Numerical methods and machine learning algorithms for solution of Inverse problems

Larisa Beilina*

Department of Mathematical Sciences, Chalmers University of Technology and
Gothenburg University, SE-42196 Gothenburg, Sweden

NFMV020/MMF900

Microwave medical imaging in monitoring of hyperthermia: the course project and code

- Presentation of the course project "Regularized algorithms for detection of tumours in microwave medical imaging". Matlab code (data and programs, zip file) with an example see in CANVAS, "Computer Projects":
http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/ 2021/IPcourse/Project_Hyperthermi.pdf
- Matlab code: in CANVAS as well as in https://github.com/ProjectWaves24/MicrowaveHyperMatlab
- Advanced C++/PETSc computations and visualization in paraview: https://github.com/ProjectWaves24/MESH. Needs account in github, contact me.
- Advanced C++/PETSc computations using adaptive FEM: https://github.com/ProjectWaves24/MicrowaveHypAFEM2 Needs account in github, contact me.

Statement of an ill-posed problem

Let $\Omega \subset \mathbb{R}^{n}, n=2,3$ which is a bounded domain with the boundary $\partial \Omega$. Our goal is to solve a Fredholm integral equation of the first kind

$$
\begin{equation*}
\int_{\Omega} \rho(x, y) z(x) d x=u(y) \quad y \in \Omega \tag{1}
\end{equation*}
$$

where $u(y) \in L_{2}(\Omega), z(x) \in H, \rho(x, y) \in C^{k}(\Omega \times \Omega), k \geq 0$ is the kernel of the integral equation. We can rewrite (1) in an operator form as

$$
\begin{equation*}
A(z)=u \tag{2}
\end{equation*}
$$

with an operator $A: H \rightarrow L_{2}(\Omega)$ defined as

$$
\begin{equation*}
A(z):=\int_{\Omega} \rho(x, y) z(x) d x \tag{3}
\end{equation*}
$$

The Problem (P).
Let $z(x) \in H$ in

$$
\begin{equation*}
\int_{\Omega} \rho(x, y) z(x) d x=u(y) \quad y \in \Omega \tag{4}
\end{equation*}
$$

be unknown in Ω. Determine $z(x) \in H$ for $x \in \Omega$ assuming that functions $\rho(x, y) \in C^{k}(\Omega \times \Omega), k \geq 0$ and $u(y) \in L_{2}(\Omega)$ in (4) are known.

The Tikhonov functional

Let W_{1}, W_{2}, Q be three Hilbert spaces, $Q \subseteq W_{1}$ as a set. We denote scalar products and norms in these spaces as

$$
\begin{aligned}
& (\cdot, \cdot),\|\cdot\| \text { for } W_{1} \text {, } \\
& (\cdot, \cdot)_{2},\|\cdot\|_{2} \text { for } W_{2} \\
& \text { and }[\cdot, \cdot],[\cdot] \text { for } Q .
\end{aligned}
$$

Let A : $W_{1} \rightarrow W_{2}$ be a bounded linear operator. Our goal is to find the function $z \in Q$ which minimizes the Tikhonov functional

$$
\begin{equation*}
J_{\alpha}(z)=\frac{1}{2}\|A z-u\|_{2}^{2}+\frac{\alpha}{2}[z]^{2}, u \in W_{2} ; z \in Q, \tag{5}
\end{equation*}
$$

where $\alpha>0$ is a regularization parameter. We search for a stationary point of the above functional with respect to z satisfying $\forall b \in Q$

$$
\begin{equation*}
J_{\alpha}^{\prime}(z)(b)=0, \tag{6}
\end{equation*}
$$

where $J_{\alpha}^{\prime}(z)$ is the Fréchet derivative of the functional (5).

The Tikhonov functional

When the operator $A: L_{2} \rightarrow L_{2}$ the following Lemma is valid:
Lemma 1a [BKS] Let $A: L_{2} \rightarrow L_{2}$ be a bounded linear operator. Then the Fréchet derivative of the functional (5) is

$$
\begin{equation*}
J_{\alpha}^{\prime}(z)(b)=\left(A^{*} A z-A^{*} u, b\right)+\alpha[z, b], \forall b \in Q . \tag{7}
\end{equation*}
$$

In particular, for the integral operator (4) we have

$$
\begin{equation*}
J_{\alpha}^{\prime}(z)(b)=\int_{\Omega} b(s)\left[\int_{\Omega} z(y)\left(\int_{\Omega} \rho(x, y) \rho(x, s) d x\right) d y-\int_{\Omega} \rho(x, s) u(x) d x\right] d s \tag{8}
\end{equation*}
$$

[BKS] A. B. Bakushinsky, M. Y. Kokurin, A. Smirnova, Iterative methods for ill-posed problems, Walter de Gruyter GmbH\&Co., 2011.

The Tikhonov functional

When the operator $A: H^{1} \rightarrow L_{2}$ the following Lemma is valid:
Lemma 1b [BGN] Let $A: H^{1}(\Omega) \rightarrow L_{2}\left(\Omega_{K}\right)$ be a bounded linear operator. Then the Fréchet derivative of the functional

$$
\begin{equation*}
M_{\alpha}(f)=\frac{1}{2}\|A f-u\|_{L_{2}\left(\Omega_{k}\right)}^{2}+\frac{\alpha}{2}\||\nabla f|\|_{L^{2}(\Omega)}^{2}, \tag{9}
\end{equation*}
$$

is

$$
\begin{equation*}
M_{\alpha}^{\prime}(f)(b)=\left(A^{*} A f-A^{*} u, b\right)+\alpha(|\nabla f|,|\nabla b|), \forall b \in H^{1}(\Omega), \tag{10}
\end{equation*}
$$

with a convex growth factor b, i.e., $|\nabla b|<b$
[BGN] L. Beilina, G. Guillot, K. Niinimäki,, The Finite Element Method and Balancing Principle for Magnetic Resonance
Imaging, Springer Proceedings in Mathematics and Statistics, vol 328. Springer, Cham (2020).

Lemma 2 is also well known since $A: W_{1} \rightarrow W_{2}$ is a bounded linear operator.
Lemma 2 [TGSY] Let the operator $A: W_{1} \rightarrow W_{2}$ be a bounded linear operator which has the Fréchet derivative of the functional (5). Then the functional $J_{\alpha}(z)$ is strongly convex on the space Q and

$$
\left(J_{\alpha}^{\prime}(x)-J_{\alpha}^{\prime}(z), x-z\right) \geq \alpha[x-z]^{2}, \forall x, z \in Q .
$$

It is known from the theory of convex optimization that Lemma 2 implies existence and uniqueness of the global minimizer $z_{\alpha} \in Q$ of the functional J_{α} such that

$$
J_{\alpha}\left(z_{\alpha}\right)=\inf _{z \in Q} J_{\alpha}(z)
$$

[TGSY] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov and A.G. Yagola, Numerical Methods for the Solution of III-Posed Problems, London: Kluwer, London, 1995.

Microwave medical imaging in monitoring of hyperthermia

- Joint work with the group of Biomedical Imaging at the Department of Electrical Engineering at CTH, Chalmers.
- Microwave hyperthermia is used for cancer therapies: it increases the tumour temperature to $40-44^{\circ} \mathrm{C}$ keeping healthy tissue at the normal temperature.
- Thermal dose monitoring is critical for treatment. Thus, robust real-time methods for localization of the focal point in the target are needed.
- AFEM with combination of least squares method is applied in microwave thermometry for non-invasive monitoring of hyperthermia [1].
[1] M. G. Aram, L. Beilina, H. Dobsicek Trefna, Microwave Thermometry with Potential Application in Non-invasive Monitoring of Hyperthermia, Journal of Inverse and III-posed problems, https://doi.org/10.1515/jiip-2020-0102, 2020.

CIP for electromagnetic problems. Maxwell's equations

Consider a region of space that has no electric or magnetic current sources, but may have materials that absorb electric or magnetic field energy. Then, using MKS units, the time-dependent Maxwell's equations are given in differential and integral form by Faraday's law :

$$
\begin{align*}
& \frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E}-\mathbf{M} \tag{11a}\\
& \frac{\partial}{\partial t} \iint_{A} \mathbf{B} \cdot \mathbf{d} \mathbf{A}=-\oint_{L} \mathbf{E} \cdot \mathbf{d L}-\iint_{A} \mathbf{M} \cdot \mathbf{d} \mathbf{A} \tag{11b}
\end{align*}
$$

The MKS system of units is a physical system of units that expresses any given measurement using fundamental units of the metre, kilogram, and/or second (MKS))
A. Taflove, S. C. Hagness, Computational Electromagnetics. The finite-difference time-domain method, 3rd edition, Artech House Publishers, 2005.

Maxwell's equations

Ampere's law :

$$
\begin{align*}
& \frac{\partial \mathbf{D}}{\partial t}=\nabla \times \mathbf{H}-\mathbf{J} \tag{12a}\\
& \frac{\partial}{\partial t} \iint_{A} \mathbf{D} \cdot \mathbf{d A}=\oint_{L} \mathbf{H} \cdot \mathbf{d L}-\iint_{A} \mathbf{J} \cdot \mathbf{d A} \tag{12b}
\end{align*}
$$

Gauss' law for the electric field :

$$
\begin{align*}
& \nabla \cdot \mathbf{D}=0 \tag{13a}\\
& \oiint_{A} \mathbf{D} \cdot \mathbf{d} \mathbf{A}=0 \tag{13b}
\end{align*}
$$

Gauss' law for the magnetic field :

$$
\begin{align*}
& \nabla \cdot \mathbf{B}=0 \tag{14a}\\
& \oiiint_{A} \mathbf{B} \cdot \mathbf{d} \mathbf{A}=0 \tag{14b}
\end{align*}
$$

Maxwell's equations

In (11) to (14), the following symbols (and their MKS units) are defined:
E : electric field (volts/meter)
D : electric flux density (coulombs $/$ meter 2)
H : magnetic field (amperes/meter)
B : magnetic flux density (webers/meter ${ }^{2}$)
A : arbitrary three-dimensional surface
dA : differential normal vector that characterizes surface $A\left(\right.$ meter $\left.^{2}\right)$
L : closed contour that bounds surface A (volts/meter)
dL : differential length vector that characterizes contour L (meters)
J : electric current density (amperes $/$ meter 2)
M : equivalent magnetic current density (volts/meter ${ }^{2}$)

Maxwell's equations

In linear, isotropic, nondispersive materials (i.e. materials having field-independent, direction-independent, and frequency-independent electric and magnetic properties), we can relate \mathbf{D} to \mathbf{E} and \mathbf{B} to \mathbf{H} using simple proportions:

$$
\begin{equation*}
\mathbf{D}=\varepsilon \mathbf{E}=\varepsilon_{r} \varepsilon_{0} \mathbf{E} ; \quad \mathbf{B}=\mu \mathbf{H}=\mu_{r} \mu_{0} \mathbf{H} \tag{15}
\end{equation*}
$$

$\varepsilon \quad: \quad$ electrical permittivity (farads/meter)
$\varepsilon_{r} \quad$: relative permittivity (dimensionless scalar)
where ε_{0} : free-space permittivity (8.854×10^{-12} farads/meter)
μ : magnetic permeability (henrys/meter)
$\mu_{r} \quad$: relative permeability (dimensionless scalar)
μ_{0} : free-space permeability ($4 \pi \times 10^{-7}$ henrys/meter)
Note that \mathbf{J} and \mathbf{M} can act as independent sources of E - and H -field energy, $\mathbf{J}_{\text {source }}$ and $\mathbf{M}_{\text {source }}$.

Maxwell's equations

We also allow for materials with isotropic, nondispersive electric and magnetic losses that attenuate E - and H -fields via conversion to heat energy. This yields

$$
\begin{equation*}
\mathbf{J}=\mathbf{J}_{\text {source }}+\sigma \mathbf{E} ; \quad \mathbf{M}=\mathbf{M}_{\text {source }}+\sigma^{*} \mathbf{H} \tag{16}
\end{equation*}
$$

where $\begin{array}{llll}\sigma & : & \text { electric conductivity (siemens/meter) } \\ \sigma^{*} & : & \text { equivalent magnetic loss (ohms/meter) }\end{array}$
Finally, we substitute (15) and (16) into (11a) and (12a). This yields Maxwell's curl equations in linear, isotropic, nondispersive, lossy materials:

$$
\begin{align*}
\frac{\partial \mathbf{H}}{\partial t} & =-\frac{1}{\mu} \nabla \times \mathbf{E}-\frac{1}{\mu}\left(\mathbf{M}_{\text {source }}+\sigma^{*} \mathbf{H}\right) \tag{17}\\
\frac{\partial \mathbf{E}}{\partial t} & =\frac{1}{\varepsilon} \nabla \times \mathbf{H}-\frac{1}{\varepsilon}\left(\mathbf{J}_{\text {source }}+\sigma \mathbf{E}\right) \tag{18}
\end{align*}
$$

CIPs for electric wave propagation

Write now Maxwell's curl equations in linear, isotropic, nondispersive, lossy materials with $\sigma^{*}=0, \mathbf{M}_{\text {source }}=0$:

$$
\begin{gather*}
\frac{\partial \mathbf{H}}{\partial t}=-\frac{1}{\mu} \nabla \times \mathbf{E} \tag{19}\\
\frac{\partial \mathbf{E}}{\partial t}=\frac{1}{\varepsilon} \nabla \times \mathbf{H}-\frac{1}{\varepsilon} \sigma \mathbf{E}-\frac{1}{\varepsilon} \mathbf{J}_{\text {source }} \tag{20}
\end{gather*}
$$

Taking now $\frac{\partial}{\partial t}$ from (20) and multiplying by ε, and then taking $\nabla \times$ from (19), we have:

$$
\begin{gather*}
\nabla \times \frac{\partial \mathbf{H}}{\partial t}=-\nabla \times \frac{1}{\mu} \nabla \times \mathbf{E} \tag{21}\\
\varepsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\frac{\partial}{\partial t} \nabla \times \mathbf{H}-\sigma \frac{\partial}{\partial t} \mathbf{E}-\frac{\partial}{\partial t} \mathbf{J}_{\text {source }} \tag{22}
\end{gather*}
$$

CIPs for electric wave propagation

Substitude the right hand side of (21) into (22) instead of $\frac{\partial}{\partial t} \nabla \times \mathbf{H}$ to obtain Maxwell's equations for electric field $\mathbf{E}=\left(E_{1}, E_{2}, E_{3}\right)$. Let us consider now Cauchy problem for the Maxwell's equations for electric field \mathbf{E} in the domain $\Omega_{T}=\Omega \times[0, T]$:

$$
\begin{align*}
\varepsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}+\nabla \times \frac{1}{\mu} \nabla \times \mathbf{E} & =-\sigma \frac{\partial}{\partial t} \mathbf{E}-\frac{\partial}{\partial t} \mathbf{J}_{\text {source }} \text { in } \Omega_{T} \\
\nabla \cdot(\varepsilon \mathbf{E}) & =0 \tag{23}\\
\mathbf{E}(\mathbf{x}, \mathbf{0})=f_{0}(x), \quad \mathbf{E}_{\mathbf{t}}(\mathbf{x}, \mathbf{0}) & =f_{1}(x) \text { in } \Omega
\end{align*}
$$

- Let $\Omega \subset \mathbb{R}^{3}$ be a convex bounded domain with the boundary $\partial \Omega \in C^{3}$ and specify time variable $t \in[0, T]$. Next, we supply the Cauchy problem by the appropriate b.c.
- $\varepsilon(x)$ and $\sigma(x)$ are dielectric permittivity and electric conductivity functions, respectively of the domain Ω. In (23), $\varepsilon(x)=\varepsilon_{r}(x) \varepsilon_{0}, \mu=\mu_{r} \mu_{0}$ and $\sigma(x)$ are dielectric permittivity, permeability and electric conductivity functions, respectively, ε_{0}, μ_{0} are dielectric permittivity and permeability of free space, respectively.

CIPs for electric wave propagation

Inverse Problem (EIP1) Determine the relative dielectric permittivity function $\varepsilon_{r}(x)$ in Ω for $x \in \Omega$ in nonconductive $(\sigma(x)=0)$ and nonmagnetic ($\mu_{r}=1$) media when the measured function $g(x, t)$ s.t.

$$
\mathbf{E}(x, t)=g(x, t), \forall(x, t) \in \partial \Omega \times(0, T] .
$$

is known in Ω.
Inverse Problem (EIP2) Determine the functions $\epsilon(x), \sigma(x)$ in Ω for $x \in \Omega$ for $\mu_{r} \approx 1$ in water assuming that $g(x, t)$ is known in $\partial \Omega \times(0, T]$.

Maxwell's equations in frequency domain

Assuming $\mathbf{E}(\mathbf{x}, \mathbf{t})=\widehat{E}(x, \omega) \cdot e^{-i \omega t}$ and $\mathbf{J}_{\text {source }}=\widehat{J}(x, \omega) \cdot e^{-i \omega t}$ and applying this to (23) with $\mu_{r}=1$ we obtain the following vector wave equation:

$$
\begin{equation*}
\nabla \times \nabla \times \widehat{E}(x, \omega)-\omega^{2}\left(\frac{\varepsilon_{r}(x)}{c^{2}}+i \mu_{0} \frac{\sigma(x)}{\omega}\right) \widehat{E}(x, \omega)=i \omega \mu_{0} \widehat{J}(x, \omega) . \tag{24}
\end{equation*}
$$

We introduce the spatially distributed complex dielectric function $\varepsilon^{\prime}(x)$:

$$
\begin{equation*}
\varepsilon^{\prime}(x)=\varepsilon_{r}(x) \frac{1}{c^{2}}+i \mu_{0} \frac{\sigma(x)}{\omega}, \tag{25}
\end{equation*}
$$

where ω is the angular frequency. Then the equation (31) transforms to the equation

$$
\begin{equation*}
\nabla \times \nabla \times \widehat{E}(x, \omega)-\omega^{2} \varepsilon^{\prime}(x) \widehat{E}(x, \omega)=i \omega \mu_{0} \widehat{J}(x, \omega) \tag{26}
\end{equation*}
$$

which should be supplied by appropriate boundary conditions.

Applying $\nabla \times \nabla \times \widehat{E}=\nabla(\nabla \cdot \widehat{E})-\nabla \cdot(\nabla \widehat{E})$ and in case of $\mathbf{E}(\mathbf{x}, \mathbf{t})=\widehat{E}(x, \omega) \cdot e^{i \omega t}$ we obtain inhomogeneous Helmholtz equation

$$
\begin{equation*}
\Delta \widehat{E}+k^{2} \widehat{E}=i \omega \mu_{0} \widehat{J}, \tag{27}
\end{equation*}
$$

where $k^{2}=\omega^{2} \varepsilon^{\prime}$. This equation can be rewritten for the solution $\widehat{E}=E(r)$ in cylindrical coordinates and in transverse electric (TE) mode as a Bessel equation

$$
\begin{equation*}
\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+k^{2}\right) E=i \omega \mu_{0} J . \tag{28}
\end{equation*}
$$

The general solution to this equation is in the form

$$
\begin{equation*}
E(r)=A J_{0}(k r)+B N_{0}(k r), \tag{29}
\end{equation*}
$$

where J_{0} and N_{0} are zero-order Bessel's functions of the first and second order, respectively. The time-harmonic solution of the equation (28) is given by

$$
\begin{equation*}
E(r, \omega):=E(r)=-\frac{\omega \mu_{r}}{4} \int_{S} J H_{0}^{(2)}(k R) d S, \tag{30}
\end{equation*}
$$

for a generalized source initiaized at r_{0} and $R=\left|r-r_{0}\right|=\sqrt{r^{2}+r_{0}^{2}-2 r_{0} \cos \left(\varphi-\varphi_{0}\right)}$.
[BE] L. Beilina and A. Eriksson, Reconstruction of dielectric constants in a cylindrical waveguide, Inverse Problems and
Applications, Springer Proceedings in Mathematics \& Statistics, Vol. 120, 2015.

Derivation of the volume integral equation

Let $r=(x, y, z)$.
Model PDE in a non-magnetic medium with the Silver-Müller radiation condition at infinity:

$$
\begin{equation*}
\nabla \times \nabla \times \widehat{E}(r)-\omega^{2}\left(\frac{\varepsilon_{r}(r)}{c^{2}}+i \mu_{0} \frac{\sigma(r)}{\omega}\right) \widehat{E}(r)=i \omega \mu_{0} \widehat{J}(r), \quad r \in \mathbb{R}^{3} \tag{31}
\end{equation*}
$$

which we rewrite as

$$
\begin{equation*}
\nabla \times \nabla \times \widehat{E}(r)-\omega^{2} \varepsilon^{\prime}(r) \widehat{E}(r)=i \omega \mu_{0} \widehat{J}(r) \tag{32}
\end{equation*}
$$

[BAK] L. Beilina, M. G. Aram, E. Karchevskii, An adaptive finite element method for solving 3D electromagnetic volume integral equation with applications in microwave thermometry, Journal of Computational Physics, 2022.

Derivation of the volume integral equation

Subtracting the term $\nabla \times \nabla \times \widehat{E}(r)-\omega^{2} \varepsilon_{b} \widehat{E}(r)$ from both sides of (32), we get

$$
\begin{equation*}
-\omega^{2}\left(\varepsilon^{\prime}(r)-\varepsilon_{b}\right) \widehat{E}(r)=i \omega \mu_{0} \widehat{J}(r)-\nabla \times \nabla \times \widehat{E}(r)+\omega^{2} \varepsilon_{b} \widehat{E} \tag{33}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\nabla \times \nabla \times \widehat{E}(r)-\omega^{2}\left(\varepsilon^{\prime}(r)-\varepsilon_{b}\right) \widehat{E}(r)=i \omega \mu_{0} \widehat{J}(r)+\omega^{2} \varepsilon_{b} \widehat{E} \tag{34}
\end{equation*}
$$

Here, ε_{b} is the dielectric permittivity corresponding to the background medium.

Derivation of the volume integral equation

We introduce the dyadic Green's function $\bar{G}\left(r, r^{\prime}\right)$ for the problem in a homogeneous medium (see, for example, [C]):

$$
\begin{equation*}
\nabla \times \nabla \times \bar{G}\left(r, r^{\prime}\right)-\omega^{2} \varepsilon_{b} \bar{G}\left(r, r^{\prime}\right)=I \delta\left(r-r^{\prime}\right), \quad r \in \mathbb{R}^{3}, \tag{35}
\end{equation*}
$$

where I is an identity operator. Rewriting equation (34) according to the form of equation (35), we have

$$
\begin{equation*}
\nabla \times \nabla \times \widehat{E}(r)-\omega^{2} \varepsilon_{b} \widehat{E}(r)=i \omega \mu_{0} \widehat{J}(r)+\omega^{2}\left(\varepsilon^{\prime}(r)-\varepsilon_{b}\right) \widehat{E}(r) \tag{36}
\end{equation*}
$$

We multiply (36) by $\bar{G}\left(r, r^{\prime}\right)$ and (35) by $\widehat{E}(r)$, correspondingly, to get:

$$
\begin{align*}
& \nabla \times \nabla \times \widehat{E}(r) \bar{G}\left(r, r^{\prime}\right)-\omega^{2} \varepsilon_{b} \widehat{E}(r) \bar{G}\left(r, r^{\prime}\right) \\
& =i \omega \mu_{0} \widehat{J}(r) \bar{G}\left(r, r^{\prime}\right)+\omega^{2}\left(\varepsilon^{\prime}(r)-\varepsilon_{b}\right) \widehat{E}(r) \bar{G}\left(r, r^{\prime}\right), \tag{37}\\
\nabla \times & \nabla \times \bar{G}\left(r, r^{\prime}\right) \widehat{E}(r)-\omega^{2} \varepsilon_{b} \bar{G}\left(r, r^{\prime}\right) \widehat{E}(r)=\delta\left(r-r^{\prime}\right) \widehat{E}(r) . \tag{38}
\end{align*}
$$

[C] W. C. Chew, Waves and fields in inhomogeneous media, New York, IEEE Press, 1995.

Derivation of the volume integral equation

Then subtracting (38) from (37) and integrating, we obtain

$$
\begin{align*}
& \left(\nabla \times \nabla \times \widehat{E}(r), \bar{G}\left(r, r^{\prime}\right)\right)-\left(\omega^{2} \varepsilon_{b} \widehat{E}(r), \bar{G}\left(r, r^{\prime}\right)\right)-\left(\nabla \times \nabla \times \bar{G}\left(r, r^{\prime}\right), \widehat{E}(r)\right) \\
& +\left(\omega^{2} \varepsilon_{b} \bar{G}\left(r, r^{\prime}\right), \widehat{E}(r)\right) \\
& =\left(i \omega \mu_{0} \widehat{J}(r), \bar{G}\left(r, r^{\prime}\right)\right)+\left(\omega^{2}\left(\varepsilon^{\prime}(r)-\varepsilon_{b}\right) \widehat{E}, \bar{G}\left(r, r^{\prime}\right)\right)-\left(\delta\left(r-r^{\prime}\right), \widehat{E}(r)\right) . \tag{39}
\end{align*}
$$

Here, (\cdot, \cdot) denotes the standard scalar product in space.
The above equation is reduced to the following equation

$$
\begin{align*}
& \left(\nabla \times \nabla \times \widehat{E}(r), \bar{G}\left(r, r^{\prime}\right)\right)-\left(\nabla \times \nabla \times \bar{G}\left(r, r^{\prime}\right), \widehat{E}(r)\right) \\
& =\left(i \omega \mu_{0} \widehat{J}(r), \bar{G}\left(r, r^{\prime}\right)\right)+\left(\omega^{2}\left(\varepsilon^{\prime}(r)-\varepsilon_{b}\right) \widehat{E}, \bar{G}\left(r, r^{\prime}\right)\right)-\left(\delta\left(r-r^{\prime}\right), \widehat{E}(r)\right) . \tag{40}
\end{align*}
$$

Derivation of the volume integral equation

We use integration by parts for the two terms on the left hand side of (40), and apply the Silver-Müller radiation condition at infinity, to get:

$$
\begin{align*}
& \left(\nabla \times \nabla \times \widehat{E}(r), \bar{G}\left(r, r^{\prime}\right)\right)=\left(\nabla \times \widehat{E}(r), \nabla \times \bar{G}\left(r, r^{\prime}\right)\right), \\
& \left(\nabla \times \nabla \times \bar{G}\left(r, r^{\prime}\right), \widehat{E}(r)\right)=\left(\nabla \times \bar{G}\left(r, r^{\prime}\right), \nabla \times \widehat{E}(r)\right) . \tag{41}
\end{align*}
$$

Applying (41) in the left hand side of (40), we obtain

$$
\begin{equation*}
\left(\nabla \times \nabla \times \widehat{E}(r), \bar{G}\left(r, r^{\prime}\right)\right)-\left(\nabla \times \nabla \times \bar{G}\left(r, r^{\prime}\right), \widehat{E}(r)\right)=0 . \tag{42}
\end{equation*}
$$

Derivation of the volume integral equation

Using the principle of linear superposition, see details in [C], we finally get from (40)

$$
\begin{equation*}
\widehat{E}(r)=i \omega \mu_{0} \int_{\Omega} \widehat{J}(r) \bar{G}\left(r, r^{\prime}\right) d r+\omega^{2} \int_{\Omega}\left(\varepsilon^{\prime}(r)-\varepsilon_{b}\right) \widehat{E}(r) \bar{G}\left(r, r^{\prime}\right) d r . \tag{43}
\end{equation*}
$$

The first term in the right hand side of the above equation corresponds to the incident electric field $\widehat{E}_{\text {inc }}$, see [C]. Hence, (43) becomes

$$
\begin{equation*}
\widehat{E}(r)=\widehat{E}_{i n c}+\omega^{2} \int_{\Omega}\left(\varepsilon^{\prime}(r)-\varepsilon_{b}\right) \widehat{E}(r) \bar{G}\left(r, r^{\prime}\right) d r \tag{44}
\end{equation*}
$$

[C] W. C. Chew, Waves and fields in inhomogeneous media, New York, IEEE Press, 1995.

Derivation of the volume integral equation

According to [HM], the scattered field is defined as $\widehat{E}_{\text {sca }}=\widehat{E}(r)-\widehat{E}_{\text {inc }}$ such that using the reciprocity $\bar{G}\left(r^{\prime}, r\right)=\bar{G}\left(r, r^{\prime}\right)$ and $O(r)=\varepsilon^{\prime}(r)-\varepsilon_{b}(r)$, equation (44) transforms to

$$
\begin{equation*}
\widehat{E}_{s c a}=\omega^{2} \int_{\Omega} \widehat{E}(r) O(r) \bar{G}\left(r^{\prime}, r\right) d r . \tag{45}
\end{equation*}
$$

which is the model volume integral equation.
[HM] M. Haynes, M. Moghaddam, Vector Green's function fopr S-parameter measurements of the electromagnetic volume integral equation, IEEE Transactions on Antennas and Propagation,vol. 60, No. 3, pp. 1400-1413, DOI:
0.1109/tap.2011.2180324, 2012.

Microwave Imaging: Differential Image Reconstruction

Let we have a bi-static pair (i, j) of antennas located on the scan line Γ, i.e. $\mathbf{r}_{\mathbf{i}}, \mathbf{r}_{\mathbf{j}} \in \Gamma$.

Using Lorentz reciprocity theorem and under Born approximation, the scattered electric field between the pair of antennas at angular frequency of ω can be written as

$$
\begin{equation*}
\mathbf{E}_{j i}^{s} \simeq i \omega \mu_{0} k_{b}^{2} I(\omega) \int_{\Omega} \overline{\mathbf{G}}\left(\mathbf{r}_{\mathbf{j}}, \mathbf{r}^{\prime}, \omega\right) \cdot \epsilon^{\prime}\left(\mathbf{r}^{\prime}, \omega\right) \overline{\mathbf{G}}\left(\mathbf{r}_{\mathbf{i}}, \mathbf{r}^{\prime}, \omega\right) d v^{\prime} \tag{46}
\end{equation*}
$$

where Ω is the imaging domain, $I(\omega)$ is the excitation current of the transmitter, k_{b} is the lossless background wavenumber, $\overline{\mathbf{G}}$ is the dyadic Green's function and ε^{\prime} is defined as in (25).
Next, scattered fields $\mathbf{E}_{j i}^{s}$ are replaced with their corresponding S-parameters, as well as input power and characteristic impedance of the ports. Then (46) is transformed to the equation

$$
\begin{equation*}
S_{j i}^{s c a}(\omega) \simeq C \int_{\Omega} \mathbf{E}_{i n c, j}^{C S T}\left(\mathbf{r}^{\prime}, \omega\right) \cdot \Delta O\left(\mathbf{r}^{\prime}, \omega\right) \mathbf{E}_{i n c, i}^{C S T}\left(\mathbf{r}^{\prime}, \omega\right) d v^{\prime} \tag{47}
\end{equation*}
$$

where $C=-k_{b}^{2} /(4 i \omega \mu)$ and $E_{i n c, i}^{C S T}$ is the exported E-field from CST under irradiation of the $i^{\text {th }}$ antenna. Here, $\Delta O=\varepsilon^{\prime}(\mathbf{r})-\varepsilon_{b}^{\prime}(\mathbf{r}), \varepsilon_{b}^{\prime}(\mathbf{r})$ is baseline.

Microwave Imaging: Differential Image Reconstruction

Equation (47) is the standard Fredholm integral equation of the first kind, and thus, it is an ill-posed problem. It can be solved for an linear operator A by minimizing the Tikhonov regularization functional

$$
\begin{equation*}
F\left(\varepsilon^{\prime}\right)=\frac{1}{2}\left\|A \varepsilon^{\prime}-d\right\|_{L_{2}(\Omega)}^{2}+\frac{\lambda}{2}\left\|\varepsilon^{\prime}\right\|_{L_{2}(\Omega)}^{2} . \tag{48}
\end{equation*}
$$

where $d=S^{s c a}, \lambda$ is the regularization parameter. The optimal value will be:

$$
\begin{equation*}
F^{\prime}\left(\varepsilon^{\prime}\right)=A^{*} A \varepsilon^{\prime}-A^{*} d+\lambda \varepsilon^{\prime}=0 . \tag{49}
\end{equation*}
$$

Discretizing operator \boldsymbol{A}, we get the matrix \mathbf{A} and the problem (49) will be rewritten as the system of normal equations

$$
\begin{equation*}
\varepsilon^{\prime}=\left(\mathbf{A}^{\top} \mathbf{A}+\lambda I\right)^{-1} \mathbf{A}^{\top} d \tag{50}
\end{equation*}
$$

Applying SVD of $\mathbf{A}=U \Sigma V^{\top}$ in we get the equation to reconstruct ε^{\prime} :

$$
\begin{equation*}
\varepsilon^{\prime}=V\left(\Sigma^{2}+\lambda I\right)^{-1} \Sigma U^{\top} d \tag{51}
\end{equation*}
$$

Microwave Imaging: Differential Image Reconstruction

Applying SVD of $\mathbf{A}=U \Sigma V^{\top}$ in we get the equation to reconstruct ε^{\prime} :

$$
\begin{equation*}
\varepsilon^{\prime}=V\left(\Sigma^{2}+\lambda I\right)^{-1} \Sigma U^{\top} d \tag{52}
\end{equation*}
$$

Proof: Since $\mathbf{A}=U \Sigma V^{\top}$ then $\mathbf{A}^{T}=\left(U \Sigma V^{T}\right)^{T}=V \Sigma U^{T}$, then equation (28) can be written as:
$\varepsilon^{\prime}=\left(\mathbf{A}^{\top} \mathbf{A}+\lambda I\right)^{-1} \mathbf{A}^{\top} d=\left(V \Sigma U^{\top} U \Sigma V^{\top}+\lambda l\right)^{-1} V \Sigma U^{\top} d=V\left(\Sigma^{2}+\lambda l\right)^{-1} \Sigma U^{\top} d$.

Reconstruction of heated target

Timeline (min)	$\epsilon_{r r}(t)$	$\sigma(\mathrm{t})(\mathrm{s} / \mathrm{m})$
$1=0$ (Baseline)	26	0.12
に2	28	0.15
に4	29	0.19
$1=6$	29.8	0.21
$1=8$	30.5	0.23
$\mathrm{t}=10$	31	0.24

Microwave imaging for breast cancer detection. Top left: setup of the representation and actual photograph of the data acquisition platform for breast cancer detection used at CTH and Medfield Diagnostics AB: Assembled antenna hardware. Top right: schematic 3-D representation of 16 monopole antennas in a matching liquid tank, in CST(http://www. cst. com); Bottom left: Return loss S_{11} of the designed antenna for the frequency band 915 MHz . Bottom right: permittivity and conductivity of the target as it starts to cool down from $55^{\circ} \mathrm{C}$ to $29^{\circ} \mathrm{C}$ over a ten-minute window of time.

Reconstruction of heated target: least squares solution

Geometry with nno $=40 \times 42 \times 26=43680$.
Solution is obtained via the formula
$\varepsilon^{\prime}=\left(\mathbf{A}^{T} \mathbf{A}+\lambda I\right)^{-1} \mathbf{A}^{T} d=\left(V \Sigma U^{T} U \Sigma V^{T}+\lambda I\right)^{-1} V \Sigma U^{T} d=V\left(\Sigma^{2}+\lambda I\right)^{-1} \Sigma U^{T} d$ with $\lambda=1$.

Reconstruction: Least Squares + AFEM, xy-plane

$$
\mathrm{t}=4 \mathrm{~min}
$$

Reconstruction: Least Squares + AFEM, xy plane

$$
\mathrm{t}=10 \mathrm{~min}
$$

Reconstruction: Least Squares + AFEM, zx plane

$\mathrm{t}=2 \mathrm{~min}$

$$
\mathrm{t}=8 \mathrm{~min}
$$

Convergence of fixed point algorithm and AFEM

Figure: Left figures: convergence of fixed point algorithm. Here, I is the number of mesh refinement. Right figures: convergence of AFEM on adaptive locally refined meshes.

Project: Regularized algorithms for detection of tumours in microwave medical imaging

- In this project we will study different regularization strategies for detection of tumours using microwaves. This problem is a typical Coefficient Inverse Problem (CIP) for determination of complex dielectric permittivity function in Helmholtz equation from scattered electric field in frequency domain.
- Alternatively, the dielectric permittivity function can be determined from the solution of a Fredholm integral equation of the first kind which is an ill-posed problem.
- The goal of the current project is further development of mathematical methods presented in the recent paper [ABD] for real-life applications in microwave medical imaging.

[^0]
Project: Regularized algorithms for detection of tumours in microwave medical imaging

More precisely, in this project students will:

- Study different regularized formulations of the reconstruction problem presented in the paper [ABD] which can be downloaded from the link
https://doi.org/10.1515/jiip-2020-0102
- Determine the dielectric permittivity function by solving the regularized linear system of equations (LSE) in 3D by modifying existing Matlab code used for computations in the paper [ABD] available for download at
http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/ 2021/IPcourse/MatlabCode_MicrowaveImaging.zip.
https://github.com/ProjectWaves24/MicrowaveHyperMatlab

Project: Regularized algorithms for detection of tumours in microwave medical imaging

- Test different regularization strategies (Morozov's discrepancy principle, Balancing principle) for choosing the regularization parameter λ.
- Test reconstructions with choosing different regularization terms, i.e. try to minimize

$$
\begin{equation*}
F\left(\varepsilon^{\prime}\right)=\frac{1}{2}\left\|A \varepsilon^{\prime}-d\right\|_{L_{2}(\Omega)}^{2}+\frac{\lambda}{2}\left\|\nabla \varepsilon^{\prime}\right\|_{L_{2}(\Omega)}^{2} \tag{54}
\end{equation*}
$$

or minimize

$$
\begin{equation*}
F\left(\varepsilon^{\prime}\right)=\frac{1}{2}\left\|A \varepsilon^{\prime}-d\right\|_{L_{2}(\Omega)}^{2}+\frac{\lambda}{2}\left\|\varepsilon^{\prime}+\nabla \varepsilon^{\prime}\right\|_{L_{2}(\Omega)}^{2} \tag{55}
\end{equation*}
$$

[^0]: M. G. Aram, L. Beilina, H. Dobsicek Trefna, Microwave Thermometry with Potential Application in Non-invasive Monitoring
 of Hyperthermia, Journal of Inverse and III-posed problems, 2020. https://doi.org/10.1515/jiip-2020-0102

