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Outline of the course lectures

Lecture 1: Organization of the course. Definitions of well and
ill-posed problems. Physical formulations leading to ill- and
well-posed problems.

Lecture 2: Compact set and compact operator. Classical and
conditional correctness. Concept of Tikhonov and Tikhonov’s
theorem. Quasi-solution. Examples of ill-posed problems. Model
inverse problems: elliptic inverse Cauchy problem.

Lecture 3: Methods for image reconstruction and image deblurring.
Solution of a Fredholm integral equation of the first kind as an
ill-posed problem. Bayesian approach. Adaptive finite element
method in Microwave Imaging for monitoring of hyperthermia.

Lecture 4: Lagrangian approach for solution of time-harmonic CIP.
Presentation and discussion of the course project “Solution of
time-harmonic acoustic coefficient inverse problem”.

Lecture 5: Methods of regularization of inverse problems:
Tikhonov’s regularization, iterative regularization, Morozov’s
discrepancy, balancing principle.
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Lecture 6: Approximate global convergence and Adaptive finite
element method for solution of hyperbolic CIP.

Lecture 7: QR and SVD. Solution of rank-deficient problems.
Principal Component Analysis (PCA) for image compression and
image recognition. Presentation of the course project "Principal
Component Analysis for recognition of handwritten digits".

Lecture 8: Classification algorithms: linear and polynomial
classifiers, linear and quadratic perceptron learning algorithm,
WINNOW. Neural networks for classification.

Lecture 9: Linear models for regression. Regularized and
non-regularized neural networks. Kernel methods. Support Vector
Machines. Kernel perceptron for classificaton. Presentation of the
course project "Regularized Least squares and machine learning
algorithms for classification problem".

Lecture 10: Lagrangian approach and adaptive FEM for solution of
parameter identification problem for system of ODE. Application of
adaptive FEM for determination of drug efficacy in the model of HIV
infection.
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Types of instruction and assessment

The material of the course includes online lectures in Zoom (slides
and video lectures), description of the computer projects and open
source software (Matlab codes, C++/PETSC codes).

All material of the course is available in CANVAS (contact me for
registration if you need it):

https://canvas.gu.se/courses/122370000000049154

Language of instruction is English.

The grade Pass (G) or Fail (U) is given in this course, and 7.5 Hp.

The examination consists of the computer project and programs
submitted to my mail.
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Organization: projects

To pass this course you should do any computer project described
below. The project can be done in groups by 2-4 persons, or you
can do it without group as well.

Sent final report for computer project with description of your work
together with Matlab or C++/PETSc programs. For students
registered at Chalmers/GU: download projects in CANVAS, for all
others: sent project to my e-mail larisa@chalmers.se

Report should be organized as scientific paper and have description
of used techniques, tables and figures confirming your
investigations. Analysis of obtained results is necessary to present
in section “Numerical examples” and summarize results in the
section “Conclusion”.
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List of the course projects

1. Project "Regularized least squares and machine learning
algorithms for classification". Matlab program with an example of
classification of Iris dataset see in CANVAS in “Computer Projects”.

2. Project "Principal component analysis for image recognition".
Matlab program with an example of using PCA see in CANVAS in
“Computer Projects”.

3. Project “Solution of time-harmonic acoustic coefficient inverse
problem”. Matlab code wth an example of solution of Poisson’s
equation in 2D see in CANVAS in “Computer Projects”. C++/PETSc
code is in waves24.com/download

4. Project "Regularized algorithms for detection of tumours in
microwave medical imaging". Matlab code (data and programs, zip
file) with an example see in CANVAS in “Computer Projects”.

5∗ Alternative project with extended deadline: “ SVM and Kernel
methods for classification” (similar to the first project, but SVM and
Kernel methods should be applied). There is no example in Matlab,
but perhaps, you can modify the example with Iris dataset for
classification from the above project.
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Introduction: Inverse and ill-posed problems

Example: Scheme for solution of CIP for 4u(x) − s2a(x)u(x) = −f(x), ∂nu = 0.

Inverse and ill-posed problems include solution of CIPs for PDE,
solution of parameter identification problems governed by system of
ODE, inverse sourse problems, inverse spectral problems, solution
of Fredholm integral equations of the first kind (ill-posed problems).
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Classification problems

Classification problems can be considered as the type of inverse problem
since the goal of classification is to find optimal vector of weights
ω = [ω1, ..., ωn] to separate given data x by the decision line ωT x.

Example of classification: determine the decision line for points presented in the Figure. Two classes are separated by the
linear equation with three weights ωi , i = 1, 2, 3, given by

ω1 + ω2x + ω3y = 0. (1)

Decision lines on the figure computed by the perceptron learning algorithm for separation of two classes using Iris dataset.

Test Matlab program to generate this figures on the course page in CANVAS.
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Classical Correctness and Conditional Correctness

The notion of the classical correctness is called sometimes Correctness
by Hadamard.
Definition. Let B1 and B2 be two Banach spaces. Let G ⊆ B1 be an open
set and F : G → B2 be an operator. Consider the equation

F(x) = y, x ∈ G. (2)

The problem of solution of equation (2) is called well-posed by
Hadamard, or simply well-posed, or classically well-posed if the following
three conditions are satisfied:
1. For any y ∈ B2 there exists a solution x = x(y) of equation (2)
(existence theorem).
2. This solution is unique (uniqueness theorem).
3. The solution x(y) depends continuously on y. In other words, the
operator F−1 : B2 → B1 is continuous.
If equation (2) does not satisfy to at least one these three conditions,
then the problem (2) is called ill-posed.
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Introduction: Inverse and ill-posed problems

The theory of Ill-Posed Problems addresses the following
fundamental question: How to obtain a good approximation for the
solution of an ill-posed problem in a stable way?

A numerical method, which provides a stable and accurate solution
of an ill-posed problem, is called the regularization method for this
problem.

Foundations of the theory of Ill-Posed Problems were established by
A. N. Tikhonov [T1,TA,T], M.M. Lavrent’ev [L] and V. K. Ivanov [I] in
1960-ies. The first foundational work was published by Tikhonov in
1943 [T].
[T1] A. N. Tikhonov, On the stability of inverse problems, Doklady of the USSR Academy of Science, 39, 195-198,
1943

[TA] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems, Winston and Sons, Washington, DC,
1977.

[T] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov and A.G. Yagola, Numerical Methods for the Solution of
Ill-Posed Problems, London: Kluwer, London, 1995.

[L] M.M. Lavrentiev, Some Improperly Posed Problems of Mathematical Physics, Springer, New York, 1967.

[I] V. K. Ivanov, On ill-posed problems, Mat. USSR Sb., 61, 211–223, 1963.
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Introduction: Inverse and ill-posed problems

Theory of inverse and ill-posed problems is developed further and a
lot of new works on this subject are available, some of them are:

S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15, 841–893, 1999.
A.B. Bakushinsky and M.Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems,
Springer, New York, 2004.
F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer, New York, 2006.
K. Chadan and P. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, New York, 1989.
G. Chavent, Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step
Guide for Applications (Scientific Computation), Springer, New York, 2009.
V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 2005.
B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed
Problems, de Gruyter, New York, 2008.
A. Kirsch, An Introduction To the Mathematical Theory of Inverse Problems, Springer, New York, 2011.
K. Ito, B. Jin, Inverse Problems: Tikhonov theory and algorithms, Series on Applied Mathematics, V.22,
World Scientific, 2015.
Tikhonov, A.N., Goncharsky, A., Stepanov, V.V., Yagola, A.G., Numerical Methods for the Solution of
Ill-Posed Problems,ISBN 978-94-015-8480-7, 1995.
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Applications leading to inverse and ill-posed problems

Microwave medical imaging Acoustic 
imaging

Elastic imaging

Examples of CIPs. Biomedical Imaging at the Department of Electrical Engineering at CTH, Chalmers. Left: breast cancer
detection, setup of Stroke Finder; microwave hyperthermia in cancer treatment; Middle: acoustic imaging; right:
subsurface imaging.

Example of ill-posed problem: restoration of MRI images for the parietal lobe http://brain-development.org/

Inverse and ill-posed problems arise in many real-world applications including medical microwave, optical and
ultrasound imaging, MRT, MRI, oil prospecting and shape reconstruction, nondestructive testing of materials and
detection of explosives, seeing through the walls and constructing of new materials.
Physical applications are modelled by acoustic, elastic or electromagnetic wave eq. which include different
physical parameters s. t. wave speed c - acoustic equation; elasticity parameters λ and µ - elastic equations;
dielectric permittivity ε, magnetic permeability µ, conductivity σ - Maxwell’s eq.
A coefficient inverse problem for a given model PDE aims at estimating a spatially distributed coefficient of the
model PDE using measurements taken on the boundary of the domain of interest.
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Introduction: Inverse and ill-posed problems

These applications are modeled by acoustic, elastic or
electromagnetic wave eq. which include different physical
parameters (wave speed c - acoustic equation, elasticity
parameters λ and µ - elastic equations, dielectric permittivity ε,
magnetic permeability µ, conductivity σ - Maxwell’s eq.).
A coefficient inverse problem for a given PDE aims at estimating a
spatially distributed coefficient of the model PDE using
measurements taken on the boundary of the domain of interest.
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Coefficient Inverse Problems: main steps in solution

                                         Coefficient Inverse Problems  for PDE 

Use collected    
data. Data is 
generated by 
different type of 
waves (acoustic, 
elastic, 
electromagnetic)

Extract image 
data for 
analysis.

Develop new 
mathematical methods 
for reconstruction of   
spatially distributed 
coefficients  in the 
model PDE which  
describes the physical 
process. 

Visualize and analyze 
obtained reconstructions.
Estimate error in the 
reconstruction. 

Implement new 
methods using fast 
and robust 
numerical 
methods.

A coefficient inverse problem for a given partial differential equation (PDE) aims at estimating a
spatially distributed coefficient of the model PDE using measurements taken on the boundary of the 
domain of interest.
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Acoustic CIPs

Acoustic CIPs for acoustic wave equation

1
c2(x)

utt = ∆u in R3 × (0,∞) , (3)

u (x, 0) = 0, ut (x, 0) = δ (x − x0) . (4)

Let now introduce the convex bounded domain Ω ⊂ R3 with the
boundary ∂Ω ∈ C3 and specify time variable t ∈ [0,T ]. Next, we
supply the Cauchy problem by the appropriate b.c.

We assume that the coefficient c(x) belongs to the set of
admissible parameters M which should be specified for the concrete
problem.

u(x, t) acoustic pressure - we measure it on the boundary ∂Ω.
c(x) speed of sound – want to determine by measured u(x, t) on

the boundary ∂Ω
Applications: medical imaging, electromagnetic, acoustics,

geological profiling, construction of new materials
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Acoustic CIP: example

We model the process of electric wave field propagation in
non-conductive and nonmagnetic media with ∇ · (εE) = 0 via a single
hyperbolic PDE, which is the same as an acoustic wave equation (3)-(4).
The forward problem is the following Cauchy problem

εr (x)utt = ∆u, in R3 × (0,∞) , (5)

u (x, 0) = 0, ut (x, 0) = δ (x − x0) . (6)

Here, εr (x) is the spatially distributed dielectric constant (relative
dielectric permittivity),

εr (x) =
ε (x)

ε0
,

√
εr (x) = n (x) =

c0

c (x)
≥ 1, (7)

where ε0 is the dielectric permittivity of the vacuum (which we assume to
be the same as the one in the air), ε (x) is the dielectric permittivity of the
medium of interest, n (x) is the refractive index of the medium of interest,
c (x) is the speed of the propagation of the EM field in this medium, and
c0 is the speed of light in the vacuum, which we assume to be the same
as one in the air.
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Acoustic CIP: example

Ω

u(x, t) = g(x, t) on ∂Ω

εr (x) =?

exact εr (x)

Coefficient Inverse Problem Assume that the function εr (x) is
unknown in the domain Ω. Determine the function εr (x) for x∈ Ω,

assuming that the following function g (x, t) is known for a source x0 < Ω

u(x, t) = g(x, t),∀(x, t) ∈ ∂Ω × (0,T ].
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Reconstruction of dielectrics from experimental data

a) The rectangular prism depicts our computational domain Ω. Only a single source location outside of this prism was
used. Tomographic measurements of the scattered time resolved EM wave were conducted on the bottom side of this
prism. The signal was measured with the time interval 20 picoseconds with total time 12.3 nanoseconds. b) Schematic
diagram of locations of detectors on the bottom side of the prism Ω. The distance between neighboring detectors was 10
mm.

L.Beilina, M.V.Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive
inverse algorithm, Inverse Problems, 26, 125009, 2010.
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The two-stage numerical procedure for solution of CIP

Stage 1. Approximately globally convergent numerical method provides
a good approximation for the exact solution εglob .
Stage 2. Adaptive Finite Element Method refines it via minimization of
the corresponding Tikhonov functional with ε0 = εglob :

J(u, ε) =
1
2

∫
Γ

∫ T

0
(u − ũ)2zδ(t)dsdt +

1
2
γ

∫
Ω

(ε − ε0)2 dx. (8)

where ũ is the observed wave field in the model PDE (for example,
acoustic wave equation), u satisfies this model PDE and thus depends
on ε.
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The two-stage numerical procedure

Stage 1. Approximately globally convergent numerical method
provides a good approximation for the exact solution.
Stage 2. Adaptive Finite Element Method refines it.

a) ε(5,2)
r = 3.9, n(5,2) = 1.97 b) εr ,h ≈ 4.2, nglob =

√
εr ,h ≈ 2.05

a) A sample of the reconstruction result of the dielectric cube No. 1 (4 cm side) via the first stage. b) Result after applying
the adaptive stage (2-nd stage). The side of the cube is 4 cm=1.33 wavelength.
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Results of the two-stage procedure, cube nr.2 (big)

a) εr (5, 5) = 3.19, n(5,5) = 1.79 b) εr ,h ≈ 3.0, nglob =
√
εr ,h ≈ 1.73

a) Reconstruction of the dielectric cube No. 2 (6 cm side) via the first stage. b) The final reconstruction result after
applying the adaptive stage (2-nd stage). The side 6 cm=2 wavelength.

L.Beilina, M.V.Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive
inverse algorithm, Inverse Problems, 26, 125009, 2010.
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Elastic CIPs

Let v (x, t) = (v1, v2, v3) (x, t) be vector of displacement. We consider the
Cauchy problem for the elastodynamics equations in the isotropic case in
the entire space R3,

ρ(x)
∂2v
∂t2
− ∇ · τ = δ(x3 − z0)f(t),

τ = Cε,

v (x, 0) = 0, vt (x, 0) = 0, x ∈ R3, t ∈ (0,T) ,

(9)

where v(x, t) is the total displacement generated by the incident plane
wave f(t) propagating along the x3-axis which is incident at the plane
x3 = z0, ρ(x) is the density of the material, τ is the stress tensor, C is a
cyclic symmetric tensor and ε is the strain tensor which have components

εij =
1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
, i, j = 1, 2, 3.

The strain tensor ε is coupled with the stress tensor τ by the Hooke’s law

τi,j =
3∑

k=1

3∑
l=1

Cijklεkl (10)

with
Cijkl = Cklij = Cjkli .

www.math.chalmers.se/∼larisa Lecture 1



Elastic CIPs

C is a cyclic symmetric tensor

Cijkl = Cklij = Cjkli .

When Cijkl does not depends on x then material of the domain which we
consider is said to be homogeneous. If the tensor Cijkl does not depends
on the choice of the coordinate system, then the material of the domain
under interest is said to be isotropic. Otherwise, the material is
anisotropic.
In the isotropic case the cyclic symmetric tensor C can be written as

Cijkl = λδijδkl + µ(δijδkl + δilδjk ),

where δij is the Kronecker delta, in which case the equation (10) takes
the form

τi,j = λδij

3∑
k=1

εkk + 2µεij , (11)

where λ and µ are Lame coefficients.
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Elastic CIPs

Lame coefficients λ and µ are given by

µ =
E

2(1 + ν)
,

λ =
Eν

(1 + ν)(1 − 2ν)
.

(12)

Here, E is the modulus of elasticity, or Young modulus, and ν is the
Poisson’s ratio of the elastic material. Following relations should be
satisfied

λ > 0, µ > 0 ⇐⇒ E > 0, 0 < ν < 1/2. (13)
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Elastic CIPs

To write the equation (9) only in terms of v we eliminate the strain tensor ε from (9) using (10). Then in the isotropic case
the equation in (9) writes

ρ(x)
∂2v1

∂t2
−

∂

∂x1

(
(λ + 2µ)

∂v1
∂x1

+ λ
∂v2
∂x2

+ λ
∂v3
∂x3

)
−

∂

∂x2

(
µ

(
∂v1
∂x2

+
∂v2
∂x1

))
−

∂

∂x3

(
µ

(
∂v1
∂x3

+
∂v3
∂x1

))
= 0,

ρ(x)
∂2v2

∂t2
−

∂

∂x2

(
(λ + 2µ)

∂v2
∂x2

+ λ
∂v1
∂x1

+ λ
∂v3
∂x3

)
−

∂

∂x1

(
µ

(
∂v1
∂x2

+
∂v2
∂x1

))
−

∂

∂x3

(
µ

(
∂v2
∂x3

+
∂v3
∂x2

))
= 0,

ρ(x)
∂2v3

∂t2
−

∂

∂x3

(
(λ + 2µ)

∂v3
∂x3

+ λ
∂v2
∂x2

+ λ
∂v1
∂x1

)
−

∂

∂x2

(
µ

(
∂v3
∂x2

+
∂v2
∂x3

))
−

∂

∂x1

(
µ

(
∂v1
∂x3

+
∂v3
∂x1

))
= δ(x3 − z0)f(t),

(14)
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Elastic CIPs

The system above for λ = const . > 0, µ = const . > 0 can be written in a
more compact form as

ρ
∂2v
∂t2
− µ∇ · (∇v) − (λ + µ)∇(∇ · v) = δ(x3 − z0)f(t),

v (x, 0) = 0, vt (x, 0) = 0, x ∈ R3, t ∈ (0,T) .

(15)

Inserting Helmholtz decomposition

v = ∇ϕ + ∇ × ψ (16)

with a scalar potential ϕ and a vector potential ψ into (15) we get

ρ
∂2(∇ϕ + ∇ × ψ)

∂t2
− µ∇ · (∇(∇ϕ + ∇ × ψ)) − (λ + µ)∇(∇ · (∇ϕ + ∇ × ψ))

= δ(x3 − z0)f(t)
(17)
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Elastic CIPs

Using

∇ · (∇ϕ) = 4ϕ,

∇ · (∇ × ψ) = 0,

we finally get with f(t) = 0

∇

(
ρ
∂2ϕ

∂t2
− (λ + 2µ)4ϕ

)
+ ∇ ×

(
ρ
∂2ψ

∂t2
− µ4ψ

)
= 0 (18)

We conclude that

ρ
∂2ϕ

∂t2
− (λ + 2µ)4ϕ = 0,

ρ
∂2ψ

∂t2
− µ4ψ = 0.

(19)

Here, v = ∇ϕ is the pressure wave with the speed Vp = ( λ+2µ
ρ

)1/2,
v = ∇ × ψ is the shear wave with the speed Vs = ( µ

ρ
)1/2
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Elastic CIP: examples of CIPs

Ω

u(x, t) = g(x, t) on ∂Ω

ρ(x) =?

λ(x), µ(x) ∈Ω

Ω

v(x, t) = g(x, t) on ∂Ω

ρ(x) =?
λ(x) =?

µ(x) =?

Inverse Problem (IP1) Determine the density function ρ(x) in Ω for
x ∈ Ω assuming that the Lame parameters λ(x), µ(x) and g(x, t) s.t.

v (x, t) = g(x, t),∀ (x, t) ∈ ∂Ω × (0,T ].

are known in Ω.
Inverse Problem (IP2) Determine the functions ρ(x), λ(x), µ(x) in Ω for
x ∈ Ω assuming that g(x, t) is known in Ω.
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Applications of elastic CIP: design of new materials

There is a class of materials for which the macroscale properties can be
obtained more from such called mechanical microstructural design, see
Figure for examples of such materials.

Practical applications: mechanical cloaking, control and manipulation of waves in fluids and solids, etc.
Examples of such materials include nanomaterials such as graphene or carbon nanotubes with extraordinary
strength properties.
Design of new mechanical metamaterials using computational modeling is one of the applications of elastic CIPs.
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CIP for electromagnetic problems. Maxwell’s equations

Consider a region of space that has no electric or magnetic current
sources, but may have materials that absorb electric or magnetic field
energy. Then, using MKS units, the time-dependent Maxwell’s equations
are given in differential and integral form by Faraday′s law :

∂B
∂t

= −∇ × E −M (20a)

∂

∂t

"
A

B · dA = −

∮
L

E · dL −
"
A

M · dA (20b)

The MKS system of units is a physical system of units that expresses any given measurement using fundamental units of

the metre, kilogram, and/or second (MKS))
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Maxwell’s equations

Ampere′s law :

∂D
∂t

= ∇ × H − J (21a)

∂

∂t

"
A

D · dA =

∮
L

H · dL −
"
A

J · dA (21b)

Gauss′ law for the electric field :

∇ · D = 0 (22a)	
A

D · dA = 0 (22b)

Gauss′ law for the magnetic field :

∇ · B = 0 (23a)	
A

B · dA = 0 (23b)
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Maxwell’s equations

In (20) to (23), the following symbols (and their MKS units) are defined:
E : electric field (volts/meter)
D : electric flux density (coulombs/meter2)
H : magnetic field (amperes/meter)
B : magnetic flux density (webers/meter2)
A : arbitrary three-dimensional surface
dA : differential normal vector that characterizes surface A (meter2)
L : closed contour that bounds surface A (volts/meter)
dL : differential length vector that characterizes contour L (meters)
J : electric current density (amperes/meter2)
M : equivalent magnetic current density (volts/meter2)
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Maxwell’s equations

In linear, isotropic, nondispersive materials (i.e. materials having
field-independent, direction-independent, and frequency-independent
electric and magnetic properties), we can relate D to E and B to H using
simple proportions:

D = εE = εrε0E; B = µH = µrµ0H (24)

where

ε : electrical permittivity (farads/meter)
εr : relative permittivity (dimensionless scalar)
ε0 : free-space permittivity (8.854 × 10−12 farads/meter)
µ : magnetic permeability (henrys/meter)
µr : relative permeability (dimensionless scalar)
µ0 : free-space permeability (4π × 10−7 henrys/meter)

Note that J and M can act as independent sources of E- and H-field
energy, Jsource and Msource .
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Maxwell’s equations

We also allow for materials with isotropic, nondispersive electric and
magnetic losses that attenuate E- and H-fields via conversion to heat
energy. This yields

J = Jsource + σE; M = Msource + σ∗H (25)

where
σ : electric conductivity (siemens/meter)
σ∗ : equivalent magnetic loss (ohms/meter)

Finally, we substitute (24) and (25) into (20a) and (21a). This yields
Maxwell’s curl equations in linear, isotropic, nondispersive, lossy
materials:

∂H
∂t

= −
1
µ
∇ × E −

1
µ

(Msource + σ∗H) (26)

∂E
∂t

=
1
ε
∇ × H −

1
ε

(Jsource + σE) (27)
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Maxwell’s equations

We now write out the vector components of the curl operators of (26) and
(27) in Cartesian coordinates. This yields the following system of six
coupled scalar equations:

∂Hx

∂t
=

1
µ

[
∂Ey

∂z
−
∂Ez

∂y
− (Msourcex + σ∗Hx)

]
(28a)

∂Hy

∂t
=

1
µ

[
∂Ez

∂x
−
∂Ex

∂z
−

(
Msourcey + σ∗Hy

)]
(28b)

∂Hz

∂t
=

1
µ

[
∂Ex

∂y
−
∂Ey

∂x
− (Msourcez + σ∗Hz)

]
(28c)

∂Ex

∂t
=

1
ε

[
∂Hz

∂y
−
∂Hy

∂z
− (Jsourcex + σEx)

]
(29a)

∂Ey

∂t
=

1
ε

[
∂Hx

∂z
−
∂Hz

∂x
−

(
Jsourcey + σEy

)]
(29b)

∂Ez

∂t
=

1
ε

[
∂Hy

∂x
−
∂Hx

∂y
− (Jsourcez + σEz)

]
(29c)
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Maxwell’s equations in electrical prospecting

CIPs of electrical prospecting appears in subsurface imaging. The
CIP is as follows: the electromagnetic field is measured on the
surface of the ground. The problem is to find the electric conductivity
σ and magnetic permeability µ of the geological medium.
To formulate the forward problem in frequency domain we will apply
the Fourier transform in time to the full system of Maxwell’s
equations such that the time-harmonic fields A(x, ω) are initialized
in the form

A(x, ω) =

∫ ∞

0
A(x, t)e−iωtdt . (30)
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Maxwell’s equations in electrical prospecting

We will use Sommerfeld radiation condition at infinity for A(x, ω):

lim
|x |→∞

|x |
n−1

2

(
∂

∂|x |
+ ik

)
A = 0, n = 2, 3. (31)

where k is the wave number,
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Maxwell’s equations in electrical prospecting

Now, we apply (30) to the system (26)-(27). We multiply system (26)-(27)
with exp−iωt and integrate it in time to get∫ +∞

0

∂H
∂t

exp−iωt dt = −
1
µ

∫ +∞

0
∇ × E exp−iωt dt

−
1
µ

(

∫ +∞

0
Msource exp−iωt dt + σ∗

∫ +∞

0
H exp−iωt dt)∫ +∞

0

∂E
∂t

exp−iωt dt =
1
ε

∫ +∞

0
∇ × H exp−iωt dt

−
1
ε

(

∫ +∞

0
Jsource exp−iωt dt + σ

∫ +∞

0
E exp−iωt dt)

(32)

In this system we consider Msource = 0, σ∗ = 0, Jsource = 0 in accordance
with applications in electrical prospecting.
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Maxwell’s equations in electrical prospecting

In this (32) we consider Msource = 0, σ∗ = 0, Jsource = 0 in accordance
with applications in electrical prospecting such that the above system is
reduced to the system∫ +∞

0

∂H
∂t

exp−iωt dt = −
1
µ

∫ +∞

0
∇ × E exp−iωt dt∫ +∞

0

∂E
∂t

exp−iωt dt =
1
ε

∫ +∞

0
∇ × H exp−iωt dt −

1
ε
σ

∫ +∞

0
E exp−iωt dt

(33)
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Maxwell’s equations in electrical prospecting

Next, we integrate by parts in time integrals
∫ +∞

0

∂H
∂t

exp−iωt dt and∫ +∞

0

∂E
∂t

exp−iωt dt to obtain

∫ +∞

0

∂H
∂t

exp−iωt dt = exp−iωt H|+∞0

+ iω
∫ +∞

0
H exp−iωt dt = iωH(x, ω)∫ +∞

0

∂E
∂t

exp−iωt dt = exp−iωt E|+∞0

+ iω
∫ +∞

0
E exp−iωt dt = iωE(x, ω)

(34)

and substitute them into (33) to obtain
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Maxwell’s equations in electrical prospecting

iωµ H(x, ω) = −∇ × E(x, ω)

iωε E(x, ω) = ∇ × H(x, ω) − σE(x, ω)
(35)

The above system can be rewritten as

∇ × E(x, ω) = −iωµ H(x, ω)

∇ × H(x, ω) = (iωε + σ)E(x, ω)
(36)

According to our applications we assume that µ = const .,
ε = const . > 0. We introduce new variable σω := iωε+σ to obtain

∇ × E(x, ω) = −iωµ H(x, ω)

∇ × H(x, ω) = σωE(x, ω)
(37)
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CIP in electrical prospecting

Taking operator of ∇× from the first equation in system (37) we
have

∇ × ∇ × E(x, ω) = −iωµ ∇ × H(x, ω) (38)

Substituting the second equation of the system (37) in the right
hand side of (38) we obtain

∇ × ∇ × E(x, ω) = −iωµ σωE(x, ω) (39)

Coefficient Inverse Problem
Let the function σω(x) ∈ C1(R3), x ∈ R3. Let Ω ⊂ R3 be a convex
bounded domain with the boundary ∂Ω ∈ C3. Determine the
coefficient σω(x) ∈ Ω assuming that the following function g(x, ω)
is known

E(x, ω)|∂Ω = g(x, ω) ∀(x, ω) ∈ ∂Ω × (0,+∞) (40)
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CIPs for electric wave propagation

Recall Maxwell’s curl equations in linear, isotropic, nondispersive, lossy
materials with σ∗ = 0,Msource = 0:

∂H
∂t

= −
1
µ
∇ × E (41)

∂E
∂t

=
1
ε
∇ × H −

1
ε
σE −

1
ε

Jsource (42)

Take now
∂

∂t
from (42) and ∇× from (41) to get:

∇ ×
∂H
∂t

= −∇ ×
1
µ
∇ × E (43)

ε
∂2E
∂t2

=
∂

∂t
∇ × H − σ

∂

∂t
E −

∂

∂t
Jsource (44)
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CIPs for electric wave propagation

Substitute the right hand side of (43) into (44) instead of
∂

∂t
∇ × H to

obtain Maxwell’s equations for electric field E = (E1,E2,E3). Let us
consider now Cauchy problem for the Maxwell’s equations for electric
field E in the domain ΩT = Ω × [0,T ]:

ε
∂2E
∂t2

+ ∇ ×
1
µ
∇ × E = −σ

∂

∂t
E −

∂

∂t
Jsource in ΩT ,

∇ · (εE) = 0,

E(x, 0) = f0(x), Et(x, 0) = f1(x) in Ω,

(45)

Let Ω ⊂ R3 be a convex bounded domain with the boundary
∂Ω ∈ C3 and specify time variable t ∈ [0,T ]. Next, we supply the
Cauchy problem by the appropriate b.c.
ε(x) and σ(x) are dielectric permittivity and electric conductivity
functions, respectively of the domain Ω. In (45),
ε(x) = εr (x)ε0, µ = µrµ0 and σ(x) are dielectric permittivity,
permeability and electric conductivity functions, respectively, ε0, µ0

are dielectric permittivity and permeability of free space,
respectively.
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CIPs for electric wave propagation

Ω

E(x, t) = g(x, t) on ∂Ω

εr (x) =?

σ = 0, µr = 1

Ω

E(x, t) = g(x, t) on ∂Ω

εr (x) =?
σ(x) =?

µr ≈ 1

Inverse Problem (EIP1) Determine the relative dielectric permittivity
function εr (x) in Ω for x ∈ Ω in nonconductive (σ(x) = 0) and
nonmagnetic (µr = 1) media when the measured function g(x, t) s.t.

E (x, t) = g(x, t),∀ (x, t) ∈ ∂Ω × (0,T ].

is known in Ω.
Inverse Problem (EIP2) Determine the functions ε(x), σ(x) in Ω for
x ∈ Ω for µr ≈ 1 in water assuming that g(x, t) is known in ∂Ω × (0,T ] .
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CIPs for magnetic field

Similarly can be obtained Maxwell’s equations for magnetic field
H = (H1,H2,H3). Let us consider system of Maxwell’s equations in
linear, isotropic, nondispersive, lossy materials with σ = 0, σ∗ = 0:

∂H
∂t

= −
1
µ
∇ × E (46)

∂E
∂t

=
1
ε
∇ × H −

1
ε

Jsource (47)

In this case we take time derivative in (46) and operator ∇× in (47) to get:

∂2H
∂t2

= −
1
µ

∂

∂t
∇ × E, (48)

∇ ×
∂E
∂t

= ∇ ×
1
ε
∇ × H − ∇ ×

1
ε

Jsource . (49)

Substitute the right hand side of (48) into (49) instead of
∂

∂t
∇ × E to

obtain Maxwell’s equations for magnetic field H = (H1,H2,H3):

µ
∂2H
∂t2

+ ∇ ×
1
ε
∇ × H = ∇ ×

1
ε

Jsource (50)
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CIPs for for magnetic field

Let us consider now Cauchy problem for magnetic field H in the domain
ΩT = Ω × [0,T ]:

µ
∂2H
∂t2

+ ∇ ×
1
ε
∇ × H = ∇ ×

1
ε

Jsource in ΩT ,

H(x, 0) = f0(x), Ht(x, 0) = f1(x) in Ω,

(51)

Let Ω ⊂ R3 be a convex bounded domain with the boundary
∂Ω ∈ C3 and specify time variable t ∈ [0,T ]. Next, we supply the
Cauchy problem by the appropriate b.c.
In (51), ε(x) = εr (x)ε0, µ = µrµ0 are dielectric permittivity and
permeability functions, respectively, ε0, µ0 are dielectric permittivity
and permeability of free space, respectively.

Different CIPs for time-dependent equation for magnetic field (51) can be
formulated.
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CIPs for magnetic wave propagation

Ω

H(x, t) = g(x, t) on ∂Ω

µr (x) =?

Ω

H(x, t) = g(x, t) on ∂Ω

µr (x) =?
εr (x) =?

Inverse Problem (MIP1) Determine the relative magnetic permeability
function µr (x) in Ω for x ∈ Ω in nonconductive (σ(x) = 0) media when the
measured function g(x, t) s.t.

H (x, t) = g(x, t),∀ (x, t) ∈ ∂Ω × (0,T ].

is known in Ω.
Inverse Problem (MIP2) Determine the functions εr (x), µr (x) in Ω for
x ∈ Ω assuming that g(x, t) is known in ∂Ω × (0,T ] .
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Maxwell’s equations in 2D in a waveguide. TE and TM
modes.

Let us assume that the structure being modeled extends to infinity in the z-direction with no change in the shape or
position of its transverse cross section (case of a waveguide). If the incident wave is also uniform in the z-direction, then
all partial derivatives of the fields with respect to z must equal zero. Under these conditions, the full set of Maxwell’s curl
equations given by (28) and (29) reduces to

∂Hx
∂t

=
1
µ

[
−
∂Ez
∂y
− (Msourcex + σ∗Hx )

]
(52a)

∂Hy

∂t
=

1
µ

[
∂Ez
∂x
−

(
Msourcey + σ∗Hy

)]
(52b)

∂Hz
∂t

=
1
µ

[
∂Ex
∂y
−
∂Ey

∂x
− (Msourcez + σ∗Hz )

]
(52c)

∂Ex
∂t

=
1
ε

[
∂Hz
∂y
− (Jsourcex + σEx )

]
(53a)

∂Ey

∂t
=

1
ε

[
−
∂Hz
∂x
−

(
Jsourcey + σEy

)]
(53b)

∂Ez
∂t

=
1
ε

[
∂Hy

∂x
−
∂Hx
∂y
− (Jsourcez + σEz )

]
(53c)

If we will group (52a), (52b), and (53c), which involve only Hx , Hy , and Ez then we will set of field components to the
transverse-magnetic mode with respect to z (TMz ) in two dimensions.
If we will group (53a), (53b), and (52c), which involve only Ex , Ey , and Hz . We shall designate this set of field components
to the transverse-electric mode with respect to z (TEz ) in two dimensions.
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Maxwell’s equations in 2D in a waveguide: TM mode
Recall: when we group (52a), (52b), and (53c), which involve only Hx , Hy , and Ez then we will set of field components to
the transverse-magnetic mode with respect to z (TMz ) in two dimensions.

∂Hx
∂t

=
1
µ

[
−
∂Ez
∂y
− (Msourcex + σ∗Hx )

]
(54a)

∂Hy

∂t
=

1
µ

[
∂Ez
∂x
−

(
Msourcey + σ∗Hy

)]
(54b)

∂Ez
∂t

=
1
ε

[
∂Hy

∂x
−
∂Hx
∂y
− (Jsourcez + σEz )

]
(54c)

In non-conductive homogeneous isotropic media with Msourcex = Msourcey = Jsourcez = 0 the system above symplifies
to

∂Hx
∂t

=
1
µ

[
−
∂Ez
∂y

]
(55a)

∂Hy

∂t
=

1
µ

[
∂Ez
∂x

]
(55b)

∂Ez
∂t

=
1
ε

[
∂Hy

∂x
−
∂Hx
∂y

]
(55c)

Assuming that for r = (x, y, z) waves propagates along the waveguide as

Ez (r , t) = Êz (r , ω) · e−iωt ,Hx (r , t) = Ĥx (r , ω) · e−iωt ,Hy (r , t) = Ĥy (r , ω) · e−iωt (56)
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Maxwell’s equations in 2D in a waveguide: TM mode

Applying it in the system (55) we get

−iωĤx =
1
µ

− ∂Êz
∂y

 (57a)

−iωĤy =
1
µ

 ∂Êz
∂x

 (57b)

−iωÊz =
1
ε

 ∂Ĥy

∂x
−
∂Ĥx
∂y

 (57c)

From the first and second equations of system above we get

−iωµ
Ĥx
∂y

=

− ∂2Êz

∂y2

 (58a)

−iωµ
∂Ĥy

∂x
=

 ∂2Êz

∂x2

 (58b)

Then using (58a) - (58a) in (57c) we get the following equation:

ω2µεÊz = −
∂2Êz

∂x2
−
∂Êz

∂y2
(59)
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CIPs for TM mode in a waveguide

Ω

Êz(r , ω) = g(r , ω) on ∂Ω

For the model problem

ω2µεÊz = −
∂2Êz

∂x2
−
∂Êz

∂y2
(60)

we can formulate following CIP :
Inverse Problem Determine the dielectric permittivity function ε(r) in Ω
for known ω and µ for r = (x, y, z) ∈ Ω in nonconductive (σ(r) = 0)
media when the measured function Êz is known on ∂Ω.
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CIPs for a waveguide

Ω

E(r , t) = g(r , t) on ∂Ω

For the model problem

ε
∂2E
∂t2

+ ∇ × (µ−1∇ × E) = 0, in ΩT , (61)

∇ · (εE) = 0, in ΩT , (62)

E(x, 0) = f0(x), Et (x, 0) = f1(x) in Ω, (63)

E × n = 0 on ∂ΩT . (64)

we can formulate following CIP :
Inverse Problem Determine the dielectric permittivity function ε(r) in Ω
for r = (x, y, z) ∈ Ω in nonconductive (σ(r) = 0) media when the
measured function E(r , t) is known on ∂Ω.
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Applications of CIPs for electric wave propagation

Left fig.: the electromagnetic spectrum (Wikipedia). Right fig.:Biomedical Microwave Imaging (frequencies around 1 GHz=
109 Hz) at the Department of Electrical Engineering at CTH, Chalmers, Göteborg, Sweden. Setup of Stroke Finder;
microwave hyperthermia in cancer treatment and breast cancer detection,
https://www.chalmers.se/en/departments/e2/research/Signal-processing-and-Biomedical-engineering/

Detection of explosives and airport security (usually X-ray technique)
https://www.rsdynamics.com/products/explosives-detectors/miniexplonix/
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