
Algorithms

Guest lecture in the course Python for data scientists 

Birgit Grohe
2020-10-21





Used an Algorithm Today?



The Shortest Path Problem

How solve?



Solving the directed shortest path 
problem with dynamic programming

Traverse nodes from "left to right" and mark with 
distance from origin. Dijkstra´s algorithm 1956 .

Circumvents the combinatorial explosion!
(not possible for all kinds of problems)



Telephone operator problem (real applied problem)

A Swedish mobile phone operator 
needs to connect all base station to its 
main switch.

How can we best rent communication 
lines from the national fixed network?



What is an Algorithm? 

A set of steps that defines how a task is performed.

An algorithm is an ordered set of unambiguous, executable steps 
that defines a terminating process

Brookshear



What is an Algorithm?

An Algorithm is a well-defined computational procedure that takes
some value, or a set of values, as input and 

produces some value, or set of values as output. 
An algorithm is thus a sequence of computational steps 

that transform input into output.
Cormen et al 

• More formal definition uses Turing machines



Studying Algorithms?

Toolbox: Design
Principles

Standard
Problems

Standard Algoritms



Algorithm Analysis

Running time
• How much ´time´ does the algorithm take?
• How do we measure the running time?

Correctness
• Does the algorithm do what it is supposed to do?
• Is it enough to test an algorithm on some instances? 



The Shortest Path Problem

n c n2

10 0,001 s
20 0,004 s
30 0,009 s
40 0,016 s
50 0,025 s
60 0,036 s

polynomial growth



Time complexity: Big-O

• O() (pronounced ”Big-O” or ”Order of”)
• Often written a little curly
• Related symbols:  Ω (Omega), Ɵ (Theta) 

A youtube video on Time complexity and O() incl the formal definition
https://www.youtube.com/watch?v=4UYo8muFwAM



Time complexity: Big O

Let n be the input size of a problem.

A function f(n) is O(g(n)) if there exit constants c > 0 and n_0 ≥ 0 
such that for all n ≥ n_0 we have

f(n) ≤ c g(n)

Function f is asymptotically upper bounded by the function g.



Time complexity: Big O



Time complexity: Big O

• The running time f(n) can be a 
complicated function

• The upper bound g(n) is usually a 
simple function like n, n log n, n^2, 
n^3, 2^n, n! 

• We strive for tight upper bounds! 



Time complexity: Big O

• Why is it enough for O() to only look at the dominating term in f?
• Why do the constants not matter for O()?
• Why is all this a good idea?



The Algorithms Toolbox

Algorithm design principles
• Greedy
• Divide and Conquer
• Dynamic Programming
• Complete Search
• Heuristics
• …
• Reductions



Design principle: 
Greedy

• In a way the simplest of all design principles

• Take the best alternative available, then repeat until solution found

• Straightforward idea, easy to implement with some loop(s)

• Works only for few problems with Greedy-friendly structure

• (Can be used as a heuristic for harder problems)

• Examples: MST, Making change, simple scheduling problems 



Design principle: 
Divide & Conquer

• Divide a probelm in (often two) parts, 
solve the parts independently, combine 
the solutions of the subproblems

• Often described in a recursive fashion

• Examples: Binary search, Mergesort, 
Quicksort, fast integer and matrix 
multiplication, many geonmetric 
problems (e.g. closest pair of points)



Design principle: 
Dynamic 
Programming

• Build up larger subproblems from 
smaller ones

• Problems need to have a certain 
structure (optimal subproblem 
principle)

• Recursive ”thinking” but efficient 
implementation uses loops

• Often percieved as the most difficult of 
the design principles 

• Examples: Shortest Path, Knapsack, 
certain scheduling problems



More design principles

• Complete search / complete enumeration
• Branch & Bound, Backtracking (a kind of complete enumeration)

• Reductions 
• Heuristics

• Problem solvers usually use several design principles to attack a problem. There can be 
significant differences in both correctness and efficiency.



Did you watch the videos about standard 
problems? 



Reductions and Standardproblems

• Examples for standardproblems: searching, sorting, finding
an element in a list, shortest path, minimum spanning tree ..

• More: Travelling salesperson problem, graph coloring, set 
packing, knapsack, Integer linear programming ..

• Use reductions to re-use known algorithms
• Proof the relative difficulty of a problem 





Algorithm design 
principles

• Greedy
• Divide and Conquer
• Dynamic Programming
• Complete Search
• Heuristics
• …
• Reductions
• Randomization
• LP/ILP



Jon Kleinberg Eva Tardos 
Algorithm Design


	Algorithms��Guest lecture in the course Python for data scientists �
	Slide Number 3
	Used an Algorithm Today?
	The Shortest Path Problem
	Solving the directed shortest path problem with dynamic programming
	Slide Number 8
	What is an Algorithm? 
	What is an Algorithm?
	Studying Algorithms?
	Algorithm Analysis
	The Shortest Path Problem
	Time complexity: Big-O
	Time complexity: Big O
	Time complexity: Big O
	Time complexity: Big O
	Time complexity: Big O
	The Algorithms Toolbox
	Design principle: Greedy	
	Design principle: Divide & Conquer
	Design principle: Dynamic Programming	
	More design principles
	Did you watch the videos about standard problems? 
	Reductions and Standardproblems
	Slide Number 26
	Algorithm design �principles
	Jon Kleinberg Eva Tardos Algorithm Design�

