
Python for Data Scientists
L15 (1) : Follow-up lecture on

assignment 7

1

more libraries!!

2

Data exploration and analysis

• NumPy

• Pandas

• Scipy

3

Data exploration and analysis

NumPy:
▪ introduces objects for multidimensional arrays and matrices

▪ provides functions that allow to easily perform advanced mathematical
and statistical operations on ndarrays

▪ provides vectorization of mathematical operations on arrays and
matrices which significantly improves the performance

▪ many other python libraries are built on NumPy

4

Link: http://www.numpy.org/

http://www.numpy.org/

Data exploration and analysis

Pandas:
▪ adds data structures and tools designed to work with table-like data

▪ provides tools for data manipulation: reshaping, merging, sorting,
slicing, aggregation etc.

▪ allows handling missing data

Link: http://pandas.pydata.org/

5

http://pandas.pydata.org/

Data exploration and analysis

SciPy:
▪ collection of algorithms for linear algebra, differential equations,

numerical integration, optimization, statistics and more

▪ works alongside NumPy arrays to provide a platform that provides
numerous mathematical methods like, numerical integration and
optimization.

Link: https://www.scipy.org/scipylib/

6

https://www.scipy.org/scipylib/

Plotting and visualization libraries

• Matplotlib

• Seaborn

• Plotly

7

Plotting and visualization libraries

matplotlib:
▪ python 2D plotting library which produces publication quality figures in

a variety of hardcopy formats

▪ line plots, scatter plots, barcharts, histograms, pie charts etc.

▪ relatively low-level; some effort needed to create advanced
visualization

Link: https://matplotlib.org/

8

https://matplotlib.org/

Plotting and visualization libraries

Seaborn:
▪ based on matplotlib

▪ provides high level interface for drawing attractive statistical graphics

▪ Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

9

https://seaborn.pydata.org/

Plotting and visualization libraries

Plotli:
▪ Python graphing library which makes interactive and publication-

quality graphs

▪ supports over 40 unique chart types covering a wide range of
statistical, financial, geographic, scientific, and 3-dimensional use-
cases.

▪ Built on the Plotly JavaScript library

Link: https://plotly.com/python/

10

https://plotly.com/python/

Classical Machine learning libraries

• Scikit-Learn

• StatsModels

• XGBoost

11

Classical Machine learning libraries

SciKit-Learn:
▪ provides machine learning algorithms: classification, regression,

clustering, model validation etc.

▪ built on NumPy, SciPy and matplotlib libraries

Link: http://scikit-learn.org/

12

http://scikit-learn.org/

Classical Machine learning libraries
SciKit-Learn: example

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html#sphx-glr-auto-examples-classification-plot-classifier-comparison-py
13

Code source: Gaël Varoquaux
Andreas Müller
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

h = .02 # step size

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
"Decision Tree", "Random Forest", "Neural Net", "AdaBoost",
"Naive Bayes", "QDA"]

classifiers = [
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025),
SVC(gamma=2, C=1),
GaussianProcessClassifier(1.0 * RBF(1.0)),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10,

max_features=1),
MLPClassifier(alpha=1, max_iter=1000),
AdaBoostClassifier(),
GaussianNB()]

X, y = make_classification(n_features=2, n_redundant=0,
n_informative=2,

random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable
]

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html#sphx-glr-auto-examples-classification-plot-classifier-comparison-py

Classical Machine learning libraries
SciKit-Learn: example

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html#sphx-glr-auto-examples-classification-plot-classifier-comparison-py
14

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html#sphx-glr-auto-examples-classification-plot-classifier-comparison-py

Classical Machine learning libraries

StatModels:
▪ provides classes and functions for the estimation of many different

statistical models, as well as for conducting statistical tests, and
statistical data exploration.

▪ provides a complement to scipy for statistical computations including
descriptive statistics and estimation and inference for statistical models.

Link: https://www.statsmodels.org/stable/

15

https://www.statsmodels.org/stable/

Classical Machine learning libraries

XGBoost:
▪ Faster than other ensemble classifiers (Originally written in C++)

▪ The core XGBoost algorithm is parallelizable.

▪ Shown better performance on a variety of machine learning benchmark
datasets.

▪ XGBoost has parameters for: cross-validation, regularization, user-
defined objective functions, missing values, tree parameters, scikit-
learn compatible API, …

Link:

https://xgboost.readthedocs.io/en/latest/python/index.html
16

https://xgboost.readthedocs.io/en/latest/python/index.html

Deep learning libraries

• Keras

• TensorFlow

• Pytorch

17

Deep learning libraries

Keras:
▪ high-level neural networks API for Python.

▪ running on top of the machine learning platform TensorFlow (open-
source machine learning platform).

▪ contains numerous implementations of commonly used neural-network
building blocks

▪ Provides tools to make working with image and text data easier to
simplify the coding necessary for writing deep neural network code.

Link: https://keras.io/

18

https://keras.io/

Deep learning libraries

TensorFlow
▪ is a Python library for fast numerical computing created and released

by Google.

▪ used to create Deep Learning models directly or by using wrapper
libraries that simplify the process built on top of TensodFlow

Link: https://www.tensorflow.org/

19

https://www.tensorflow.org/

Deep learning libraries

20

from numpy import loadtxt
import keras
import tensorflow
from keras.models import Sequential
from keras.layers import Dense

load the dataset to train the model
dataset = loadtxt('pima-indians-diabetes.data.csv',
delimiter=',')

Split into feature- and classification data
X = dataset[:,0:8]
y = dataset[:,8]

define the keras model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

compile the keras model
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])

fit the keras model on the dataset
model.fit(X, y, epochs=150, batch_size=10, verbose=0)

evaluate the keras model
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy*100))

TensorFlow and Keras example:

https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/

Accuracy: 77.47

https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/

Deep learning libraries

Pytorch:
▪ developed by Facebook's AI Research lab (FAIR)

▪ being Pythonic, smoothly integrates with the Python data
science stack.

▪ used for applications such as computer vision and natural language
processing

Link: https://pytorch.org/

21

https://pytorch.org/

NLP libraries

• NLTK

• SpaCy

• Gensim

22

NLP libraries

NLTK:
▪ work with human language data

▪ provides easy-to-use interfaces to over 50 corpora and lexical
resources such as WordNet

▪ Provides text processing libraries for classification, tokenization,
stemming, tagging, parsing, and semantic reasoning, ...

Link: https://www.nltk.org/

23

https://www.nltk.org/

NLP libraries

SpaCy:
▪ written in the programming languages Python and Cython.

▪ construct linguistically sophisticated statistical models for a variety of
NLP problems.

▪ helps you build applications that process and “understand” large
volumes of text : information extraction or natural language
understanding systems, or to pre-process text for deep learning.

Link: https://spacy.io/

24

https://spacy.io/

NLP libraries

Gensim:
▪ Used for topic modelling, document indexing and similarity

retrieval with large corpora.

▪ Specially used for natural language processing and information
retrieval community.

▪ Efficient multicore implementations of popular algorithms, such as
online Latent Semantic Analysis, Latent Dirichlet, or word2vec deep
learning.

Link: https://pypi.org/project/gensim/

25

https://pypi.org/project/gensim/

NLP libraries

Gensim: Example

26

import gensim as gensim
from sklearn.decomposition import PCA
from matplotlib import pyplot

text_file_name = 'smallWikipedia.txt'
sentences = gensim.models.word2vec.LineSentence(text_file_name, limit=100000)

simple_model = gensim.models.Word2Vec(sentences, size=10, window=5, min_count=5, workers=2)
word_vectors = simple_model.wv

print("The word vector for cat is : ",word_vectors['cat'])

X = simple_model[simple_model.wv.vocab]
pca = PCA(n_components=2)
result = pca.fit_transform(X)
create a scatter plot of the projection
pyplot.scatter(result[:, 0], result[:, 1])
words = list(simple_model.wv.vocab)
for i, word in enumerate(words):

pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))
pyplot.show()

https://machinelearningmastery.com/develop-word-
embeddings-python-gensim/

https://machinelearningmastery.com/develop-word-embeddings-python-gensim/

NLP libraries

27

Gensim: Example

Data storage and big data frameworks

• Apache Spark

• HDFS

28

Data storage and big data frameworks

Apache Spark:
▪ fast and general engine for big data processing, with built-in modules

for streaming, SQL, machine learning and graph processing.

▪ does in-memory computations to analyze data in real-time

Link: https://www.tutorialspoint.com/pyspark/index.htm

29

https://www.tutorialspoint.com/pyspark/index.htm

Data storage and big data frameworks

HDFS:
▪ provides machine learning algorithms: classification, regression,

clustering, model validation etc.

▪ built on NumPy, SciPy and matplotlib libraries

Link: https://pypi.org/project/hdfs/

30

https://pypi.org/project/hdfs/

