graphs-928

https://insideaiml.com/article-details/Python---Graphs-928

Graphs : Adding an edge
class graph:

def __init__(self,gdict=None):
if gdict is None:

gdict = {}
self.gdict = gdict

def edges(self):
return self.findedges()

def AddEdge(self, edge):
edge = set(edge)
(vrtx1, vrtx2) = tuple(edge)
if vrtx1 in self.gdict:

self.gdict[vrtx1].append(vrtx2)
else:

self.gdict[vrtx1] = [vrtx2]
+def findedges(self):

#(definition in slide 22)

gElements = { "1" : ["2","3"],
"2" : ["1", "3", "4", "5"],
"3" : ["1", "2", "5", "7", "8"],
"4" : ["2", "5"],
"5" : ["2", "3", "4", "6"],
"6" : ["5"],
"7" : ["3", "8"],
"8" : ["3", "7"]
}

g = graph(gElements)
print(g.edges())
g.AddEdge({'1','9'})
g.AddEdge({'5','9'})
print(g.edges())

[{'2', '1'}, {'1', '3'}, {'2', '3'},
{'2', '4'}, {'2', '5'}, {'3', '5'},
{'3', '7'}, {'8', '3'}, {'4', '5'},
{'6', '5'}, {'8', '7’}]

[{'2', '1'}, {'1', '3'}, {'1', '9'},
{'2', '3'}, {'2', '4'}, {'2', '5'},
{'3', '5'}, {'3', '7'}, {'8', '3'},
{'4', '5'}, {'6', '5'}, {'8', '7'},
{'9', '5'}] 24

https://insideaiml.com/article-details/Python---Graphs-928

https://insideaiml.com/article-details/Python---Graphs-928

Advantages of trees and graphs

• Search complexity:
• Array or linked list: they are linear structures and the time required to search

a “linear” list is proportional to the size of the data set.

• Trees: fast search (O(log n) comparisons to find a particular node)

•Representation:
• Linked lists: a node could at most have two pointers (one to its next and one

to its previous node)

• Graphs: a node could have more than two pointers.

25

Poll

Which of the following graphs are/is a tree?

26

[1] [2] [3] [4]

Poll

Which of the following graphs are/is a binary tree?

27

[1] [2] [3] [4]

Poll

Which of the following graphs are/is a binary search tree?

28

2

3 4 6 7

5

1

4

3 5 8 9

7

6

4

3 5 7 9

8

6

4

3 5 7 9

8

6

[1] [2] [3] [4]

Invariants

Some slides adapted from

Robert Sedgewick, Kevin Wayne, Peter Ljunglöf, and Nick Smallbone

29

Back to binary search trees

A binary search tree (BST) is a
binary tree where:

• Each node has a key

• Each node’s key is greater than all the
keys in the left subtree, and less than all
the keys in the right subtree

30

Invariants

• “unchanged by specified mathematical or physical operations or
transformations” [Merriam-Webster dictionary]

• A set of properties or conditions that will hold before and after
conducting each step of an operation/algorithm.

31

Invariants

The property
“Each node’s key is greater than all the keys in the left subtree, and less than all the keys in the right subtree ”

is an example of a data structure invariant
• A property that the data structure designer wants to always hold

• The invariant affects the whole design!

• In search (get), we rely on the invariant holding in order to find the value
efficiently

• When modifying the data structure, we must take care to make the invariant
still holds afterwards – this is called maintaining the invariant

e.g., in insertion and deletion

The goal: find an invariant which is useful but also easy to maintain!

32

Checking the invariants

What happens if we fail to maintain the invariant?

• For example, inserting something in the wrong place

Answer: at first, maybe nothing! But later operations may fail

• A later call to get/max/floor/... may return the wrong answer!

• Or a call to put may fail to find an existing key… and end up with the same key

appearing twice in the BST!

These kind of bugs are a nightmare to track down!

Solution: check the invariant

33

Checking the invariants

Define a method
boolean invariant()

that returns true if the invariant holds
boolean invariant() {

return isBST(root);
}

Then, in the implementation of every operation, do
assert invariant() : “Invariant failed”;

This will throw an exception if the invariant doesn't hold!

This will find lots and lots of bugs!

34

Rank and select

Let’s try to add two more operations on BSTs:
• int rank(Key key): returns the number of items in the BST

less than key
• e.g. rank(horse) = 2

• Key select(int n): returns the
nth-smallest item in the BST,
counting from 0
• e.g. select(2) = horse
• We count from 0 so

that select and rank
are inverses

How can we implement these?
What invariant can we add?

35

A first attempt

Let’s store the rank as an extra field in each node

To implement rank(key), we’ll just find the
correct node and then return its
rank field.

Is this a good idea?
What’s the problem?

This is a bad idea.

36

A first attempt

Let’s store the rank as an extra field in each
node

To implement rank(key), we’ll just find the
correct node and then return its rank field.

This is a bad idea.
What’s the problem?

Whenever we modify the BFS, we’ll need to
update the rank fields of lots of nodes (linear
time)

37

This variant is expensive to
maintain

A better answer
Make each node record the size of its subtrees.
Observation: rank of root = size of left subtree.
This leads to a recursive algorithm for rank!

int rank(Key key, Node x) {
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0)

return rank(key, x.left);
else if (cmp > 0)

return 1 + size(x.left) +
rank(key, x.right);

else return size(x.left);
}

38

A better answer

What’s more, when we insert a new value, we only
need to update the size fields of the new node and
its ancestors

• Number of nodes changed =
height of tree

• Logarithmic, if BST
is balanced!

• Invariant is cheap to
maintain

(P.S. this invariant
also supports select)

39

Invariants are important

Once we chose the invariant, we were forced to
implement the operations a certain way:
• Given the BST invariant, there’s only one reasonable way

to implement search

• Also, only one way to implement insertion so as to preserve the invariant

• Given the invariant about labelling nodes with their size,
there’s only one reasonable way to implement rank

• And insertion/deletion must update the size field so as to
preserve the invariant

The main creative step was choosing the invariant!

40

Invariants

When designing a data structure your first question should be:

What is the invariant?

• How can I use it to efficiently compute stuff?

• How can I maintain it when updating the data structure?

Because the invariant often expresses the main idea of the data
structure!

A good invariant adds some extra structure that:

• makes it easy to get at the data (the invariant is useful)

• but doesn’t make it too hard to maintain the invariant when updating the
data

41

Graph Traversal

Walking a graph <-> Visiting nodes of a graph <-> Traversing nodes of a
graph in a particular order

• Breadth-First-Search (BFS)
• Explore all the nodes at one depth level before exploring the nodes of the

next depth level

• Depth-First-Search (DPS)
• Explore all the nodes in one subtree before exploring a sibling subtree

42

• BFS • DFS

43

Breadth-First-Search (BFS)

Breadth First Search (BFS):

BFS(s): Find a BFS tree rooted at s, which includes all nodes reachable from node s.

Create a Boolean array Discovered[1…n], Set Discovered[s] = true
and Discovered[v] = false for all other v. O(n)

Create an empty FIFO queue Q, add node s to Q. O(1)

while Q is not empty O(?)
dequeue a node u from Q O(1)
for each node v adjacent to node u O(?)

if Discovered[v] is false then O(1)
add node v to Q, set Discovered[v] to true O(1)

endif
endfor

endwhile

Based on Muhammad Azam Sheikh Lecture 44

Question – Poll

What is the time complexity of BFS?

V: number of vertices, E: number of edges

1) O(E)

2) O(V)

3) O(V+E)

4) It depends which representation of the graph is used!

45

Breadth-First-Search (BFS)
Analysis:

• A node u enters Q at most once, and the for loop needs nodes adjacent to every such u

• Graph representation will effect the analysis

• Finding all v adjacent to u:

• Adjacency Matrix:

➢ we have to check all matrix entries in u's row: O(n)

➢ total time required to process all rows of the Matrix: O(n2)

• Adjacency List:

➢ when we consider node u, there are deg(u) incident edges (u, v)

➢ total time processing all the edges is uV deg(u) = 2m  O(m)

➢ setup time for the array Discovered
is O(n),  O(m + n)

➢ m is at least n-1 for connected graph, m dominates  O(m)

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

Based on Muhammad Azam Sheikh Lecture 46

Breadth-First-Search (BFS)

http://i.stack.imgur.com/TjhfH.png

false false false false false false false false false

A B C D E F G H I

FrontQueueBack

Enqueue Dequeue

Discovered

BFS Tree:

Create an empty tree T

Add edge (u, v) to the tree T, when v is discovered the first time

47

Breadth-First-Search (BFS)

http://i.stack.imgur.com/TjhfH.png

A B C D E F G H I

A

E D C B A

F E D C B A

: ADequeue-> A

: A, BDequeue-> B

F E D C B A : A, B, CDequeue-> C

G F E D C B A : A, B, C, D
Dequeue-> D

G F E D C B A : A, B, C, D,EDequeue-> E

H G F E D C B A : A, B, C, D, E, FDequeue-> F

I H G F E D C B A : A, B, C, D, E, F, GDequeue-> G

I H G F E D C B A : A, B, C, D, E, F, G, H

Dequeue-> I : A, B, C, D, E, F, G, H, I

Dequeue-> H

True TrueTrue True True True True True True

I H G F E D C B A

Enqueue A

Enqueue B, C, D, E

Enqueue F

Enqueue G

Enqueue H

Enqueue I

48

Breadth First Search: Properties
BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm partitions

the nodes into layers:
• L0 = { s }.
• L1 = all neighbors of L0.
• L2 = all nodes that do not belong to L0 or L1, and that have an edge to a node in L1.
• Li+1 = all nodes that do not belong to an earlier layer, and that have an edge to a

node in Li.

➢Implementation using Queue processes the nodes exactly layer by layer

➢ explores in order of distance from s.

s L1 L2 L n-1

49

Question- Poll

Suppose we have a tree in which each edge has length 1. In the
implementation of Breadth-First-Search using queues, what is the
maximum distance between two nodes in the queue?

1) 0

2) At most 1

3) It depends on the shape of the tree

4) Can be anything

50

Breadth First Search: Properties
Property. Let T be a BFS tree of G = (V, E),

nodes u, v belong to T, and
let (u, v) be an edge of G.

Then the level of u and v differ by at most 1.

(Edges discarded by BFS are those which connect
nodes of the same layer e.g., DE, or
nodes from adjacent layers e.g., EG)

Let u, v belong to layers Li and Lj respectively.
Suppose i < j − 1. (Negate the conclusion)
➢ When BFS examines the edges incident to u, since u belongs to layer Li, the only

nodes discovered from u belong to layers Li+1 and earlier;
➢ hence, if v is a neighbor of u, then it should have been

discovered by this point at the latest, and
➢ should belong to layer Li+1 or earlier (a contradiction)

Consider E and it’s edges

Based on Muhammad Azam Sheikh Lecture 51

Breadth First Search: Properties

• What follows:

➢ For each i, Li consists of all nodes at distance exactly i from s.

➢ There is a path from s to t if t appears in some layer.

➢Moreover: s-t is a shortest path.

L0

L1

L2

L3

52

Depth First Search (DFS)
Depth First Search (DFS):

Create a Boolean array Explored[1…n], initialized to false for all.

DFS(u)

set Explored[u] to true

for each node v adjacent to node u

if Explored[v] is false then
DFS(v)

endif
endfor

• Call DFS(s)

➢ each recursive call is done only after termination of the previous call, this gives the desired
depth first behavior.

Based on Muhammad Azam Sheikh Lecture 53

Depth First Search (DFS)

Stack
Enqueue

Dequeue

false false false false false false false false false

A B C D E F G H I

Discovered

DFS tree:
Take an array parent,

set parent[v]= u when calling DFS(v) due to edge (u, v).
When setting u (u ≠ s) as Explored,

add the edge (u, parent[u]) to the tree.

Reference: http://i.stack.imgur.com/gh0T1.png

54

Reference: http://i.stack.imgur.com/gh0T1.png

Depth First Search (DFS) using stack

A

B A

F B A

Output: A ,BPush B

Output: A, B, FPush F

H F B A
H F B A Output: A, B, F, HPop H

H F B A Output: A, B, F, HPop F

H F B A Output: A, B, F, HPop B

C A Output: A, B, F, H, CPush C

C A
Push D Output: A, B, F, H, C, D

Output: A, B, F, H, CPop C

D A

Visited Nodes: APush A

Output: A, B, F, HPush H

G D APush G Output: A, B, F, H, C, D, G

I G D A

I G D A

E A
E A

Push I Output: A, B, F, H, C, D, G, I
Pop I, Pop G, Pop D Output: A, B, F, H, C, D, G, I
Push E Output: A, B, F, H, C, D, G, I, E
Pop E, Pop A Output: A, B, F, H, C, D, G, I, E 55

Question – Poll

Suppose we have a tree in which each edge has length 1. In the
implementation of Depth-First-Search using stacks, what is the
maximum distance between two nodes in the stack?

1) 0

2) At most 1

3) It depends on the shape of the tree

4) Can be anything

56

BFS vs. DFS
BFS: Put unvisited vertices on a queue.

➢Examines vertices in increasing distance from s.

➢Using adjacency list requires O(m).

DFS: Put unvisited vertices on a stack.

➢ tries to explore as deeply as possible

➢ Mimics maze exploration.

➢O(m) due to similar reasoning.

http://i.stack.imgur.com/QtYo8.jpg

http://i.stack.imgur.com/TjhfH.png

http://i.stack.imgur.com/gh0T1.png

57

