
Lagrangian approach for solution of time-harmonic

acoustic coefficient inverse problem

1 Introduction

The goal of the project is solution of the coefficient inverse problem (CIP) for determination
of wave speed function in the time-harmonic acoustic wave equation from scattered wave
field at the boundary of the computational domain. To solve this problem we will study the
Lagrangian method and formulate conjugate gradient algorithm for iterative update of the
wave speed function. The Lagrangian method is similar to the one applied in [5, 8, 9, 11] for
the solution of different hyperbolic CIPs. Practical applications of a such CIP are huge, and
we will mention some of them such as subsurface imaging, nondestructive testing of materials
and detection of landmines [8, 9, 20], archaeology, construction of photonic crystals [18] and
cloaking materials [19], remote sensing and medical imaging [24].

It is typical that in industrial applications computational domains often are very large
with constant values of material parameters. Usually, only some part of these domains
where materials change presents interest. In such cases the problem is described by the
model equations with the constant material parameters in a boundary neighborhood of the
computational domain. In this project we consider a particular case when the wave speed
function has a constant value in a boundary neighborhood.

The description of the course project is organized as follows. In section 2 are formulated
the forward and inverse problems. In section 3 is presented the Tikhonov functional to be
minimized and formulated Lagrangian approach to solve the inverse problem. In section 4
is formulated the conjugate gradient algorithm to solve our CIP. In section 6 are described
data and how to use them to solve time-harmonic CIP of this project.

Notes

• You can work in groups by 2-5 persons.

• To pass this course you should write the report for the project and present results of
the project to examiner which will be your oral examination. Remote presentation of
the results of this project is also possible.

• Sent final report (tex and pdf files) with description of your work together with Matlab
or C++/PETSc programs for testing to my e-mail

larisa@chalmers.se

before 19 June 2020. Report should have description of used techniques, tables and
figures confirming your investigations. Analysis of obtained results is necessary to



present in section “Numerical examples” and summarized results - in section “Con-
clusions”.

• Matlab and C++/PETSc programs for solution of the Poisson equation (see example
in section 8.1.3 of the book [2]) can be used as templates for the problem of this
project. These programs are available for free download: go to the link of the book [2]
and click “GitHub Page with MATLAB® Source Codes” on the bottom of this page.

• Data for solution of CIP of this project is available for download from the links

http://www.math.chalmers.se/ larisa/www/IPcourse2019/OBSref5noise3h03125gaus1.zip

http://www.math.chalmers.se/ larisa/www/IPcourse2019/OBSref5noise3h03125gaus2.zip

http://www.math.chalmers.se/ larisa/www/IPcourse2019/OBSref5noise10h03125gaus1.zip

Description of data is given in section 6.

2 The mathematical model

Our basic model is given in terms of the function u(x, s), x ∈ Rd, d = 2, 3 which depends on
the pseudo-frequency s > const. > 0, see [6] for details:

4u(x)− s2a(x)u(x) = −sa(x)f0(x), x ∈ Rd, d = 2, 3. (2.1)

Here, a(x) = 1
c(x)2 , where c(x) is the sound speed.

To solve the problem (2.1) numerically in Rd, d = 2, 3 we will use the domain decompo-
sition finite element/finite difference method of [5]. We introduce a convex bounded domain
Ω ⊂ R2 with boundary Γ such that Ω2 := Ω \ Ω1, where Ω1 ⊂ Ω, ∂Ω ∩ ∂Ω1 = ∅ with
∂Ω2 = ∂Ω ∪ ∂Ω1, Ω = Ω1 ∪ Ω2, Ω1 = Ω \ Ω2 and Ω̄1 ∩ Ω̄2 = ∂Ω1, where ∂Ω, ∂Ω1, ∂Ω2

are boundaries of the domains Ω,Ω1,Ω2, respectively. To introduce boundary conditions on
Γ := ∂Ω we denote Γ = Γ1 ∪ Γ2 ∪ Γ3 such that Γ1 and Γ2 are the top and bottom sides of
the domain Ω, respectively, and Γ3 denotes the rest of the boundary, see Figure 2.2.

The model equation (2.1) can be obtained by applying the Laplace transform in time,

u(x, s) :=

∫ +∞

0

u(x, t)e−stdt, s = const. > 0 (2.2)

to the function U (x, t) satisfying the time-dependent acoustic wave equation

a(x)
∂2U(x, t)

∂t2
−4U(x, t) = 0, x ∈ Ω, t ∈ (0, T ].

U(x, 0) = f0(x),
∂U

∂t
(x, 0) = 0, x ∈ Ω.

(2.3)

After applying the Laplace transform for the problem (2.3) and to the absorbing and
Neumann boundary conditions given by, respectively,

∂νU + ∂tU = 0, (x, t) ∈ (Γ1 ∪ Γ2)× (0, T ],

∂νU = 0, (x, t) ∈ Γ3 × (0, T ].
(2.4)



Ω1

Ω2a = 1

a ∈ [1,M ]

Ω2a = 1

a) Ω = Ω1 ∪ Ω2 b) Ω2

Figure 2.1: Domain decomposition in Ω.

we get the following model problem

4u(x)− s2a(x)u(x) = −sa(x)f0(x), x ∈ Ω,

∂νu(x) = 0, x ∈ Γ3,

∂νu(x) = f0(x)− su(x, s), x ∈ Γ1 ∪ Γ2.

(2.5)

Here, ∂ν(·) denotes the normal derivative on Γ, where ν is the outward unit normal vector
on the boundary Γ.

For further analysis we will assume that for some known constant M ≥ 1 the wave speed
function a(x) is such that

a(x) ∈ [1,M ] , for x ∈ Ω1,

a(x) = 1, for x ∈ Ω \ Ω1.
(2.6)

and assume that
f0 ∈ H1(Ω), a(x) ∈ C(Ω). (2.7)

Let us introduce the following space of real valued functions

U1 = H1(Ω)×H1(Ω)× C
(
Ω
)
. (2.8)

We consider the following inverse problem
Inverse Problem (IP)
Let the coefficient a (x) in the problem (2.5) satisfies conditions (2.6) and assume that

a (x) is unknown in the domain Ω1. Determine the function a (x) in (2.5) for x ∈ Ω1 for
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a) Ω = Ω1 ∪ Ω2 b) Ω2

Figure 2.2: Domain decomposition in Ω.

a single known pseudo-frequency s = s̄ assuming that the following function ũ(x) is known

u(x) = ũ(x) ∀x ∈ Γ. (2.9)

Let us reformulate the model problem for our inverse problems IP which is based on the
equation (2.5). Since u(x) := u(x, s̄) = ũ(x) ∀x ∈ Γ for a single known value of pseudo-
frequency s̄ then the model problem for IP will be:

4u(x)− s̄2a(x)u(x) = −s̄a(x)f0(x), x ∈ Rd, d = 2, 3,

∂νu(x) = 0, x ∈ Γ3,

∂νu(x) = f0(x)− s̄ũ(x), x ∈ Γ1 ∪ Γ2.

(2.10)

On our further considerations we use notation s = s̄.

3 Lagrangian approach for solution IP

In this section we present the reconstruction method to solve inverse problem IP. This
method is based on the finding of the stationary point of the following Tikhonov functional

F (u, c) =
1

2

∫
Γ

(u− ũ)2zδ(x)dS +
1

2
γ

∫
Ω

(a− a0)2 dx, (3.1)

where u satisfies the equations (2.10), a0 is the initial guess for a ( we refer to [6, 8, 9] about
details how to choose an initial guess for problem (2.10)), ũ is the observed field at Γ, γ > 0
is the regularization parameter and zδ(x) is the compatibility function which can be defined
similarly with [11].

To find minimum of (3.1) we apply the Lagrangian approach (see details in [5, 3, 8, 9, 11])
and define the following Lagrangian in the week form using definition of the forward model
problem (2.10)

L(v) = F (u, a) + (λ, f0 − sũ)Γ1∪Γ2 − (∇u,∇λ)Ω − (λ, s2au)Ω + (λ, saf0)Ω, (3.2)



where (·, ·) denote the standard scalar product in L2(Ω)d, d = 2, 3, and v = (u, λ, a) ∈ U1.
We now search for a stationary point of the Lagrangian with respect to v satisfying for all
v̄ = (ū, λ̄, ¯̃a) ∈ U1

L′(v; v̄) = 0, (3.3)

where L′(v; ·) is the Jacobian of L at v.
In order to find the Fréchet derivative (3.3) of the Lagrangian (3.2) we consider L(v +

v̄) − L(v) ∀v̄ ∈ U1 and single out the linear part of the obtained expression with respect
to v̄ ignoring all nonlinear terms. In the derivation of the Fréchet derivative we assume
that in the Lagrangian (3.2) functions in v = (u, λ, a) ∈ U1 can be varied independent on
each others and thus the Fréchet derivative of the Lagrangian (3.2) will be the same as by
assuming that functions u and λ are dependent on the function a, see details in Chapter 4
of [6]. The optimality condition (3.3) for the Lagrangian (3.2) for all v̄ ∈ U1 is

L′(v; v̄) =
∂L

∂λ
(v)(λ̄) +

∂L

∂u
(v)(ū) +

∂L

∂a
(v)(ā) = 0. (3.4)

Thus, to satisfy optimum condition L′(v; v̄) = 0 every component of (3.4) should be zero
out. Using integration by parts together with boundary conditions in (2.10) we get

0 =
∂L

∂λ
(v)(λ̄) = −

∫
Ω

∇u∇λ̄ dx+

∫
Ω

(−s2au+ saf0)λ̄ dx

+

∫
Γ1∪Γ2

(f0 − sũ)λ̄ dS, ∀λ̄ ∈ H1(Ω),

(3.5)

0 =
∂L

∂u
(v)(ū) =

∫
Γ

(u− ũ) ū zδ dS −
∫

Ω

∇λ∇ū dx

−
∫

Ω

s2aλū dx ∀ū ∈ H1(Ω),

(3.6)

0 =
∂L

∂a
(v)(ā) =

∫
Ω

(−s2λu+ sλf0) ā dx+ γ

∫
Ω1

(a− a0) ā dx, ∀ā ∈ C
(
Ω
)
. (3.7)

It is clear that (3.5) corresponds to the state equation (2.10) and (3.6) corresponds to
the following adjoint problem

4λ− s2aλ = 0, x ∈ Ω,

∂nλ = (u− ũ)zδ, x on Γ.
(3.8)

Let us define by u(a), λ(a) exact solutions of the forward and adjoint problems, re-
spectively, for the known wave speed function a. Then using the fact that exact solutions
u(a), λ(a) are sufficiently stable (see Chapter 5 of book [21] for details), we get from (3.2)

F (u(a), a) = L(v(a)), (3.9)

and the Fréchet derivative of the Tikhonov functional can be written as

F ′(a) :=F ′(u(a), a) =
∂F

∂a
(u(a), a) =

∂L

∂a
(v(a)). (3.10)

Inserting (3.7) into (3.10), we get the expression for the gradient with respect to the wave
speed function which we will use for updating this function in the conjugate gradient method

F ′(a)(x) := F ′(u(a), a)(x) = −s2λu+ sλf0 + γ(a− a0). (3.11)



4 Conjugate gradient algorithm

Recall that we denote the standard inner product in [L2(Ω)]d as (·, ·), d ∈ {1, 2, 3}, and
the corresponding norm by ‖ · ‖. To compute minimum of the functional (3.1) we use the
conjugate gradient method (CGM). Let us define the gradient with respect to the wave
speed function at the iteration m in CGM as

gm(x) = −s2λmh u
m
h + sλmh f0 + γm(amh − a0), (4.1)

where amh is approximation of the function ah on the iteration stepm in GCM, uh(x, amh ), λh(x, amh )
are computed by solving the state problem (2.10) and the adjoint problem (3.8), respectively,
with a := amh , γm is iteratively computed regularization parameter via rules of [1].

The usual gradient method (GM) is the special case of the conjugate gradient method
(CGM) such that functions am are computed as

am+1(x) = am(x) + αmdm(x), (4.2)

where αm are iteratively updated parameter and dm is the direction which is computed for
usual gradient method as

dm = −gm (4.3)

and for the conjugate gradient method as

dm = −gm + βmdm−1, (4.4)

at the iteration m where parameters βm are computed as in (4.10).

Step-size in the gradient update αm is computed such that it gives minimum to the
Lagrangian L(umh , λ

m
h , a

m
h + αmdm), or such that L′αm(umh , λ

m
h , a

m
h + αmdm) = 0. More

precisely, using definition of the Lagrangian (3.2) we have

L(umh , λ
m
h , a

m
h + αmdm) = F (umh , a

m
h + αmdm) +∫

Ω

λmh [−s2(amh + αmdm)umh + s(amh + αmdm)f0] dx

−
∫

Ω

∇λmh ∇umh dx+

∫
Γ1∪Γ2

(f0 − sũh)λmh dS,

(4.5)

and

L′αm(umh , λ
m
h , a

m
h + αmdm) = γm

∫
Ω

(amh + αmdm − a0)dm dx

+

∫
Ω

λmh (−s2dmumh + sdmf0) dx = 0.

(4.6)

We can obtain directly from (4.6)

αm =
(λmh (s2umh − sf0)− γmamh + γma0, d

m)

γm(dm, dm)
(4.7)

or using definition (4.1) for gm we obtain following expression for computation of the iterative
parameter αm:

αm = − (gm, dm)

γm(dm, dm)
. (4.8)



Algorithm (CGM)

• Step 0. Choose the computational space mesh Kh in Ω. Choose the initial value of
the regularization parameter γ0. Start with the initial approximation a0

h = a0 at Kh

and compute the sequences of amh via the following steps:

• Step 1. Compute solutions uh(x, amh ) and λh(x, amh ) of state (2.10) and adjoint (3.8)
problems, respectively, on Kh.

• Step 2. Update the coefficient ah := am+1
h on Kh (only inside the discretized domain

Ω1) using

am+1
h = amh + αmdm(x), (4.9)

where

dm(x) = −gm(x) + βmdm−1(x),

with

βm =
‖gm(x)‖2

‖gm−1(x)‖2
, (4.10)

where d0(x) = −g0(x). In (4.9) the step size αm in the gradient update is computed
as

αm = − (gm, dm)

γm‖dm‖2
, (4.11)

and the regularization parameter γm at iteration m is computed iteratively accordingly
to [1] as

γm =
γ0

(m+ 1)p
, p ∈ (0, 1). (4.12)

• Step 3. Stop computing amh and obtain the function ah at M = m if either ‖gm‖L2(Ω) ≤
θ or norms ‖gm‖L2(Ω) are stabilized. Here θ is the tolerance in updates m of gradient
method. Otherwise set m := m+ 1 and go to step 1.

5 Instructions for solution of CIP

In the project report you should present numerical simulations for reconstruction of the
function a(x) in (2.10) via CGM algorithm of section 4 in the domain Ω = [0, 1] × [0, 1]
using data generated at the boundary Γ of Ω described in section 6. Alternatively, you can
generate your own data as it is described below, and solve IP via CGM.

1. Discretize the computational domain Ω = [0, 1]× [0, 1] and construct mesh Kdatah . To
avoid variational crime the mesh Kdatah should not coincide with the mesh Kh used
for solution IP in the algorithm CGM.

2. Compute solution uh(x, a) of state (2.10) problem with f0 = 0 and known function
a(x) for Tests 1 and 2, see section 5.2 for definition of this function. Save discrete
values of the observed solution uh(x) = ũh at Γ.



Figure 4.1: Functions a(x) in Ω1 used in Test 1 (left figure) and Test 2 (right figure).

3. You can also generate data for the case when f0 6= 0 in (2.10). For example, take

f0 = e−(x2
1+x2

2) at the backscattered boundary of the domain Ω.

4. When solving IP it is assumed that the exact values of the function a(x) are not known
and algorithm CGM should be runned with some initial guess for a = a0. Usually, we
take a0 = 1 in all points of the computational domain Ω since previous computational
works [5, 8, 9] as well as experimental works of [22, 23] have shown that a such choice
gives good results of reconstruction.

5. Add additive or random noise δ to data ũ using the formula

ũσ = ũ(1 + δ),

for additive noise and
ũσ = ũ(1 + δα),

for random noise. Here, α ∈ (−1, 1) is randomly distributed number, δ ∈ [0, 1] is the
noise level. For example, if noise in data is 5%, then δ = 0.05.

6. Solve IP via CGM using data ũ with different functions a to be reconstructed defined
in Test 1 and Test 2. Analyze obtained results by computing the relative error e in
the obtained reconstructions of a depending on the different noise level δ ∈ [0, 1] in
data ũ.

The relative error e compute as

e =
‖ah − a∗‖
‖a∗‖

, (5.1)

Here, a∗ is the exact value given by (5.6) for Test 1 and by (5.7) for Test 2, corre-
spondingly, and ah - computed one. Present results how relative errors (5.1) depend
on the random noise δ ∈ [0, 1] in graphical form and in the corresponding table.

7. Optional: discretize the computational domain Ω into elements with different sizes
hl = 2−l, l = 1, ..., 6. and present results of computations in graphical form and in the
corresponding table. More precisely, present how relative error (5.1) depends on the



number of discretization points N and mesh size hl = 2−l, l = 1, ..., 6 in Ω. Compute
convergence rates as

q =
log
(
eh
e2h

)
log(0.5)

, (5.2)

where eh, e2h are computed relative norms e on the mesh Kh with the mesh size h and
2h, respectively.

Results can be presented as in the following example:

l nel nno e q
1 8 9 2.71 · 10−2

2 32 25 6.66 · 10−3 2.02
3 128 81 1.78 · 10−3 1.90
4 512 289 4.13 · 10−4 2.11
5 2048 1089 1.05 · 10−4 1.97
6 8192 4225 2.65 · 10−5 1.99

Table 5.1: Example of computing relative errors in the L2-norm for mesh sizes hl = 2−l, l =
1, ..., 6.

5.1 Description of the process of data generation of section 6

We set the dimensionless computational domain Ω = [−0.5, 1.5] × [−0.5, 1.5] such that it
is divided into two subdomains Ω2 and Ω1 = [0, 1] × [0, 1] where Ω = Ω1 ∪ Ω2 with two
layers of structured overlapping nodes between these domains, see Figure 2.2 and Figure
2 of [5] for details about communication between two domains. The mesh size h in Ω =
Ω1 ∪ Ω2 is h = 0.03125. In computations time-dependent observations are collected at
(Γ1 ∪ Γ2)× (0, T ] at the backscattering Γ1 and transmitted Γ2 sides of Ω, respectively. We
define Γ1,1 := Γ1 × (0, t1], Γ1,2 := Γ1 × (t1, T ].

For generation of data at the boundary Γ of the domain Ω = [0, 1]× [0, 1] was solved the
time-dependent problem (2.3) with absorbing boundary conditions (2.4) in time T = [0, 2.0]
with the time step τ = 0.002 which satisfies to the CFL condition [7] using the domain
decomposition method of [5]. More precisely, the model problem for time-dependent wave
equation is

a(x)∂2
tU(x, t)−4U(x, t) = 0 in Ω× (0, T ],

U(x, 0) = 0, Ut(x, 0) = 0 in Ω,

∂nU = f(t) on Γ1,1,

∂nU = −∂tU on Γ1,2 ∪ Γ2,

∂nU = 0 on Γ3 × (0, T ].

(5.3)

In (5.3) the function f(t) is defined as

f(t) =

{
sin (ωst) , if t ∈

(
0, 2π

ωs

]
,

0, if t > 2π
ωs
.

(5.4)



and represents the single direction of a plane wave initialized at Γ1 in time t = [0, 2.0]. In
all computations we take ωs = 80.

We assume that a(x) = 1 is known inside Ω2 and satisfy conditions (2.6). The wave
speed function was chosen as (5.6) in Test 1 and as (5.7) in Test 2. Then the Laplace
transform (2.2) was applied to the computed time-dependent solution u(x, t) of the problem
(5.3) at the pseudo-frequency interval for s ∈ [2.0, 7.0], then additive noise σ was added to
the obtained solution.

Let us take now the Laplace transform

u(x, s) :=

∫ +∞

0

U(x, t)e−stdt, s = const. > 0

of the function U (x, t) in the time-dependent wave equation (5.3). Then with f(t) defined by
(5.4) on Γ1 we obtain the following problem in space and pseudo-frequency s for s ∈ [2.0, 7.0]
:

4u(x, s)− s2a(x)u(x, s) = 0, x ∈ Rd, d = 2, 3,

∂νu(x, s) = 0, x ∈ Γ3,

∂νu(x, s) = I1 − suωs(x, s)], x ∈ Γ1,

∂νu(x) = −su(x, s), x ∈ Γ2,

(5.5)

where I1

I1 =
C

1 + s2

ω2
s

, C = − exp−
2πs
ωs

ωs
+

1

ωs
,

uωs(x, s) =

∫ +∞

2π
ωs

U(x, t)e−stdt.

To be able use conjugate gradient algorithm of section (4) for solution of inverse problem
IP with data generated after taking the Laplace transform of the wave equation (5.3), one
need to solve modified model problem (2.10), or the problem (5.5).

5.2 Test 1

In this test should be reconstructed one smooth function given by

a(x) = 1.0 + 2.0 · e−((x1−0.5)2+(x2−0.7)2)/0.001 (5.6)

which is presented in Figure 4.1- a).

5.3 Test 2

In this test should be reconstructed two smooth functions given by

a(x) = 1.0 + 2.0 · e−((x1−0.5)2+(x2−0.7)2)/0.001 + 3.0 · e−((x1−0.2)2+(x2−0.6)2)/0.001. (5.7)

see Figure 4.1- b) for this function.



ũ(x, 3) at Γ1 ũ(x, 3) at Γ2

ũ(x, 7) at Γ1 ũ(x, 7) at Γ2

Figure 5.1: Test 1. Laplace transform of data Ũ(x, t) with 3% noise at the backscattered
boundary Γ1 and transmitted boundary Γ2 for different values of parameter s in (2.2).



6 Description of data

Testing data are available for download from the following links:

• Observation data for one Gaussian function given by (5.6) and with 3% additive noise:

http://www.math.chalmers.se/ larisa/www/IPcourse2019/OBSref5noise3h03125gaus1.zip

• Observation data for one Gaussian function given by (5.7) and with 3% additive noise:

http://www.math.chalmers.se/ larisa/www/IPcourse2019/OBSref5noise3h03125gaus2.zip

• Observation data for one Gaussian function given by (5.6) and with 10% additive
noise:

http://www.math.chalmers.se/ larisa/www/IPcourse2019/OBSref5noise10h03125gaus1.zip

• Observation data for one Gaussian function given by (5.7) and with 10% additive
noise:

http://www.math.chalmers.se/ larisa/www/IPcourse2019/OBSref5noise10h03125gaus2.zip

In every directory

OBSref5noise*h03125gaus*

will be following files:

• Time-dependent solution of the problem (5.3) is computed in time [0, 2] and can be
visualized in GID using files

ex_plane2Dcommon.res

ex_plane2DFDM.res

ex_plane2DFEM.res

or in PARAVIEW using files

outInn*.inp

(only FEM solution).

• Laplace transform of the time-dependent solution on the pseudo-frequency interval for
s ∈ [2.0, 7.0] can be visualized in GID using the file

Laplace.res

• Fourier transform (real, imaginary and absolute values) can be visualized on the fre-
quency interval for ω ∈ [30, 80] in GID using the file

Fourier.res



Files

AbsFourierTr*.inp

contain only absolute value of the Fourier transform and can be visualized in PAR-
AVIEW.

• Files

L_top*.m

L_bot*.m

L_left*.m

L_right*.m

contain data ũ(x, s) after Laplace transform (2.2) of data Ũ(x, t) at the pseudo-
frequency interval for s ∈ [2.0, 7.0] in time [0, 2] at the top, bottom, left and right
boundaries, respectively, of Ω1. One example of visualization of this data in Matlab
is given in Figure 5.1 for top Γ1 and bottom Γ2 boundaries of Ω. To visualize data in
Matlab,

>load L_top*.m

>plot(L_top*)

• Files

Freal_top*.m

Freal_bot*.m

Freal_left*.m

Freal_right*.m

contain real part of data ũ(x, ω) after Fourier transform of data Ũ(x, t) at the top,
bottom, left and right boundaries, respectively, of Ω1 on the frequency interval for
ω ∈ [30, 80] in time [0, 2].

• Files

Fimag_top*.m

Fimag_bot*.m,

Fimag_left*.m

Fimag_right*.m

contain imaginary part of data ũ(x, ω) after Fourier transform of data Ũ(x, t) at the
top, bottom, left and right boundaries, respectively, of Ω1 on the frequency interval
for ω ∈ [30, 80] in time [0, 2].

• Files

FourierTrReal*.m

FourierTrImag*.m

contain Fourier transform of the time-dependent noisy solution U(x, t) on the fre-
quency interval for ω ∈ [30, 80] in the whole domain Ω1.



7 Solution of the test problem using C++/PETSc

In this section we illustrate how C++/PETSc solver can be used for solution of the following
Dirichlet problem for Helmholtz equation in two dimensions:

4u(x) + ω2ε(x)u = f(x) in Ω,

u = 0 on ∂Ω.
(7.1)

Here f(x) is a given function, u(x) is the unknown function to be computed, and the
domain Ω is the unit square Ω = {(x1, x2) ∈ (0, 1)× (0, 1)}.

The exact solution of (7.1) with the right hand side

f(x1, x2) = −(8π2) sin(2πx1) sin(2πx2)− 2ix1(1− x1)− 2ix2(1− x2)

+ ω2ε(x)(sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2))
(7.2)

is the function

u(x1, x2) = sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2). (7.3)

To solve numerically (7.1) we first discretize the domain Ω with x1i = ih1 and x2j = jh2,
where h1 = 1/(ni − 1) and h2 = 1/(nj − 1) are the mesh sizes in the directions x1, x2,
respectively, ni and nj are the numbers of discretization points in the directions x1, x2,
respectively. Usually, in computations we have the same mesh size h = h1 = h2. In this
example we choose ni = nj = n with n = N + 2, where N is the number of inner nodes in
the directions x1, x2, respectively.

Indices (i, j) are such that 0 ≤ i, j < n and are associated with every global node nglob
of the finite difference mesh. Global nodes numbers nglob in two-dimensional case can be
computed using the following formula:

nglob = j + nii. (7.4)

We use the standard finite difference discretization of the Laplace operator ∆u in two
dimensions and obtain discrete laplacian ∆ui,j :

∆ui,j =
ui+1,j − 2ui,j + ui−1,j

h2
+
ui,j+1 − 2ui,j + ui,j−1

h2
, (7.5)

where ui,j is the solution at the discrete point (i, j). Using (7.5), we obtain the following
scheme for solving problem (7.1):(

ui+1,j − 2ui,j + ui−1,j

h2
+
ui,j+1 − 2ui,j + ui,j−1

h2

)
+ ω2 · εi,j · ui,j = fi,j , (7.6)

where εi,j , fi,j are the values of the functions ε, f at the discrete point (i, j), correspondingly.
Next, (7.6) can be rewritten as

ui+1,j − 4ui,j + ui−1,j + ui,j+1 + ui,j−1 + h2 · ω2 · εi,j · ui,j = h2fi,j . (7.7)

which forms the system of linear equations

Au = b, (7.8)



where the vector b has the components bi,j = h2fi,j , the elements of the matrix A are given
by

A =


AN IN

IN
. . .

. . .

. . .
. . . IN
IN AN

+ h2 · ω2 · εi,j · I

with identity matrix I of order N2 and blocks AN of order N such that

AN =


−4 1 0 0 · · · 0

1 −4 1 0 · · · 0
0 1 −4 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 1 −4

 ,

which are located on the diagonal of the matrix A, and blocks with the identity matrices IN
of order N on its off-diagonals.

8 Description of C++/PETSc solver

In this section is demonstrated how PETSc [25] can be used for the solution of the problem
(7.1). We set the computational domain to be the unit square Ω = {(x1, x2) ∈ (0, 1)×(0, 1)}
and discretize it as it described in the previous section.

The PETSc program of Appendix A are available for running of this example. We have
executed the main program

cplxmaxwell.cpp

using version of PETSc

petsc-3.10.4c

on 64 bits Red Hat Linux Workstation. An example of Makefile used for compilation of
PETSc program in Appendix A is presented below:

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.10.4c

include ${PETSC_ARCH}/lib/petsc/conf/variables

include ${PETSC_ARCH}/lib/petsc/conf/rules

MPI_INCLUDE = ${PETSC_ARCH}/include/mpiuni

CXX = g++

CXXFLAGS = -Wall -Wextra -g -O0 -c -Iinclude -I${PETSC_ARCH}/include

-I${MPI_INCLUDE}

LD = g++

LFLAGS =

OBJECTS = cplxmaxwell.o

RUNMAXWELL = runmaxwell



all: $(RUNMAXWELL)

%.o: %.cpp

$(CXX) $(CXXFLAGS) -o $@ $<

$(RUNMAXWELL): $(OBJECTS)

$(LD) $(LFLAGS) $(OBJECTS) $(PETSC_LIB) -o $@

For solution of system of linear equations (7.8) was used inbuilt PETSc function with
the scalable linear equations solvers (KSP) component. This component provides interface
to the combination of a Krylov subspace iterative method and a preconditioner which can
be chosen by user [25]. It is possible choose between three different preconditioners which
are encoded by numbers:

1- Jacobi’s method

2 - Gauss-Seidel method

3 - Successive Overrelaxation method (SOR)

To run the main program cplxmaxwell.cpp one need to write:

>runmaxwellv2 argv[1] argv[2]

Here, arguments are defined as follows:

argv[1] - preconditioner (should be 1,2 or 3)

argv[2] - number of discretization points in x and y directions

For example, to execute the main program cplxmaxwell.cpp using SOR method and
21 discretization points in x and y directions, one should run this program, as follows:

>runmaxwell 3 21

The results will be printed in the files

nodes.m

values.m

and can be visualized in Matlab using the file

viewer.m

which is available for download in Appendix A. Figure 8.1 shows these results.



Figure 8.1: Solution of the problem (7.1) using the C++/PETSc program of Appendix A
via SOR with nx = ny = 21.



A C++/PETSc Program

A.1 Program cplxmaxwell.cpp

// to run

// runmaxwell argv[1] argv[2]

// Arguments:

// argv[1] - preconditioner (should be 1,2 or 3)

// argv[2] - number of discretization points in x and y directions

static char help[] ="";

#include<iostream>

#include<fstream>

#include<petsc.h>

#include<petscvec.h>

#include<petscmat.h>

#include<petscksp.h>

#include<complex>

using namespace std;

char METHOD_NAMES[8][70] = {

"invalid method",

"Jacobi’s method",

"Gauss-Seidel method",

"Successive Overrelaxation method (SOR)"};

char *GetMethodName(PetscInt method) {

if (method < 0 || method > 3)

return METHOD_NAMES[0];

else

return METHOD_NAMES[method];

}

PetscScalar epsilon(const PetscReal x, const PetscReal y)

{

PetscReal rpart, ipart;

PetscReal x_0=0.5;

PetscReal y_0=0.5;

PetscReal c_x=1;

PetscReal c_y=1;

rpart=2*exp(-((x-x_0)*(x-x_0)/(2*c_x*c_x) +(y-y_0)*(y-y_0)/(2*c_y*c_y)));

ipart = 0;

PetscScalar scalareps(rpart, ipart);

return scalareps;

}



PetscScalar right_hand_side(const PetscReal x, const PetscReal y,

const PetscReal omega)

{

PetscReal rpart, ipart, pi = 3.14159265359;

PetscReal x_0=0.5;

PetscReal y_0=0.5;

PetscReal c_x=1;

PetscReal c_y=1;

PetscReal epsilon_real =

2*exp(-((x-x_0)*(x-x_0)/(2*c_x*c_x) +(y-y_0)*(y-y_0)/(2*c_y*c_y)));

rpart = -(8*pi*pi)*sin(2*pi*x)*sin(2*pi*y)

+ omega*omega*epsilon_real*(sin(2*pi*x)*sin(2*pi*y));

ipart = -2*(x - x*x + y - y*y)

+ omega*omega*epsilon_real*x*(1-x)*y*(1-y);

PetscScalar f(rpart, ipart);

return f;

}

PetscScalar wave_number(const PetscReal kreal, const PetscReal kimag)

{

//PetscReal rpart, ipart;

//rpart = 1;

//ipart = 1;

PetscScalar k(kreal, kimag);

return k;

}

int main(int argc, char **argv)

{

PetscErrorCode ierr;

cout << "Initializing ..." << endl;

// PetscInitialize(&argc, &argv, NULL, NULL);

ierr = PetscInitialize(&argc, &argv,(char *)0, help);CHKERRQ(ierr);

PetscInt method = atoi(argv[1]);

PetscBool methodSet = PETSC_FALSE;

ierr = PetscOptionsGetInt(NULL, NULL, "-m", &method, &methodSet);

if (method < 1 || method > 7) {

cout << "Invalid number of the selected method: "

<< method << ".\nExiting..." << endl;

exit(-1);

}



PetscPrintf(PETSC_COMM_WORLD, "Using %s\n", GetMethodName(method));

cout << "Setting parameters..." << endl;

Vec b, u;

Mat A;

KSP ksp;

PC preconditioner;

PetscInt Nx = atoi(argv[2]), Ny = Nx, Nsys, node_idx = 0, col[5], nadj;

Nsys = Nx*Ny; // dimension of linear system = number of nodes

PetscReal x[Nx], y[Ny], nodes[Nsys][2];

PetscScalar value, value_epsilon, diffpoints[5], h;

// Set up vectors

cout << "Setting up vectors..." << endl;

ierr = VecCreate(PETSC_COMM_WORLD, &b); CHKERRQ(ierr);

ierr = VecSetSizes(b, PETSC_DECIDE, Nsys); CHKERRQ(ierr);

ierr = VecSetType(b, VECSTANDARD); CHKERRQ(ierr);

ierr = VecDuplicate(b, &u);

// Set up matrix

cout << "Setting up matrix..." << endl;

ierr = MatCreate(PETSC_COMM_WORLD, &A); CHKERRQ(ierr);

ierr = MatSetSizes(A,PETSC_DECIDE, PETSC_DECIDE, Nsys, Nsys);

CHKERRQ(ierr);

ierr = MatSetFromOptions(A); CHKERRQ(ierr);

ierr = MatSetUp(A); CHKERRQ(ierr);

// Create grid

cout << "Constructing grid..." << endl;

h = 1.0/(Nx - 1);

for (int i = 0; i < Nx; i++)

x[i] = 1.0*i/(Nx - 1);

for (int j = 0; j < Ny; j++)

y[j] = 1.0*j/(Ny - 1);

// Assemble linear system ...

cout << "Assembling system..." << endl;

PetscScalar k;

double omegareal=40;

for (int i = 0; i < Nx; i++)

{

for (int j = 0; j < Ny; j++)

{

nodes[node_idx][0] = x[i];

nodes[node_idx][1] = y[j];



k = omegareal*omegareal*epsilon(x[i], y[j]);

value_epsilon = h*h*k;

diffpoints[0] = -4.0 + h*h*k;

diffpoints[1] = 1.0;

diffpoints[2] = 1.0;

diffpoints[3] = 1.0;

diffpoints[4] = 1.0;

if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) // interior

{

col[0] = node_idx;

col[1] = node_idx - 1;

col[2] = node_idx + 1;

col[3] = node_idx - Ny;

col[4] = node_idx + Ny;

nadj = 5;

value = h*h*right_hand_side(x[i], y[j],omegareal);

} else // on boundary

{

col[0] = node_idx;

nadj = 1;

value = 0.0;

}

ierr = MatSetValues(A, 1, &node_idx, nadj, col, diffpoints, INSERT_VALUES);

CHKERRQ(ierr);

ierr = VecSetValues(b, 1, &node_idx, &value, INSERT_VALUES);

CHKERRQ(ierr);

node_idx++;

}

}

ierr = MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr = MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

// Solve linear system

cout << "Solving linear system ..." << endl;

ierr = KSPCreate(PETSC_COMM_WORLD, &ksp); CHKERRQ(ierr);

ierr = KSPSetOperators(ksp, A, A); CHKERRQ(ierr);

// set preconditioner

ierr = KSPGetPC(ksp, &preconditioner); CHKERRQ(ierr);

if (method == 1)

{

ierr = PCSetType(preconditioner,PCJACOBI); CHKERRQ(ierr);

}

else if (method == 2)

{



ierr = PCSetType(preconditioner, PCSOR);

CHKERRQ(ierr);

}

else if (method == 3)

{

const PetscReal omega = 1.5;

ierr = PCSetType(preconditioner, PCSOR); CHKERRQ(ierr);

ierr = PCSORSetOmega(preconditioner, omega); CHKERRQ(ierr);

}

ierr = KSPSetFromOptions(ksp); CHKERRQ(ierr);

ierr = KSPSolve(ksp, b, u); CHKERRQ(ierr);

// Print to files

cout << "Writing to files..." << endl;

FILE* nodefile = fopen("nodes.m", "w");

for (int idx = 0; idx < Nsys; idx++)

fprintf(nodefile, "%f \t %f \n", nodes[idx][0], nodes[idx][1]);

fclose(nodefile);

FILE* solfile = fopen("values.m", "w");

for (int idx = 0; idx < Nsys; idx++)

{

ierr = VecGetValues(u, 1, &idx, &value);

fprintf(solfile, "%f \t %f \n", real(value), imag(value));

}

fclose(solfile);

// Clean up

ierr = VecDestroy(&b); CHKERRQ(ierr);

ierr = VecDestroy(&u); CHKERRQ(ierr);

ierr = MatDestroy(&A); CHKERRQ(ierr);

ierr = KSPDestroy(&ksp); CHKERRQ(ierr);

// Finalize and finish

ierr = PetscFinalize();

return 0;

}

A.2 Matlab program viewer.m for visualization of results

load nodes.m

load values.m

u = @(x, y) sin(2*pi*x).*sin(2*pi*y) + 1i*x.*(1 - x).*y.*(1 - y);

x_0=0.5;

y_0=0.5;

c_x= 0.1;

c_y=0.1;

epsilon = @(x, y) 2*exp(-((x-x_0).*(x-x_0)/(2*c_x.*c_x) ...



+(y-y_0).*(y-y_0)/(2*c_y.*c_y)));

% for test 2

%epsilon = @(x, y) 1+2*exp(-((x-0.5).*(x-0.5) +(y-0.7).*(y-0.7))/0.001) ...

+ 3*exp(-((x-0.2).*(x-0.2) +(y-0.6).*(y-0.6))/0.001);

n = sqrt(size(nodes, 1));

X = reshape(nodes(:, 1), n, n);

Y = reshape(nodes(:, 2), n, n);

Ur = reshape(values(:, 1), n, n);

Ui = reshape(values(:, 2), n, n);

[Xe, Ye] = meshgrid(linspace(0, 1, 30), linspace(0, 1, 30));

ur = real(u(Xe, Ye));

ui = imag(u(Xe, Ye));

Eps = epsilon(Xe, Ye)

subplot(3, 2, 1)

surf(X’, Y’, Ur)

title(’u_h Real, computed’)

view(2)

subplot(3, 2, 2)

surf(Xe, Ye, ur)

title(’u Real, exact’)

view(2)

subplot(3, 2, 3)

surf(X’, Y’, Ui)

title(’u_h Imag, computed’)

view(2)

subplot(3, 2, 4)

surf(Xe, Ye, ui)

title(’u Imag, exact’)

view(2)

subplot(3, 2, 5)

surf(Xe, Ye, Eps)

title(’exact epsilon, 3D view’)

subplot(3, 2, 6)

surf(Xe, Ye, Eps)

view(2)

title(’exact epsilon, 2D’)

shg
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