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Model inverse problems

Notations and Definitions

V

B

Definition 1. Let B be a Banach space. The set V ⊂ B is called
precompact set if every sequence {xn}∞n=1 ⊆ V contains a fundamental
subsequence (i.e., the Cauchy subsequence).
Although by the Cauchy criterion the subsequence in this Definition 1
converges to a certain point, there is no guarantee that this point belongs
to the set V . If we consider the closure of V , i.e. the set V , then all
limiting points of all convergent sequences in V would belong to V .
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Model inverse problems

Notations and Definitions

 

V

B

Definition 2. Let B be a Banach space. The set V ⊂ B is called
compact set if V is a closed set, V = V , every sequence {xn}∞n=1 ⊆ V
contains a fundamental subsequence and the limiting point of this
subsequence belongs to the set V .
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Model inverse problems

Notations and Definitions

B

U

x
. y

.

B2

A^(-1)(B2)         B1

A(U’)=V’U’

B1

A:U            B2

V’

Definition 3. Let B1 and B2 be two Banach spaces, U ⊆ B1 be a set
and A : U → B2 be a continuous operator. The operator A is called a
compact operator or completely continuous operator if it maps any
bounded subset U ′ ⊆ U in a precompact set in B2. Clearly if U ′ is a
closed set, then A (U ′) is a compact set.
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Model inverse problems

Notations and Definitions. Ascoli-Archela theorem

The following theorem is well known under the name of Ascoli-Archela
theorem (More general formulations of this theorem can also be found).
Theorem The set of functionsM⊂ C

(
Ω
)
is a compact set if and only

if it is uniformly bounded and equicontinuous. In other words, if the
following two conditions are satisfied:
1. There exists a constant M > 0 such that

‖f ‖C(Ω) ≤ M, ∀f ∈M.

2. For any ε > 0 there exists δ = δ (ε) > 0 such that

|f (x)− f (y)| < ε, ∀x , y ∈ {|x − y | < δ} ∩ Ω, ∀f ∈M.
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Classical Correctness and Conditional Correctness

The notion of the classical correctness is called sometimes Correctness by
Hadamard.
Definition. Let B1 and B2 be two Banach spaces. Let G ⊆ B1 be an
open set and F : G → B2 be an operator. Consider the equation

F (x) = y , x ∈ G . (1)

The problem of solution of equation (1) is called well-posed by
Hadamard, or simply well-posed, or classically well-posed if the following
three conditions are satisfied:
1. For any y ∈ B2 there exists a solution x = x(y) of equation (1)
(existence theorem).
2. This solution is unique (uniqueness theorem).
3. The solution x(y) depends continuously on y . In other words, the
operator F−1 : B2 → B1 is continuous.
If equation (1) does not satisfy to at least one these three conditions,
then the problem (1) is called ill-posed.
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Classical Correctness

G

x
.

y
.

B1 B2

F:G          B2F:G          B2F:G          B2F:G          B2

F^(-1)(B2)         B1

F(x)=y

The problem is classically well-posed if:
1. For any y ∈ B2 there exists a solution x = x(y) of F (x) = y .
2. This solution is unique (uniqueness theorem).
3. The solution x(y) depends continuously on y . In other words, the
operator F−1 : B2 → B1 is continuous.
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Classical Correctness and Conditional Correctness

We say that the right hand side of equation

F (x) = y , x ∈ G . (2)

is given with an error of the level δ > 0 (small) if ‖y∗ − y‖B2
≤ δ, where

y∗ is the exact value.
Definition Let B1 and B2 be two Banach spaces. Let G ⊂ B1 be an a
priori chosen set of the form G = G 1, where G1 is an open set in B1. Let
F : G → B2 be a continuos operator. Suppose that ‖y∗ − yδ‖B2

≤ δ.
Here y∗ is the ideal noiseless data, yδ is noisy data . The problem (2) is
called conditionally well-posed on the set G , or well-posed by Tikhonov
on the set G if the following three conditions are satisfied:
1. It is a priori known that there exists an ideal solution
x∗ = x∗ (y∗) ∈ G of this problem for the ideal noiseless data y∗.
2. The operator F : G → B2 is one-to-one.
3. The inverse operator F−1 is continuous on the set F (G ).
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Conditional Correctness

G
    x^* .

    
 x
.

B1 B2

F:G          B2F:G          B2F:G          B2F:G          B2

F^(-1)(V)            G

F(x^*)=y^*
V 

.   y^*
y
.

F(x)=y

The problem (2) is called conditionally well-posed on the set G if:
1. It is a priori known that there exists an ideal solution
x∗ = x∗ (y∗) ∈ G of this problem for the ideal noiseless data y∗.
2. The operator F : G → B2 is one-to-one.
3. The inverse operator F−1 is continuous on the set F (G ).
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The Fundamental Concept of Tikhonov

This concept consists of the following three conditions which should be in
place when solving the ill-posed problem (2):
1. One should a priori assume that there exists an ideal exact solution x∗

of equation (2) for an ideal noiseless data y∗.
2. The correctness set G should be chosen a priori, meaning that some a
priori bounds imposed on the solution x of equation (2) should be
imposed.
3. To construct a stable numerical method for the problem (2), one
should assume that there exists a family {yδ} of right hand sides of
equation (2), where δ > 0 is the level of the error in the data with
‖y∗ − yδ‖B2

≤ δ. Next, one should construct a family of approximate
solutions {xδ} of equation (2), where xδ corresponds to yδ. The family
{xδ} should be such that

lim
δ→0+

‖xδ − x∗‖ = 0.
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Quasi-solution

Another approach to the solution of ill-posed problem is concept pf
quasi-solution. This concept was introduced by Ivanov in 1962 in the
work [Ivanov, 1962]. Let A be a compact operator, x ∈ M, M is a
compact set such that M ⊂ Q, f ∈ A(M) ⊂ F : Then approximate
solution of the problem

Ax = f

can be obtained by
x = A−1f .

for small perturbations in the rhs f .
The main point here is that f ∈ A(M) ⊂ F otherwise the solution can
not be obtained by x = A−1f . Since it is difficult to check if
f ∈ A(M) ⊂ F then it was introduced the concept of quasi-solution.
V.K.Ivanov, On linear problems which are not well-posed, Dokl.Akad.Nauk SSSR, 145(2), 211-223.

1962 (In Russian)
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Quasi-solution

Definition (Ivanov, 1962)
A quasi-solution to the equation

Ax = f (3)

on a set M ⊂ Q is an element xK ∈ M that minimizes the residual

R(Axk , f ) = inf
x∈M

R(Ax , f ) (4)

If M is a compact set then there exists a quasi-solution for any f ∈ F .
If in addition f ∈ A(M) the quasi-solutions xk (it can be a lot of such
solutions) are the same as exact solution x .
Here is a sufficient condition for a quasi-solution to be unique and
continuously depend on the rhs f .
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Model inverse problems

Quasi-solution

Theorem [Ivanov, 2002, Tikhonov Arsenin, 1974]
Assume that the equation (3) has at most one solution on a
compact set M and ∀f ∈ M the projection Pf into A(M) is unique.
Then a quasi-solution of the equation (3) is unique and
continuously depends on f .

We can conclude that the problem of finding a quasi-solution on a
compact set is well-posed problem.

If the quasi-solution is not unique, then its quasi-solutions form a
subset of the compact set M and in this case this set continuously
depends on f (Ivanov, 1963).

V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of linear ill-posed problems and its applications, VSP,
Utrecht, 2002.
A. N. Tikhonov, V. Ya. Arsenin, Solutions of ill-posed problems, Wiley, 1977.
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Ill-posed problem: differentiation of a function given with a
noise

Suppose that the function f (x), x ∈ [0, 1] is given with a noise, i.e.
suppose that instead of f (x) ∈ C 1 [0, 1] the following function fδ(x) is
given

fδ (x) = f (x) + δf (x), x ∈ [0, 1] ,

where δf (x) is the noisy component. Let δ > 0 be a small parameter
such that ‖δf ‖C [0,1] ≤ δ. Let us show that the problem of calculating the
derivative f ′δ (x) is unstable.

www.math.chalmers.se/∼larisa Lecture 2



Model inverse problems

Examples of ill-posed problems. Differentiation of a function
given with a noise

For example, take

δf (x) =
sin(n2x)

n
,

where n > 0 is a large integer. Then the C [0, 1]-norm of the noisy
component is small,

‖δf ‖C [0,1] ≤
1
n
.

However, the difference between derivatives of noisy and exact functions

f ′δ (x)− f ′ (x) = δf ′(x) = n cos n2x

is not small in any reasonable norm.
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Ill-posed problem: differentiation of a function given with a
noise

A simple regularization method of stable calculation of derivatives is that
the step size h in the corresponding finite difference discretization should
be connected with the level of noise δ.

f ′δ (x) ≈ f (x + h)− f (x)

h
+
δf (x + h)− δf (x)

h
. (5)

The first term in the right hand side of (5) is close to the exact derivative
f ′ (x) , if h is small enough. The second term, however, comes from the
noise and we need to balance these two terms via an appropriate choice
of h = h (δ) .∣∣∣∣f ′δ (x)− f (x + h)− f (x)

h

∣∣∣∣ =

∣∣∣∣δf (x + h)− δf (x)

h

∣∣∣∣ ≤ 2δ
h
.

Hence, we should choose h = h (δ) such that

lim
δ→0

2δ
h (δ)

= 0.
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Ill-posed problem: differentiation of a function given with a
noise

For example, let h (δ) = δµ, where µ ∈ (0, 1) . Then

lim
δ→0

∣∣∣∣f ′δ (x)− f (x + h)− f (x)

h

∣∣∣∣ ≤ 2δ
h

=
2δ
δµ
≤ lim
δ→0

(
2δ1−µ

)
= 0.

Hence, the problem becomes stable for this choice of the grid step size
h (δ) = δµ. This means that h (δ) is the regularization parameter.
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Ill-posed problem: integral equation of the first kind

Let Ω ⊂ Rn is a bounded domain and the function
K (x , y) ∈ C

(
Ω× Ω

)
. Recall that the equation

g (x) +

ˆ

Ω

K (x , y)f (y)dy = f (x), x ∈ Ω, (6)

is called integral equation of the second kind. The problem is to
find function f (x) by known K (x , y) and g (x). These equations
are considered quite often in the classic theory of PDEs and are
solved by Liouville-Neumann (iterative) series.

Next, let Ω′ ⊂ Rn be a bounded domain and the function
K (x , y) ∈ C

(
Ω× Ω

)
. Unlike (6), the equationˆ

Ω

K (x , y)f (y)dy = p (x), x ∈ Ω′ (7)

is called the integral equation of the first kind. The Fredholm theory
does not work for such equations. The problem of solution of
equation (7) is an ill-posed problem.
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Ill-posed problem: integral equation of the first kind

Consider equation (7):
ˆ

Ω

K (x , y) f (y) dy = p (x) , x ∈ Ω′

The function K (x , y) is called kernel of the integral operator. Equation
(7) can be rewritten in the form

Af = p, (8)

where A : C
(
Ω
)
→ C

(
Ω
′)

is the integral operator in (7). It is well
known from the standard Functional Analysis course that A is a compact
operator. We now show that the problem (8) is an ill-posed problem.
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Example of an integral equation of the first kind

Let Ω = (0, 1) ,Ω′ = (a, b) . Let fn (x) = f (x) + sin nx . Then for
x ∈ (0, 1)

1ˆ

0

K (x , y) fn (y) dy =

1ˆ

0

K (x , y) f (y) dy+

1ˆ

0

K (x , y) sin nydy = gn (x) ,

(9)
where gn (x) = p (x) + pn(x) and

pn(x) =

1ˆ

0

K (x , y) sin nydy .

By the Lebesque lemma

lim
n→∞

‖pn‖C [a,b] = 0.

However, it is clear that

‖fn (x)− f (x)‖C [0,1] = ‖sin nx‖C [0,1]

is not small for large n.
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Tikhonov’s theorem

Theorem (Tikhonov, 1943). Let B1 and B2 be two Banach spaces. Let
U ⊂ B1 be a compact set and F : U → B2 be a continuous operator.
Assume that the operator F is one-to-one. Let V = F (U). Then the
inverse operator F−1 : V → U is continuous.
Proof. Assume the opposite: that the operator F−1 is not continuous on
the set V . Then there exists a point y0 ∈ V and a number ε > 0 such
that for any δ > 0 there exists a point yδ such that although
‖yδ − y0‖B2

< δ, still
∥∥F−1 (yδ)− F−1 (y0)

∥∥
B1
≥ ε. Hence, there exists a

sequence {δn}∞n=1 , limn→∞ δn = 0+ and the corresponding sequence
{yn}∞n=1 ⊂ V such that

‖yδn − y0‖B2
< δn, ‖F−1 (yn)︸ ︷︷ ︸

xn

−F−1 (y0)︸ ︷︷ ︸
x0

‖B1 ≥ ε. (10)
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Model inverse problems

Denote
xn = F−1 (yn) , x0 = F−1 (y0) . (11)

Then by (10) we have
‖xn − x0‖B1

≥ ε. (12)

Since U is a compact set and all points xn ∈ U, then one can extract a
convergent subsequence

{
xnk

}∞
k=1 ⊆ {xn}∞n=1 from the sequence

{xn}∞n=1. Let limk→∞ xnk = x . Then x ∈ U. Since F
(
xnk

)
= ynk and the

operator F is continuous, then by (10) and (11) we have:

xn = F−1 (yn)⇒ F (xn) = yn,

x0 = F−1 (y0)⇒ F (x0) = y0;

F (x̄) = lim
k→∞

F (xnk ) = lim
k→∞

ynk = y0

(13)

So, we obtained, F (x̄) = y0 since we have that

‖yδn − y0‖B2
< δn

But also F (x0) = y0. Since the operator F is one-to one, we should have
x = x0. However, by (12) ‖x − x0‖B1

≥ ε. We got a contradiction. �
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Model inverse problems

We wil, discuss following model inverse problems:

Elliptic inverse problems

Elliptic CIPs
Cauchy problem
Inverse source problem
Inverse spectral problem

Hyperbolic CIPs

Parabolic CIPs

Determination of the initial condition in hyperbolic or parabolic PDE
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Inverse source problem

The classical linear inverse problem is to recover a source function f in
the equation

−4u = f , x ∈ Ω (14)

from the Cauchy data (g , h) on the boundary Γ:

u = g , x ∈ Γ, (15)
∂u
∂n

= h, x ∈ Γ. (16)

Applications of this problem are in electroencephalography to determine
electrical activities of brain from electrodes placed on a head, and
electrocardiography to determine heart’s electrical activity from
body-surface potential distribution. This problem does’t has unique
solution.
This can be proved if we add one compactly supported function and
obtain a different source on the rhs of (14) with the same Cauchy data
which is not changed.
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Inverse source problem: example of non-uniqueness

Let Ω ⊂ Rd , d = 1, 2, 3 is a bounded domain with the boundary Γ. Let
ωi , i = 1, 2 be two balls which have different radius ri , respectively,
centered at the origin o, and these balls are inside the domain Ω. Choose
the scalars λi : λ1rd

1 = λ2rd
2 . Let the source has the form fi = λiξωi ,

where ξ denotes the characteristic, or indicator function of the set S in
the Laplace equation for i = 1, 2

−4ui = fi , x ∈ Ω, (17)
ui = g , x ∈ Γ. (18)
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Inverse source problem: example of non-uniqueness

Then for ∀v ∈ H(Ω) = {v ∈ H2(Ω) : 4v = 0} the variational
formulation of (17) will be:

− (4ui , v)Ω = −[(v ,
∂ui

∂n
)Γ − (∇ui ,∇v)Ω] (19)

= −(v ,
∂ui

∂n
)Γ + (ui ,

∂v
∂n

)Γ − (ui ,4v)Ω (20)

= (ui ,
∂v
∂n

)Γ − (v ,
∂ui

∂n
)Γ = (fi , v), (21)

where (·, ·) is the standard L2 inner product.
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Inverse source problem: example of non-uniqueness

Since ui = g , i = 1, 2, x ∈ Γ then the equation above can be rewritten as

(fi , v)Ω = (g ,
∂v
∂n

)Γ − (v ,
∂ui

∂n
)Γ, i = 1, 2. (22)

By the mean value theorem for harmonic functions we have

(fi , v)Ω = |ωi |v(O), i = 1, 2. (23)

By construction of fi and using (22), (23) we get
∀v ∈ H(Ω) = {v ∈ H2(Ω) : 4v = 0}

0 = (f2, v)− (f1, v) = (v ,
∂u1

∂n
)Γ − (v ,

∂u2

∂n
)Γ, i = 1, 2. (24)

Since ∀h ∈ H1/2(Γ) there exists the harmonic function v ∈ H(Ω) such
that v = h on Γ and H1/2 is dense in L2(Γ) we conclude that
(∂u1
∂n )Γ = (∂u2

∂n )Γ what means that two different sources have identical
Cauchy data.
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How to solve inverse source problems

In practical applications it is often requered minimum-norm sources
or harmonic sources such that 4f = 0

Often are considered localized sources modeled by monopoles,
dipoles or their combinations. In the case of combinations of
monopoles and dipoles can be obtained unique recovery of the
source function via Holmgren’s theorem.

Direct algorithms for location of monopoles and dipoles are
developed in
El Badia, Ha-Duong, An inverse source problem in potential
analysis, Inverse Problems, 16, pp.651–663, 2000.
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Inverse spectral problem

The forward problem is
Au = λu, (25)

where A is an elliptic operator, λ is eigenvalue and u is respective
eigenfunction.
The inverse spectral problem is to recover the coefficients in the operator
A or the geometry of the domain Ω from partial or multiple spectral data
(knowledge of eigenvalues and eigenfunctions).
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Example of an inverse spectral problem

Let the operator A is applied to u as:

Au = −u′′(t) + q(t)u(t), t ∈ (0, 1) (26)

where q(t) is the potential. Then the classical Sturm-Liouville problem
reads: given a potential q(t) and constants h,H > 0 find eigenvalues
{λk} and eigenfunctions {uk} such that

−u′′(t) + q(t)u(t) = λu(t), t ∈ (0, 1), (27)
u′(0)− hu(0) = 0, (28)
u′(1) + Hu(1) = 0. (29)

The set of eigenvalues {λk} is real and countable.
The inverse Sturm-Liouville problem is to recover the potential
q(t), h,H from the knowledge of spectral data ({λk}, {uk}). This data
can take different forms.
Numerical solution of these problems is presented in
M. T. Chu, G. H. Golub, Inverse eigenvalue problems, Oxford University
Press, Oxford, New York, 2005.
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Coefficient Inverse Problems: main steps in solution

                                         Coefficient Inverse Problems  for PDE 

Use collected    
data. Data is 
generated by 
different type of 
waves (acoustic, 
elastic, 
electromagnetic)

Extract image 
data for 
analysis.

Develop new 
mathematical methods 
for reconstruction of   
spatially distributed 
coefficients  in the 
model PDE which  
describes the physical 
process. 

Visualize and analyze 
obtained reconstructions.
Estimate error in the 
reconstruction. 

Implement new 
methods using fast 
and robust 
numerical 
methods.

A coefficient inverse problem for a given partial differential equation (PDE) aims at estimating a
spatially distributed coefficient of the model PDE using measurements taken on the boundary of the 
domain of interest.
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The Hyperbolic Coefficient Inverse Problem

Let us assume that the domain Ω is a ball,
Ω = {|x | < R} ⊂ Rn,R = const. > 0. Let T = const. > 0. Denote
Q±T = Ω× (−T ,T ) , S±T = ∂Ω× (−T ,T ).
Let the function u(x , t) ∈ C 2

(
QT
)
satisfies to the

c (x)utt = ∆u +
∑
|α|≤1

aα (x)Dα
x u, in QT , (30)

u (x , 0) = f0 (x), ut (x , 0) = f1 (x), (31)

u|ST = p (x , t),
∂u
∂n
|ST = q (x , t), (32)

where functions aα, c ∈ C
(
QT
)
and c ≥ 1.

The Hyperbolic Coefficient Inverse Problem. Suppose that one of
coefficients in equation (30) is unknown inside of the ball Ω and is known
outside of it. Assume that all other coefficients in (33) are known and
conditions (31) are satisfied. Determine that unknown coefficient inside
of Ω, assuming that the functions p (x , t) and q (x , t) in (32) are known.
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The Coefficient Inverse Problem for a parabolic equation

Consider the Cauchy problem for the following forward parabolic equation

c (x)ut = ∆u +
∑
|α|≤1

aα (x)Dα
x u, in Dn+1

T = Rn × (0,T ) , (33)

u (x , 0) = f0 (x), (34)

c , aα ∈ Cβ (Rn) , f0 ∈ C 2+β (Rn) , β ∈ (0, 1) , c (x) ≥ 1. (35)

Given conditions (35), this problem has unique solution
u ∈ C 2+β,1+β/2

(
D

n+1
T

)
. Assume that Ω = {|x | < R} ⊂ Rn, n ≥ 2. Let

Γ ⊆ ∂Ω be a part of the boundary of the domain Ω and T = const. > 0.
The Parabolic Coefficient Inverse Problem. Suppose that one of
coefficients in equation (33) is unknown inside of the ball Ω and is known
outside of it. Assume that all other coefficients in (33) are known and
conditions (34), (35) are satisfied. Determine that unknown coefficient
inside of Ω, assuming that the following functions p (x , t) and q (x , t) are
known

u |ΓT = p (x , t),
∂u
∂n
|ΓT = q (x , t). (36)
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CIP for a parabolic equation is an ill-posed problem

Let the function a (x) ∈ Cα (Rn) , α ∈ (0, 1) and a (x) = 0 outside of the
bounded domain Ω ⊂ Rn with ∂Ω ∈ C 3. Consider the following Cauchy
problem

ut = ∆u + a (x)u, (x , t) ∈ Dn+1
T , (37)

u (x , 0) = f (x). (38)

Here the function f (x) ∈ C 2+α (Rn) has a finite support in Rn. Another
option for the initial condition is

f (x) = δ (x − x0) , x0 /∈ Ω (39)

The inverse problem is: assume that the function a (x) is unknown inside
of the domain Ω. Determine this function for x ∈ Ω assuming that the
following function g (x , t) is known

u |ST = g (x , t). (40)
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CIP for a parabolic equation is an ill-posed problem

Let us show that this CIP is an ill-posed problem. Let the function u0 be
the fundamental solution of the heat equation u0t = ∆u0,

u0 (x , t) =
1(

2
√
πt
)n exp

(
−|x |

2

4t

)
.

It is well known that by [LSU]

u (x , t) =

ˆ

Rn

u0 (x − ξ, t) f (ξ) dξ+

tˆ

0

ˆ

Ω

u0 (x − ξ, t − τ) a (ξ) u (ξ, τ) dτ.

(41)

Because of the presence of the integral
t́

0
(·) dτ the integral (41) is a

Volterra-like integral equation of the second kind.
[LSU] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and Quasilinear Equations of

Parabolic Type, AMS, Providence, R.I., 1968.
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Model inverse problems

Hence, it can be solved as in [LSU]

u (x , t) =

ˆ

Rn

u0 (x − ξ, t) f (ξ) dξ

︸ ︷︷ ︸
uf
0

+
∞∑

n=1

un (x , t) , (42)

un (x , t) =

tˆ

0

ˆ

Ω

u0 (x − ξ, t − τ) a (ξ) un−1 (ξ, τ) dτ.

One can prove that each function un ∈ C 2+α,1+α/2
(
Dn+1

T

)
and

using [LSU] ∣∣∣Dβ
x Dk

t un (x , t)
∣∣∣ ≤ (Mt)n

n!
, |β|+ 2k ≤ 2, (43)

where M = ‖a‖Cα(Ω) . In the case when f = δ (x − x0) the first
term in the right hand side of (42) should be replaced with
u0 (x − x0, t) .
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Model inverse problems

Let uf
0 (x , t) be the first term of the right hand side of (42) and

v (x , t) = u (x , t)− uf
0 (x , t) .

Using (43), one can rewrite (42) as

v (x , t) =

tˆ

0

ˆ

Ω

u0 (x − ξ, t − τ)
(
a (ξ) uf

0 (ξ, τ) + P (a) (ξ, τ)
)
dξdτ,

(44)
where P (a) is a nonlinear operator applied to the function a. It is clear
from (42)-(44) that the operator P : Cα

(
Ω
)
→ C 2+α,1+α/2

(
QT
)
is

continuous. Setting in (44) (x , t) ∈ ST , recalling (40) and denoting
denoting g (x , t) = g (x , t)− uf

0 (x , t), we obtain a nonlinear integral
equation of the first kind with respect to the unknown coefficient a (x)

ˆ

ST

u0 (x − ξ, t − τ)
(
uf
0 (ξ, τ) a (ξ) + P (a) (ξ, τ)

)
dξdτ

︸ ︷︷ ︸
A(a)

= g (x , t) , (x , t) ∈ ST .

(45)
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Model inverse problems

Let A (a) be the operator in the left hand side of (45). Let H1 = L2 (Ω)
and H2 = L2 (ST ) . Consider now the set U of functions defined as

U =
{
a : a ∈ Cα

(
Ω
)
, ‖a‖Cα(Ω) ≤ M

}
⊂ H1.

Since the L2 (Ω)−norm is weaker than the Cα
(
Ω
)
−norm, then U is a

bounded set in H1 and A : U → C (ST ) is a compact operator by
Theorem 1.1 of [BK]. Since the norm in L2 (ST ) is weaker than the norm
in C (ST ), then A : U → H2 is also a compact operator. However, U is
not a compact. Hence, from the Theorem about an ill-posed problem
(Theorem 1.2 of [BK]) follows that the problem of solution of the
equation

A (a) = g , a ∈ U ⊂ H1, g ∈ H2

is an ill-posed problem.
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Model inverse problems

Determination of initial condition in parabolic PDE

The inverse heat conduction problem has applications in image
processing, remote sensing, oil base detection etc.

Consider the direct Cauchy problem for the following parabolic
equation

ut = C 2(x)∆u,
u(·, 0) = f (x).

(46)

If (46) is considered in Ω× (0,T ] and supplied by appropriate
boundary conditions, then with known f (x) ∈ C 2(Rn), boundary
conditions and C (x) ∈ C (Rn) the problem can be solved.

The inverse problem is: determine the initial condition f (x) in
(46) by knowing the function u at the final time T :

u(·,T ) = g(x). (47)
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Model inverse problems

Determination of initial condition in parabolic PDE

Two types of algorithms can be considered to solve the inverse problem:

Optimization approach and construction of the adjoint problem to
be used in the iterative gradient update. Read about this approach
in
Dinh Nho Hào Nguyen Thi Ngoc Oanh, Determination of the initial condition in parabolic

equations from integral observations, Inverse Problems in Science and Engineering, 25:8,

1138-1167, 2017. DOI: 10.1080/17415977.2016.1229778

Algorithm for solution of the inverse problem which is based on the
reduction of solution of (46) to the solution of Fredholm integral
equation of the first kind by the method of separation of variables
and then obtaining of the initial condition f (x) by the inverse
Fourier transform of this solution.See more info in
Tao Min, Bei Geng, Jucheng Ren, Inverse estimation of the initial condition for the heat

equation, International Journal of Pure and Applied Mathematics, 82(4), 581-593, 2013.
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Model inverse problems

Acoustic CIPs

Acoustic CIPs for acoustic wave equation

1
c2(x)

utt = ∆u in R3 × (0,∞) , (48)

u (x , 0) = 0, ut (x , 0) = δ (x − x0) . (49)

Let now introduce the convex bounded domain Ω ⊂ R3 with
the boundary ∂Ω ∈ C 3 and specify time variable t ∈ [0,T ].
Next, we supply the Cauchy problem by the appropriate b.c.
We assume that the coefficient c(x) belongs to the set of
admissible parameters M which should be specified for the
concrete problem.
u(x , t) acoustic pressure - we measure it on the boundary ∂Ω.
c(x) speed of sound – want to determine by measured u(x , t)
on the boundary ∂Ω
Applications: medical imaging, electromagnetic, acoustics,
geological profiling, construction of new materials
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Model inverse problems

Acoustic CIP: example

We model the process of electric wave field propagation in
non-conductive and nonmagnetic media with ∇ · (εE ) = 0 via a single
hyperbolic PDE, which is the same as an acoustic wave equation
(48)-(49). The forward problem is the following Cauchy problem

εr (x)utt = ∆u, in R3 × (0,∞) , (50)
u (x , 0) = 0, ut (x , 0) = δ (x − x0) . (51)

Here, εr (x) is the spatially distributed dielectric constant (relative
dielectric permittivity),

εr (x) =
ε (x)

ε0
,
√
εr (x) = n (x) =

c0
c (x)

≥ 1, (52)

where ε0 is the dielectric permittivity of the vacuum (which we assume to
be the same as the one in the air), ε (x) is the dielectric permittivity of
the medium of interest, n (x) is the refractive index of the medium of
interest, c (x) is the speed of the propagation of the EM field in this
medium, and c0 is the speed of light in the vacuum, which we assume to
be the same as one in the air.

www.math.chalmers.se/∼larisa Lecture 2



Model inverse problems

Acoustic CIP: example

Ω

u(x , t) = g(x , t) on ∂Ω

εr (x) =?

exact εr (x)

Coefficient Inverse Problem Assume that the function εr (x) is
unknown in the domain Ω. Determine the function εr (x) for x∈ Ω,
assuming that the following function g (x , t) is known for a source x0 /∈ Ω

u(x , t) = g(x , t),∀(x , t) ∈ ∂Ω× (0,T ].
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Model inverse problems

Reconstruction of dielectrics from experimental data

a) The rectangular prism depicts our computational domain Ω. Only a single source location outside of
this prism was used. Tomographic measurements of the scattered time resolved EM wave were
conducted on the bottom side of this prism. The signal was measured with the time interval 20
picoseconds with total time 12.3 nanoseconds. b) Schematic diagram of locations of detectors on the
bottom side of the prism Ω. The distance between neighboring detectors was 10 mm.

L.Beilina, M.V.Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally
convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, 2010.
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Model inverse problems

The two-stage numerical procedure for solution of CIP

Stage 1. Approximately globally convergent numerical method provides
a good approximation for the exact solution εglob.
Stage 2. Adaptive Finite Element Method refines it via minimization of
the corresponding Tikhonov functional with ε0 = εglob:

J(u, ε) =
1
2

ˆ
Γ

ˆ T

0
(u − ũ)2zδ(t)dsdt +

1
2
γ

ˆ
Ω

(ε− ε0)2 dx . (53)

where ũ is the observed wave field in the model PDE (for example,
acoustic wave equation), u satisfies this model PDE and thus depends on
ε.
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Model inverse problems

The two-stage numerical procedure

Stage 1. Approximately globally convergent numerical method
provides a good approximation for the exact solution.
Stage 2. Adaptive Finite Element Method refines it.

a) ε(5,2)
r = 3.9, n(5,2) = 1.97 b) εr,h ≈ 4.2, nglob =

√
εr,h ≈ 2.05

a) A sample of the reconstruction result of the dielectric cube No. 1 (4 cm side) via the first stage. b)
Result after applying the adaptive stage (2-nd stage). The side of the cube is 4 cm=1.33 wavelength.
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Model inverse problems

Results of the two-stage procedure, cube nr.2 (big)

a) εr (5, 5) = 3.19, n(5,5) = 1.79 b) εr,h ≈ 3.0, nglob =
√
εr,h ≈ 1.73

a) Reconstruction of the dielectric cube No. 2 (6 cm side) via the first stage. b) The final
reconstruction result after applying the adaptive stage (2-nd stage). The side 6 cm=2 wavelength.

L.Beilina, M.V.Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally
convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, 2010.
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Model inverse problems

Elastic CIPs

Let v (x , t) = (v1, v2, v3) (x , t) be vector of displacement. We consider
the Cauchy problem for the elastodynamics equations in the isotropic
case in the entire space R3,

ρ(x)
∂2v
∂t2
−∇ · τ = δ(x3 − z0)f (t),

τ = Cε,

v (x , 0) = 0, vt(x , 0) = 0, x ∈ R3, t ∈ (0,T ) ,

(54)

where v(x , t) is the total displacement generated by the incident plane
wave f (t) propagating along the x3-axis which is incident at the plane
x3 = z0, ρ(x) is the density of the material, τ is the stress tensor, C is a
cyclic symmetric tensor and ε is the strain tensor which have components

εij =
1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
, i , j = 1, 2, 3.

The strain tensor ε is coupled with the stress tensor τ by the Hooke’s law

τi,j =
3∑

k=1

3∑
l=1

Cijklεkl (55)

with
Cijkl = Cklij = Cjkli .
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Model inverse problems

Elastic CIPs

C is a cyclic symmetric tensor

Cijkl = Cklij = Cjkli .

When Cijkl does not depends on x then material of the domain which we
consider is said to be homogeneous. If the tensor Cijkl does not depends
on the choice of the coordinate system, then the material of the domain
under interest is said to be isotropic. Otherwise, the material is
anisotropic.
In the isotropic case the cyclic symmetric tensor C can be written as

Cijkl = λδijδkl + µ(δijδkl + δilδjk),

where δij is the Kronecker delta, in which case the equation (55) takes
the form

τi,j = λδij

3∑
k=1

εkk + 2µεij , (56)

where λ and µ are Lame coefficients.
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Model inverse problems

Elastic CIPs

Lame coefficients λ and µ are given by

µ =
E

2(1 + ν)
,

λ =
Eν

(1 + ν)(1− 2ν)
.

(57)

Here, E is the modulus of elasticity, or Young modulus, and ν is the
Poisson’s ratio of the elastic material. Following relations should be
satisfied

λ > 0, µ > 0 ⇐⇒ E > 0, 0 < ν < 1/2. (58)
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Elastic CIPs

To write the equation (54) only in terms of v we eliminate the strain tensor ε from (54) using (55).
Then in the isotropic case the equation in (54) writes

ρ(x)
∂2v1
∂t2

−
∂

∂x1

(
(λ + 2µ)

∂v1
∂x1

+ λ
∂v2
∂x2

+ λ
∂v3
∂x3

)
−

∂

∂x2

(
µ

(
∂v1
∂x2

+
∂v2
∂x1

))
−

∂

∂x3

(
µ

(
∂v1
∂x3

+
∂v3
∂x1

))
= 0,

ρ(x)
∂2v2
∂t2

−
∂

∂x2

(
(λ + 2µ)

∂v2
∂x2

+ λ
∂v1
∂x1

+ λ
∂v3
∂x3

)
−

∂

∂x1

(
µ

(
∂v1
∂x2

+
∂v2
∂x1

))
−

∂

∂x3

(
µ

(
∂v2
∂x3

+
∂v3
∂x2

))
= 0,

ρ(x)
∂2v3
∂t2

−
∂

∂x3

(
(λ + 2µ)

∂v3
∂x3

+ λ
∂v2
∂x2

+ λ
∂v1
∂x1

)
−

∂

∂x2

(
µ

(
∂v3
∂x2

+
∂v2
∂x3

))
−

∂

∂x1

(
µ

(
∂v1
∂x3

+
∂v3
∂x1

))
= δ(x3 − z0)f (t),

(59)
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Elastic CIPs

The system above for λ = const. > 0, µ = const. > 0 can be written in a
more compact form as

ρ
∂2v
∂t2
− µ∇ · (∇v)− (λ+ µ)∇(∇ · v) = δ(x3 − z0)f (t),

v (x , 0) = 0, vt(x , 0) = 0, x ∈ R3, t ∈ (0,T ) .

(60)

Inserting Helmholtz decomposition

v = ∇ϕ+∇× ψ (61)

with a scalar potential ϕ and a vector potential ψ into (60) we get

ρ
∂2(∇ϕ+∇× ψ)

∂t2
− µ∇ · (∇(∇ϕ+∇× ψ))− (λ+ µ)∇(∇ · (∇ϕ+∇× ψ))

= δ(x3 − z0)f (t)

(62)
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Model inverse problems

Elastic CIPs

Using

∇ · (∇ϕ) = 4ϕ,
∇ · (∇× ψ) = 0,

we finally get with f (t) = 0

∇
(
ρ
∂2ϕ

∂t2
− (λ+ 2µ)4ϕ

)
+∇×

(
ρ
∂2ψ

∂t2
− µ4ψ

)
= 0 (63)

We conclude that

ρ
∂2ϕ

∂t2
− (λ+ 2µ)4ϕ = 0,

ρ
∂2ψ

∂t2
− µ4ψ = 0.

(64)

Here, v = ∇ϕ is the pressure wave with the spead Vp = (λ+2µ
ρ )1/2,

v = ∇× ψ is the shear wave with the spead Vs = (µρ )1/2

www.math.chalmers.se/∼larisa Lecture 2



Model inverse problems

Elastic CIP: examples of CIPs

Ω

u(x , t) = g(x , t) on ∂Ω

ρ(x) =?

λ(x), µ(x) ∈Ω

Ω

v(x , t) = g(x , t) on ∂Ω

ρ(x) =?
λ(x) =?

µ(x) =?

Inverse Problem (IP1) Determine the density function ρ(x) in Ω for
x ∈ Ω assuming that the Lame parameters λ(x), µ(x) and g(x , t) s.t.

v (x , t) = g(x , t),∀ (x , t) ∈ ∂Ω× (0,T ].

are known.
Inverse Problem (IP2) Determine the functions ρ(x), λ(x), µ(x) in Ω
for x ∈ Ω assuming that g(x , t) is known in Ω.
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Model inverse problems

Applications of elastic CIP: design of new materials

There is a class of materials for which the macroscale properties can be
obtained more from such called mechanical microstructural design, see
Figure for examples of such materials.

Practical applications: mechanical cloaking, control and manipulation of waves in fluids and
solids, etc.

Examples of such materials include nanomaterials such as graphene or carbon nanotubes with
extraordinary strength properties.

Design of new mechanical metamaterials using computational modeling is one of the applications
of elastic CIPs.
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CIP for electromagnetic problems. Maxwell’s equations

Consider a region of space that has no electric or magnetic current
sources, but may have materials that absorb electric or magnetic field
energy. Then, using MKS units, the time-dependent Maxwell’s equations
are given in differential and integral form by Faraday ′s law :

∂B
∂t

= −∇× E−M (65a)

∂

∂t

¨

A

B · dA = −
˛

L

E · dL−
¨

A

M · dA (65b)

The MKS system of units is a physical system of units that expresses any given measurement using

fundamental units of the metre, kilogram, and/or second (MKS))

A. Taflove, S. C. Hagness, Computational Electromagnetics. The finite-difference time-domain method,

3rd edition, Artech House Publishers, 2005.
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Maxwell’s equations

Ampere′s law :

∂D
∂t

= ∇×H− J (66a)

∂

∂t

¨

A

D · dA =

˛

L

H · dL−
¨

A

J · dA (66b)

Gauss ′ law for the electric field :

∇ ·D = 0 (67a)‹

A

D · dA = 0 (67b)

Gauss ′ law for the magnetic field :

∇ · B = 0 (68a)‹

A

B · dA = 0 (68b)
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Maxwell’s equations

In (65) to (68), the following symbols (and their MKS units) are defined:
E : electric field (volts/meter)
D : electric flux density (coulombs/meter2)
H : magnetic field (amperes/meter)
B : magnetic flux density (webers/meter2)
A : arbitrary three-dimensional surface
dA : differential normal vector that characterizes surface A (meter2)
L : closed contour that bounds surface A (volts/meter)
dL : differential length vector that characterizes contour L (meters)
J : electric current density (amperes/meter2)
M : equivalent magnetic current density (volts/meter2)
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Model inverse problems

Maxwell’s equations

In linear, isotropic, nondispersive materials (i.e. materials having
field-independent, direction-independent, and frequency-independent
electric and magnetic properties), we can relate D to E and B to H using
simple proportions:

D = εE = εrε0E; B = µH = µrµ0H (69)

where

ε : electrical permittivity (farads/meter)
εr : relative permittivity (dimensionless scalar)
ε0 : free-space permittivity (8.854× 10−12 farads/meter)
µ : magnetic permeability (henrys/meter)
µr : relative permeability (dimensionless scalar)
µ0 : free-space permeability (4π × 10−7 henrys/meter)

Note that J and M can act as independent sources of E- and H-field
energy, Jsource and Msource .

www.math.chalmers.se/∼larisa Lecture 2



Model inverse problems

Maxwell’s equations

We also allow for materials with isotropic, nondispersive electric and
magnetic losses that attenuate E- and H-fields via conversion to heat
energy. This yields

J = Jsource + σE; M = Msource + σ∗H (70)

where σ : electric conductivity (siemens/meter)
σ∗ : equivalent magnetic loss (ohms/meter)

Finally, we substitute (69) and (70) into (65a) and (66a). This yields
Maxwell’s curl equations in linear, isotropic, nondispersive, lossy
materials:

∂H
∂t

= − 1
µ
∇× E− 1

µ
(Msource + σ∗H) (71)

∂E
∂t

=
1
ε
∇×H− 1

ε
(Jsource + σE) (72)
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Maxwell’s equations

We now write out the vector components of the curl operators of (71)
and (72) in Cartesian coordinates. This yields the following system:

∂Hx

∂t
=

1
µ

[
∂Ey

∂z
− ∂Ez

∂y
− (Msourcex + σ∗Hx)

]
(73a)

∂Hy

∂t
=

1
µ

[
∂Ez

∂x
− ∂Ex

∂z
−
(
Msourcey + σ∗Hy

)]
(73b)

∂Hz

∂t
=

1
µ

[
∂Ex

∂y
− ∂Ey

∂x
− (Msourcez + σ∗Hz)

]
(73c)

∂Ex

∂t
=

1
ε

[
∂Hz

∂y
− ∂Hy

∂z
− (Jsourcex + σEx)

]
(74a)

∂Ey

∂t
=

1
ε

[
∂Hx

∂z
− ∂Hz

∂x
−
(
Jsourcey + σEy

)]
(74b)

∂Ez

∂t
=

1
ε

[
∂Hy

∂x
− ∂Hx

∂y
− (Jsourcez + σEz)

]
(74c)
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CIPs for electric wave propagation

Recall Maxwell’s curl equations in linear, isotropic, nondispersive, lossy
materials with σ∗ = 0,Msource = 0:

∂H
∂t

= − 1
µ
∇× E (75)

∂E
∂t

=
1
ε
∇×H− 1

ε
σE− 1

ε
Jsource (76)

Take now
∂

∂t
from (76) and ∇× from (75) to get:

∇× ∂H
∂t

= −∇× 1
µ
∇× E (77)

ε
∂2E
∂t2

=
∂

∂t
∇×H− σ ∂

∂t
E− ∂

∂t
Jsource (78)
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Model inverse problems

CIPs for electric wave propagation

Substitude the right hand side of (77) into (78) instead of
∂

∂t
∇×H to

obtain Maxwell’s equations for electric field E = (E1,E2,E3). Let us
consider now Cauchy problem for the Maxwell’s equations for electric
field E in the domain ΩT = Ω× [0,T ]:

ε
∂2E
∂t2

+∇× 1
µ
∇× E = −σ ∂

∂t
E− ∂

∂t
Jsource in ΩT ,

∇ · (εE) = 0,
E(x, 0) = f0(x), Et(x, 0) = f1(x) in Ω,

(79)

Let Ω ⊂ R3 be a convex bounded domain with the boundary
∂Ω ∈ C 3 and specify time variable t ∈ [0,T ]. Next, we supply the
Cauchy problem by the appropriate b.c.

ε(x) and σ(x) are dielectric permittivity and electric conductivity
functions, respectively of the domain Ω. In (79),
ε(x) = εr (x)ε0, µ = µrµ0 and σ(x) are dielectric permittivity,
permeability and electric conductivity functions, respectively, ε0, µ0
are dielectric permittivity and permeability of free space,
respectively.

Different CIPs for time-dependent electric wave equation (79) can be
formulated.
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CIPs for electric wave propagation

Ω

E (x , t) = g(x , t) on ∂Ω

εr (x) =?

σ = 0, µr = 1

Ω

E (x , t) = g(x , t) on ∂Ω

εr (x) =?
σ(x) =?

µr ≈ 1

Inverse Problem (EIP1) Determine the relative dielectric permittivity
function εr (x) in Ω for x ∈ Ω in nonconductive (σ(x) = 0) and
nonmagnetic (µr = 1) media when the measured function g(x , t) s.t.

E (x , t) = g(x , t),∀ (x , t) ∈ ∂Ω× (0,T ].

is known.
Inverse Problem (EIP2) Determine the functions ε(x), σ(x) in Ω for
x ∈ Ω for µr ≈ 1 in water assuming that g(x , t) is known in ∂Ω× (0,T ] .
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CIPs for magnetic field

Similarly can be obtained Maxwell’s equations for magnetic field
H = (H1,H2,H3). Let us consider system of Maxwell’s equations in
linear, isotropic, nondispersive, lossy materials with σ = 0, σ∗ = 0:

∂H
∂t

= − 1
µ
∇× E (80)

∂E
∂t

=
1
ε
∇×H− 1

ε
Jsource (81)

In this case we take time derivative in (80) and operator ∇× in (81) to
get:

∂2H
∂t2

= − 1
µ

∂

∂t
∇× E, (82)

∇× ∂E
∂t

= ∇× 1
ε
∇×H−∇× 1

ε
Jsource . (83)

Substitude the right hand side of (82) into (83) instead of
∂

∂t
∇× E to obtain Maxwell’s equations for

magnetic field H = (H1,H2,H3):

µ
∂2H

∂t2
+∇×

1

ε
∇× H = ∇×

1

ε
Jsource (84)
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Model inverse problems

CIPs for for magnetic field

Let us consider now Cauchy problem for magnetic field H in the domain
ΩT = Ω× [0,T ]:

µ
∂2H
∂t2

+∇× 1
ε
∇×H = ∇× 1

ε
Jsource in ΩT ,

H(x, 0) = f0(x), Ht(x, 0) = f1(x) in Ω,

(85)

Let Ω ⊂ R3 be a convex bounded domain with the boundary
∂Ω ∈ C 3 and specify time variable t ∈ [0,T ]. Next, we supply the
Cauchy problem by the appropriate b.c.

In (85), ε(x) = εr (x)ε0, µ = µrµ0 are dielectric permittivity and
permeability functions, respectively, ε0, µ0 are dielectric permittivity
and permeability of free space, respectively.

Different CIPs for time-dependent equation for magnetic field (85) can
be formulated.
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Model inverse problems

CIPs for magnetic wave propagation

Ω

H(x , t) = g(x , t) on ∂Ω

µr (x) =?

Ω

H(x , t) = g(x , t) on ∂Ω

µr (x) =?
εr (x) =?

Inverse Problem (MIP1) Determine the relative magnetic permeability
function µr (x) in Ω for x ∈ Ω in nonconductive (σ(x) = 0) media when
the measured function g(x , t) s.t.

H (x , t) = g(x , t),∀ (x , t) ∈ ∂Ω× (0,T ].

is known in Ω.
Inverse Problem (MIP2) Determine the functions εr (x), µr (x) in Ω for
x ∈ Ω assuming that g(x , t) is known in ∂Ω× (0,T ] .
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Model inverse problems

Maxwell’s equations in 2D in a waveguide. TE and TM
modes.

Let us assume that the structure being modeled extends to infinity in the z-direction with no change in
the shape or position of its transverse cross section (case of a waveguide). If the incident wave is also
uniform in the z-direction, then all partial derivatives of the fields with respect to z must equal zero.
Under these conditions, the full set of Maxwell’s curl equations given by (73) and (74) reduces to

∂Hx

∂t
=

1

µ

[
−
∂Ez

∂y
−
(
Msourcex + σ

∗Hx
)]

(86a)

∂Hy

∂t
=

1

µ

[
∂Ez

∂x
−
(
Msourcey + σ

∗Hy
)]

(86b)

∂Hz

∂t
=

1

µ

[
∂Ex

∂y
−
∂Ey

∂x
−
(
Msourcez + σ

∗Hz
)]

(86c)

∂Ex

∂t
=

1

ε

[
∂Hz

∂y
−
(
Jsourcex + σEx

)]
(87a)

∂Ey

∂t
=

1

ε

[
−
∂Hz

∂x
−
(
Jsourcey + σEy

)]
(87b)

∂Ez

∂t
=

1

ε

[
∂Hy

∂x
−
∂Hx

∂y
−
(
Jsourcez + σEz

)]
(87c)

If we will group (86a), (86b), and (87c), which involve only Hx , Hy , and Ez then we will set of field
components to the transverse-magnetic mode with respect to z (TMz ) in two dimensions.
If we will group (87a), (87b), and (86c), which involve only Ex , Ey , and Hz . We shall designate this set
of field components to the transverse-electric mode with respect to z (TEz ) in two dimensions.
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Model inverse problems

Maxwell’s equations in 2D in a waveguide: TM mode
Recall: when we group (86a), (86b), and (87c), which involve only Hx , Hy , and Ez then we will set of
field components to the transverse-magnetic mode with respect to z (TMz ) in two dimensions.

∂Hx

∂t
=

1

µ

[
−
∂Ez

∂y
−
(
Msourcex + σ

∗Hx
)]

(88a)

∂Hy

∂t
=

1

µ

[
∂Ez

∂x
−
(
Msourcey + σ

∗Hy
)]

(88b)

∂Ez

∂t
=

1

ε

[
∂Hy

∂x
−
∂Hx

∂y
−
(
Jsourcez + σEz

)]
(88c)

In non-conductive homogeneous isotropic media with Msourcex = Msourcey = Jsourcez = 0 the system
above symplifies to

∂Hx

∂t
=

1

µ

[
−
∂Ez

∂y

]
(89a)

∂Hy

∂t
=

1

µ

[
∂Ez

∂x

]
(89b)

∂Ez

∂t
=

1

ε

[
∂Hy

∂x
−
∂Hx

∂y

]
(89c)

Assuming that for r = (x, y, z) waves propagates along the waveguide as

Ez (r, t) = Êz (r, ω) · e−iωt
,Hx (r, t) = Ĥx (r, ω) · e−iωt

,Hy (r, t) = Ĥy (r, ω) · e−iωt (90)
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Model inverse problems

Maxwell’s equations in 2D in a waveguide: TM mode

Applying it in the system (89) we get

−iωĤx =
1

µ

[
−
∂Êz

∂y

]
(91a)

−iωĤy =
1

µ

[
∂Êz

∂x

]
(91b)

−iωÊz =
1

ε

[
∂Ĥy

∂x
−
∂Ĥx

∂y

]
(91c)

From the first and second equations of system above we get

−iωµ
Ĥx

∂y
=

[
−
∂2Êz

∂y2

]
(92a)

−iωµ
∂Ĥy

∂x
=

[
∂2Êz

∂x2

]
(92b)

Then using (92a) - (92a) in (91c) we get the following equation:

ω
2
µεÊz = −

∂2Êz

∂x2
−
∂Êz

∂y2
(93)
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Model inverse problems

CIPs for TM mode in a waveguide

Ω

Êz(r , ω) = g(r , ω) on ∂Ω

For the model problem

ω2µεÊz = −∂
2Êz

∂x2 −
∂Êz

∂y2 (94)

we can formulate following CIP :
Inverse Problem Determine the dielectric permittivity function ε(r) in
Ω for known ω and µ for r = (x , y , z) ∈ Ω in nonconductive (σ(r) = 0)
media when the measured function Êz is known on ∂Ω.
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Model inverse problems

CIPs for a waveguide

Ω

E (r , t) = g(r , t) on ∂Ω

For the model problem

ε
∂2E
∂t2

+∇× (µ−1∇× E ) = 0, in ΩT , (95)

∇ · (εE ) = 0, in ΩT , (96)
E (x , 0) = f0(x), Et(x , 0) = f1(x) in Ω, (97)

E × n = 0 on ∂ΩT . (98)

we can formulate following CIP :
Inverse Problem Determine the dielectric permittivity function ε(r) in
Ω for r = (x , y , z) ∈ Ω in nonconductive (σ(r) = 0) media when the
measured function E (r , t) is known on ∂Ω.
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Model inverse problems

Applications of CIPs for electric wave propagation

Left fig.: the electromagnetic spectrum (Wikipedia). Right fig.:Biomedical Microwave Imaging
(frequencies around 1 GHz= 109 Hz) at the Department of Electrical Engineering at CTH, Chalmers,
Göteborg, Sweden. Setup of Stroke Finder; microwave hyperthermia in cancer treatment and breast
cancer detection, https:
//www.chalmers.se/en/departments/e2/research/Signal-processing-and-Biomedical-engineering/

Detection of explosives and airport security (usually X-ray technique)
https://www.rsdynamics.com/products/explosives-detectors/miniexplonix/
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