Exam Logical theory part I, LOG110

2019-10-28

This exam is marked and graded anonymously using code numbers. Please enter your name and personal identity number below. Then enter only the code number on the answer sheets.
Name / Namn:

Personal identity number / Personnummer:

EXAM 2019-10-28 Logical theory part I, LOG110

No aids are permitted.

- 1. Derive the following sentences using natural deduction: (5p)
 - (a) $\varphi \rightarrow \neg \bot$
 - (b) $(\neg \varphi \lor \psi) \to (\varphi \to \psi)$
 - (c) $\neg \forall x \varphi(x) \rightarrow \exists x \neg \varphi(x)$
- 2. Show that (4p)
 - (a) $\forall \exists x \varphi(x) \rightarrow \forall x \varphi(x)$
 - (b) $\forall \exists x \varphi(x) \land \exists x \psi(x) \rightarrow \exists x (\varphi(x) \land \psi(x))$
- 3. Show that neither $\{\neg\}$ nor $\{\land\}$ are (jointly) expressively adequate. (4p)
- 4. In propositional logic show that if $\Gamma = \{p_0, p_1, p_2, \ldots\}$ then $\Gamma \vdash \sigma$ or (4p) $\Gamma \vdash \neg \sigma$ for all formulas σ .
- 5. Let (4p)

 $\operatorname{Th}(K) = \{\sigma \mid \mathfrak{M} \models \sigma \text{ for all } \mathfrak{M} \in K\}$

and

$$Mod(\Gamma) = \{\mathfrak{M} \mid \mathfrak{M} \models \sigma \text{ for all } \sigma \in \Gamma\}.$$

Prove that $\Gamma \subseteq \text{Th}(\text{Mod}(\Gamma))$.

6. Prove that if there is no model of $T_1 \cup T_2$ then there is a sentence σ such (3p) that $T_1 \vdash \sigma$ and $T_2 \vdash \neg \sigma$.

Max points: 24. 12 points are required for Pass (G) and 18 for Pass with distinction (VG).

Fredrik Engström, fredrik.engstrom@gu.se