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What is image deblurring

Image deblurring is recovering the original sharp image using a

mathematical model.

Original Image Blurred Image

Figure: left: exact matrix X, right: approximated matrix B
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The blurring model

Assume linear blurring operator A which is applied to the exact

image X. As a result we will have blurred image B.

X: m × n matrix representing the exact image.

B: m × n matrix representing the blurred image.

The forward problem is well-posed: by knowing X and linear

operator A compute the blurred image:

A(X) = B. (1)

However, the inverse problem: by knowing the blurred image B

compute the original image X, is already an ill-posed problem.
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The point-spread function

Usually, the blurring model is described by a Fredholm integral

equation of the first kind which takes the form

∫

Ω

K(x, y)X(x)dx = B(y), y ∈ Ω. (2)

Here, Ω is a closed bounded set representing our image domain in

Rn, n = 2, 3. It is assumed that the kernel K(x, y) ∈ Ck (Ω×Ω) is the

absolutely integrable known function. Then the equation (2) can be

represented in the operator form (1) with the operator A defined as

A(X) :=

∫

Ω

K(x, y)X(x)dx. (3)

Information from one part of the image “spills over” to another part

The process is modeled by a point-spread function (PSF) which is

modeled by a Kernel in a linear operator A .

PSF usually assumed to be space-invariant
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Examples of PSF

Motion blur: The point source is smeared into a line. Different

choices are available in the literature, see for example,

M. Tico, M. Vehvilainen, Estimation of motion blur PSF from differently exposed image frames, EUSIPCO 2006,

Florence, Italy, September 4-8, 2006.
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Examples of PSF

Motion blur: The point source is smeared into a line. Different

choices are available in the literature, see for example,

M. Tico, M. Vehvilainen, Estimation of motion blur PSF from differently exposed image frames, EUSIPCO 2006,

Florence, Italy, September 4-8, 2006.

Out-of-focus blur PSF is given by

pij =

{
1/(πr2) if (i − k)2 + (j − l)2 ≤ r2,

0 elsewhere,

where (k , l) is the center of PSF, and r is the radius of the blur.
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Examples of PSF

Motion blur: The point source is smeared into a line. Different

choices are available in the literature, see for example,

M. Tico, M. Vehvilainen, Estimation of motion blur PSF from differently exposed image frames, EUSIPCO 2006,

Florence, Italy, September 4-8, 2006.

Out-of-focus blur PSF is given by

pij =

{
1/(πr2) if (i − k)2 + (j − l)2 ≤ r2,

0 elsewhere,

where (k , l) is the center of PSF, and r is the radius of the blur.

Atmospheric turbulence described as a two-dimensional Gaussian

PSF function at every point pij of PSF:

pij = exp

−
1

2

[
i − k

j − l

]T 
s2

1
ρ2

ρ2 s2
2



−1 [
i − k

j − l

] ,

where the parameters s1, s2 and ρ determine the width and

orientation of the PSF, centered at (k , l).
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Motion blur

Motion Blurred Image PSF
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A(X) :=
∫
Ω

K(x, y)X(x)dx = Blurred X
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Out-of-focus blur

Blurred Image PSF
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A(X) :=
∫
Ω

K(x, y)X(x)dx = Blurred X
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Gaussian blur

Gaussian Blurred Image PSF
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A(X) :=
∫
Ω

K(x, y)X(x)dx = Blurred X
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Image deblurring: solution of an inverse problem

Mathematically, the problem of image deblurring consist in the solution of

a Fredholm integral equation of the first kind which is an ill-posed

problem. Let H be the Hilbert space H1 and let Ω ⊂ Rm,m = 2, 3, be a

convex bounded domain. Our goal is to solve a Fredholm integral

equation of the first kind for x ∈ Ω

∫

Ω

K(x − y)z(x)dx = u(y), (4)

where u(y) ∈ L2(Ω̄), z(x) ∈ H, K(x − y) ∈ Ck
(
Ω
)
, k ≥ 0 be the kernel of

the integral equation.

Let us rewrite (4) in an operator form as

A(z) = u (5)

with an convolution operator A : H → L2(Ω̄) defined as

A(z) :=

∫

Ω

K(x − y)z(x)dx. (6)
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Image restoration problem

Image restoration problem Let the function z(x) ∈ H1 of the equation

∫

Ω

K(x − y)z(x)dx = u(y),

be unknown in the domain Ω. Determine the function z(x) for x ∈ Ω

assuming the functions K(x − y) ∈ Ck
(
Ω
)
, k ≥ 0 and u(x) ∈ L2(Ω) are

known.

The image restoration problem is described by a Fredholm integral

equation of the first kind with a linear compact operator A : H → L2(Ω̄).
which is an ill-posed problem.

Thus, regularization should be used.
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Ill-posed problem: the case of a general compact

operator

Let H1 and H2 be two Hilbert spaces with dimH1 = dimH2 = ∞. Remind that a sphere in an infinitely dimensional Hilbert

space is not a compact set. The Theorem below (see Theorem 1.2 from [BK]) says that the solution of a Fredholm integral

equation of the first kind is an ill-posed problem.

Theorem [BK] Let G =
{
‖x‖H1

≤ 1
}
⊂ H1, is not a compact set. Let

A : G → H2 be a compact operator and let R (A) := A (G) be its range.

Consider an arbitrary point y0 ∈ R (A). Let ε > 0 be a number and

Uε (y0) =
{
y ∈ H2 : ‖y − y0‖H2

< ε
}
. Then there exists a point

y ∈ Uε (y0)�R (A) . If, in addition, the operator A is one-to-one, then the

inverse operator A−1 : R (A)→ G is not continuous. Hence, the problem

of the solution of the equation

A (x) = z, x ∈ G, z ∈ R (A) (7)

is unstable, i.e. this is an ill-posed problem.

L. Beilina, M. Klibanov, Approximate global convergence and adaptivity for coefficient inverse problems, Springer, 2012.
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When the problem is an ill-posed problem
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Theorem [BK] Let G =
{
‖x‖H1

≤ 1
}
⊂ H1 , is not a compact set. Let A : G → H2 be a compact operator and let

R (A) := A (G) be its range. Consider an arbitrary point y0 ∈ R (A). Let ε > 0 be a number and

Uε (y0) =
{
y ∈ H2 :

∥∥∥y − y0

∥∥∥
H2
< ε

}
. Then there exists a point y ∈ Uε (y0)�R (A) . If, in addition, the operator A is

one-to-one, then the inverse operator A−1 : R (A)→ G is not continuous. Hence, the problem of the solution of the

equation A (x) = z, x ∈ G, z ∈ R (A) is unstable, i.e. this is an ill-posed problem.
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Conclusions about solution of an ill-posed problem

By the theorem above (see Theorem 1.2 from [BK]) the set R(A) is

not dense everywhere. Therefore, the question about the existence

of the solution of equation A(x) = z does not make an applied

sense. Indeed, since the set R(A) is not dense everywhere, it is

very hard to describe a set of values belonging to this set.

An example, consider the case when the kernel

K (x, y) ∈ C ([a, b] × [0, 1]) in equation

1∫

0

K (x, y) f (y) dy = g (x) , x ∈ (0, 1) , (8)

is an analytic function of the real variable x ∈ (a, b) . Then the right

hand side g (x) of equation (9) should also be analytic with respect

to x ∈ (a, b) . However, in applications the function g (x) is a result

of measurements, it is given only at a number of discrete points and

it definitely contains noise. Clearly it is impossible to determine

whether the resulting function is analytic or not.
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Conclusions about solution of an ill-posed problem

Conclusion. Assuming that conditions of Theorem above (Theorem 1.2

from [BK]) are satisfied, the problem of solving equation A(x) = z is an

ill-posed problem since:

The proof of an existence theorem makes no applied sense.

Small fluctuations of the right hand side can lead to large

fluctuations of the solution x, i.e. the problem is unstable, see

example on the next slide.

www.math.chalmers.se/∼larisa Lecture 3



Example of instability

Let Ω = (0, 1) ,Ω′ = (a, b) . Let fn (x) = f (x) + sin nx. Then for x ∈ (0, 1)

1∫

0

K (x, y) fn (y) dy =

1∫

0

K (x, y) f (y) dy +

1∫

0

K (x, y) sin nydy = gn (x) ,

(9)

where gn (x) = p (x) + pn(x) and

pn(x) =

1∫

0

K (x, y) sin nydy.

By the Lebesque lemma

lim
n→∞
‖pn‖C[a,b] = 0.

However, it is clear that
∥∥∥fn (x) − f (x)

∥∥∥
C[0,1]

= ‖sin nx‖C[0,1]

is not small for large n.
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Tikhonov functional

Let δ > 0 be the error in the right-hand side of the equation (4):

A (z∗) = u∗, ‖u − u∗‖L2(σ) ≤ δ. (10)

where u∗ is the exact right-hand side corresponding to the exact solution

z∗.

To find the approximate solution of the equation (4) corresponding to

applications in image restoration usually is minimized the functional

Mα (z) = ‖Az − u‖2
L2(Ω) + α‖z‖

2
H1(Ω), (11)

Mα : H1 → R,

where α = α (δ) > 0 is the small regularization parameter.
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Convolution equation

Let us consider an important class of Fredholm integral equations of the

first kind - the convolution equation. These equations can be presented

in the form (5) with the convolution operator A : H1 → L2(Ω) defined by

A(z) :=

∫

Ω

ρ(y − x)z(x)dx, (12)

where ρ(y − x) ∈ Ck (Ω × Ω) , k ≥ 0, z(x) ∈ H1. Then using the

convolution theorem and properties of the Fourier transform we obtain

the minimum z(x) ∈ H1 of the functional (11) given by

z(x) = F−1
(

û(ω)ρ̂∗(ω)

|ρ̂(ω)|2 + α(1 + ω2)

)
, (13)

where f̂(ω) denotes the Fourier transform F(f)(ω) of the function f(ω)
defined by

f̂(ω) := F(f)(ω) =
1

(2π)n

∫

Rn

f(x)e−iωxdx. (14)
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We consider now more general form of the Tikhonov functional (11). Let

W1,W2,Q be three Hilbert spaces, Q ⊆ W1 as a set, the norm in Q is

stronger than the norm in W1 and Q = W1, where the closure is

understood in the norm of W1.We denote scalar products and norms in

these spaces as

(·, ·) , ‖·‖ for W1,

(·, ·)2 , ‖·‖2 for W2

and [·, ·] , [·] for Q .

Let A : W1 → W2 be a bounded linear operator. Our goal is to find the

function z(x) ∈ Q which minimizes the Tikhonov functional

Eα (z) : Q → R, (15)

Eα (z) =
1

2
‖Az − u‖22 +

α

2
[z − z0]

2
, u ∈ W2; z, z0 ∈ Q , (16)

where α ∈ (0, 1) is the regularization parameter. To do that we search for

a stationary point of the above functional with respect to z satisfying

∀b ∈ Q

E′α(z)(b) = 0. (17)
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The following lemma is well known [BKK] for the case W1 = W2 = L2.

Lemma 1. Let A : L2 → L2 be a bounded linear operator. Then the

Fréchet derivative of the functional (11) is

E′α (z) (b) = (A ∗Az − A ∗u, b) + α [z − z0, b] ,∀b ∈ Q . (18)

In particular, for the integral operator (4) we have

E′α (z) (b) =

∫

Ω

b (s)



∫

Ω

z (y)



∫

Ω

K(x − y)K(x − s)dx

 dy

−

∫

Ω

K(x − s)u (x) dx
]
ds

(19)

+α [z − z0, b] ,∀b ∈ Q .

[BKK] A. B. Bakushinsky, M. Y. Kokurin, A. Smirnova, Iterative methods for ill-posed problems, Walter de Gruyter

GmbH&Co., 2011.
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Lemma 2 is also well known, since A : W1 → W2 is a bounded linear

operator. We formulate this lemma only for our specific case.

Lemma 2. Let the operator A : W1 → W2 satisfies conditions of Lemma

1. Then the functional Eα (z) is strongly convex on the space Q with the

convexity parameter κ such that

(E′α (x) − E′α (z) , x − z) ≥ κ[x − z]2,∀x, z ∈ Q . (20)
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It is known from the theory of convex optimization that Lemma 2 implies

existence and uniqueness of the global minimizer zα ∈ Q of the functional

Jα defined in (15) such that

Jα(zα) = inf
z∈Q

Jα(z).

It is well known that the operator F = Az − u is Lipschitz continuous

‖F(z1) − F(z2)‖ ≤ ||A || · ‖z1 − z2‖ ∀z1, z2 ∈ H.

We also introduce new constant D = D (||A ||, α) = const . > 0 such that

∥∥∥J′α (z1) − J′α (z2)
∥∥∥ ≤ D ‖z1 − z2‖ ,∀z1, z2 ∈ H. (21)
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Similarly, the functional Mα(z) is also strongly convex on the Sobolev

space H1:

(M′α (x) −M′α (z) , x − z)H1
≥ κ||x − z||2H1

,∀x, z ∈ H1, (22)

To find minimum of (16) or (11) (difference in reg.terms), we can use any

gradient-like method. For example, perform usual gradient update to find

minimum of (16):

zk+1 = zk + βE′α
(
zk
)
(b) .

or to find minimum of (11):

zk+1 = zk + βM′α
(
zk
)
(b) .

until ||zk+1 − zk || converges.
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Bayesian approach

Assume that measured data y is random because of noise, also

assume that the reconstruction x is random. Then it can be used

posterior distribution denoted by P(x = x |y = y) := P(x |y).
Posterior distribution P(x |y) is the probability (density) if the random

variable x is equal to x given that a random variable y is equal to y.

Bayes theorem

P(x |y) =
P(y |x)P(x)

P(y)
.

Here, P(y |x) is data likelihood - the probability of a measured data y

given a reconstruction x, it is defined by the physical model

problem. Example: for the Radon transform with Poisson noise the

data likelihood is approximated using normal distribution

P(y |x) ∝ e
− 1

2
‖Ax−y‖2

Λ−1/2

with a covariance approximated as Λ = (y0e−Ax), y0 is the number

of photons to heat every pixel in homo media.
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Bayesian approach

P(x) is the prior model, or probability of the how the reconstruction

should look like. It should include all information which we know

about the reconstruction.

As soon as P(y |x) and P(x) are defined, the estimator of data

likelihood P(x |y) should be chosen. The most popular one is the

Maximum a posterior estimate MAP(y) which is the solution of the

problem

MAP(y) = max
x∈X

P(x |y).

Taking the log of the above equation, we get

max
x∈X

logP(x |y) = max
x∈X

[logP(y |x) + logP(x) − logP(y)]

= min
x∈X
−[logP(y |x) + logP(x)]

(23)
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Bayesian approach: an example

Let us consider an example of a Gaussian prior P(x) with mean µ and

covariance Σ. Then the prior likelihood is:

P(x) ∝ e
− 1

2
‖x−µ‖2

Σ−1/2 ,

lnP(x) = −
1

2
‖x − µ‖2

Σ−1/2 + Const .
(24)

If we assume the Gaussian noise with mean zero, then the data has

mean A(x) and covariance Λ, and data likelihood P(y |x) can be modeled

as

P(y |x) ∝ e
− 1

2
‖Ax−y‖2

Λ−1/2 ,

lnP(y |x) = −
1

2
‖Ax − y‖2

Λ−1/2 + Const .
(25)

Combining models for P(x) (24) and for P(y |x) (25) into the maximum a

posteriori estimate MAP(y) (30), we get

max
x∈X

lnP(x |y) = min
x∈X
−[lnP(y |x) + lnP(x)]

= min
x∈X

[
1

2
‖Ax − y‖2

Λ−1/2 +
1

2
‖x − µ‖2

Σ−1/2 ].
(26)
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Bayesian approach: an example

We can approximate the operator A with a matrix A, take the gradient of

(26) we get:

(logP(x |y))′x = (
1

2
‖Ax − y‖2

Λ−1/2 +
1

2
‖x − µ‖2

Σ−1/2)
′
x

= ATΛ−1(Ax − y) + Σ−1(x − µ)

= ATΛ−1Ax −ATΛ−1y +Σ−1x − Σ−1µ

= (ATΛ−1A+Σ−1)x − (ATΛ−1y +Σ−1µ).

(27)

Thus, we obtain system of linear equations considering

(logP(x |y))′x = 0:

(ATΛ−1A+Σ−1)x = ATΛ−1y +Σ−1µ (28)

The system above can be solved as

x = ((ATΛ−1A+Σ−1))−1(ATΛ−1y +Σ−1µ). (29)
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Bayesian approach: an example of Spike and Slab model

Another type of prior which can be taken into consideration, is

sparsity inducing prior. This prior is considered when the obtained

solution is very smooth.

We assume that we have discrete values of indicator function

γj , j = 1, ...,N and we consider γj = 1 when the feature j is in our

model, and γj = 0 when the feature j is out our model.

Now let us consider the way to induce sparsity in a specific model

parameter and use “Spike and Slab” prior distribution: it is a mixture

of a point mass at 0 (to exclude feature), and flat prior (usually

Gaussian) for included variables.

In a mixture model, we consider the Bernoulli random vector γ ∈ Rp :

when γj = 0 then feature coefficients βj = 0, when γ1 = 1 then

corresponding βj are taken from Gaussian distribution with a large

variance term.
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Bayesian approach: an example of Spike and Slab model

Then

p(γ|π0) =

p∏

j=1

Bern(γj |π0) = π
‖γ‖0
0

(1 − π0)
p−‖γ‖0 . (30)

Here, ‖ · ‖0 is l0 norm or number of non-zero elements in the vector,

Bern(γj |π0) are Bernoulli distributions of γj with probability π0.

log p(γ|π0) = ‖γ‖0 log π0 + (p − ‖γ‖0) log(1 − π0)

= ‖γ‖0 (log π0 − log(1 − π0))︸                      ︷︷                      ︸
λ

+Const .

= λ‖γ‖0 + Const .

(31)

where Const . = p log(1 − π0). Here, λ controls how sparse the features

are. Here, ‖ · ‖0 is l0 norm or number of non-zero elements in the vector.

Here, π0 controls how sparse are the features: when π0 ≈ 0 then λ < 0

and the feature vector is very sparse.
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Bayesian approach: an example of sparcity inducing prior

Using (31) we can write the sparsity inducing prior corresponding to the

prior likelihood in MAP (30)

max
x∈X

logP(x |y) = max
x∈X

[logP(y |x) + logP(x) − logP(y)]

= min
x∈X
−[logP(y |x) + logP(x)]

is:

− logP(x) = λ‖Dx‖0 + Const ., (32)

where D is an operator such that Dx is sparse, see Spike and Slab

model above.

Further reading about Bayesian approach in inverse problems:

J. Kaipio, E. Somersalo, Statistical and computational inverse problems,Springer, 160, 2006.

A. M. Stuart, Inverse Problems: a Bayesian perspective, Acta Numerica, 19, 451-559, 2010.
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The finite element method

We discretize the bounded domain Ω ⊂ Rn, n = 2, 3 by an mesh T

using non-overlapping elements K . R3 are tetrahedrons, in R2 the

elements K are triangles such that T = K1, ...,Kl , where l is the total

number of elements in Ω.

Let the mesh function h = h(x) is a piecewise-constant function

such that

h(x) = hK ∀K ∈ T ,

where hK is the diameter of K which we define as the longest side

of K .

We introduce now the finite element space Vh as

Vh =
{
v(x) ∈ V : v ∈ C(Ω), v |K ∈ P1(K) ∀K ∈ T

}
, (33)

where P1(K) denotes the set of piecewise-linear functions on K with

V =
{
v(x) : v(x) ∈ H1(Ω)

}
.

The finite dimensional finite element space Vh is constructed such

that Vh ⊂ V .
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The finite element method

Let us consider the Tikhonov functional

Mα(z) =
1

2
‖Az − u‖2

L2(Ωκ)
+
α

2
‖|∇z|‖2

L2(Ω) . (34)

For (34) the CG(1) finite element method reads: find zh ∈ Vh such

that

M′α(zh)(b) = 0 ∀b ∈ Vh . (35)

Then the Fréchet derivative of the functional (34) is derived in

Lemma 2 of [BGN]

Lemma 2. Let A : H1(Ω)→ L2(Ωκ) be a bounded linear operator.

Then the Fréchet derivative of the functional (34) is

M′α(z)(b) = (A ∗Az − A ∗u, b) + α(|∇z|, |∇b |), ∀b ∈ H1(Ω), (36)

with a convex growth factor b, i.e., |∇b | < b.

[BGN] Beilina L., Guillot G., Niinimäki K. The Finite Element Method and Balancing Principle for Magnetic Resonance

Imaging. In Mathematical and Numerical Approaches for Multi-Wave Inverse Problems. CIRM 2019. Springer

Proceedings in Mathematics Statistics, vol 328. Springer, Cham (2020) https://doi.org/10.1007/978-3-030-48634-1_9
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A posteriori ananlysis in a finite element method

Let Ph : V → M for ∀M ⊂ V , be the operator of the orthogonal

projection of V on M. Let the function f ∈ H1 (Ω) ∩ C (Ω) and

∂xi
fxi
∈ L∞ (Ω) .We define by f I

k
the standard interpolant [EEJ] on

triangles/tetrahedra of the function f ∈ H.

Then by one of properties of the orthogonal projection

‖f − Ph f‖L2(Ω) ≤
∥∥∥f − f I

k

∥∥∥
L2(Ω)

. (37)

It follows from formula 76.3 of [EEJ] that

‖f − Ph f‖L2(Ω) ≤ CI ‖h ∇f‖L2(Ω) ,∀f ∈ V . (38)

where CI = CI (Ω) is positive constant depending only on the

domain Ω.

[EEJ] K. Eriksson, D. Estep and C. Johnson, Calculus in Several Dimensions, Springer, Berlin, 2004.
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A posteriori analysis in a finite element method

Let us present a general framework for a posteriori error estimate for:

For the error |Mα(zα) −Mα(zh)| in the Tikhonov functional (34).

For the error |zα − zh | in the regularized solution zα of this functional.

Note that

Mα(zα) −Mα(zh) = M′α(zh)(zα − zh) + R(zα, zh), (39)

where R(zα, zh) is the second order remainder term. We assume that zh

is located in the small neighborhood of the regularized solution zα. Thus,

the term R(zα, zh) is small and we can neglect it.

We now use the Galerkin orthogonality principle

M′α(zh)(b) = 0 ∀b ∈ Vh (40)

together with the splitting

zα − zh = (zα − zI
α) + (zI

α − zh) (41)

where zI
α ∈ Vh is the interpolant of zα, and get the following error

representation:

Mα(zα) −Mα(zh) ≈ M′α(zh)(zα − zI
α). (42)

A posteriori error estimate (42) involves the derivative of the Tikhonov

functional M′ (z ) which represents residual multiplied by term with
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A posteriori error in the regularized solution

Theorem 1 [KB]

Let zh ∈ Vh be a finite element approximation of the regularized solution

zα ∈ H2(Ω) on the finite element mesh T with the mesh function h. Then

there exists a constant D defined by (21) such that the following a

posteriori error estimate for the regularized solution zα holds

||zh − zα||H1(Ω) ≤
D

α
CI ||hzh ||L2(Ω).

[KB] N. Koshev and L. Beilina, An adaptive finite element method for Fredholm integral equations of the first kind and its

verification on experimental data, in the Topical Issue “Numerical Methods for Large Scale Scientific Computing” of CEJM,

11(8), 1489-1509, 2013.
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A posteriori error in the Tikhonov functional

Theorem 2 [KB]

Suppose that there exists minimizer zα ∈ H2(Ω) of the functional Mα on

the set V and mesh T. Suppose also that there exists finite element

approximation zh of a minimizer zα of Mα on the set Vh and mesh T with

the mesh function h. Then the following approximate a posteriori error

estimate for the error e = |Mα(zα) −Mα(zh)| in the Tikhonov functional

holds

e = |Mα(zα) −Mα(zh)| ≤ CI

∥∥∥M′α(zh)
∥∥∥

H1(Ω)
||hzh ||L2(Ω). (43)

[KB] N. Koshev and L. Beilina, An adaptive finite element method for Fredholm integral equations of the first kind and its

verification on experimental data, in the Topical Issue “Numerical Methods for Large Scale Scientific Computing” of CEJM,

11(8), 1489-1509, 2013.
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AFEM algorithm

Step 0. Choose an initial mesh T0 in Ω and obtain the numerical solution z0

on T0 using the convolution theorem. Compute the sequence

zk , k > 0, on a refined meshes Tk via following steps:

Step 1. Obtain the FEM solution zk := zhk using the finite element method

M′α(zh)(b) = 0 ∀b ∈ Vh .

Step 2. Refine the mesh Tk using the Theorem 1 at all points where
∣∣∣zk (x)

∣∣∣ ≥ κ̃k max
Ω

∣∣∣zk (x)
∣∣∣ , (44)

or using the Theorem 2 at all points where

|Mh(zk )| ≥ βk max
Ω
|Mh(zk )|. (45)

Here, the tolerances κ̃k , βk ∈ (0, 1) are chosen by the user.

Step 3. Construct a new mesh Tk+1 in Ω and perform steps 1-3 on the new

mesh. Stop mesh refinements when ||zk − zk−1|| < ǫ or

||Mh(zk )|| < ǫ, or image deteriortaed.
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Image deblurring: example

a) b)

Figure: a) Image of the defect in the planar chip. b) result of

reconstruction with bounded total variation functions. Source: [1].

[1] Koshev N.A., Orlikovsky N.A., Rau E.I., Yagola A.G. Solution of the inverse problem of restoring the signals from an

electronic microscope in the backscattered electron mode on the class of bounded variation functions, Numerical Methods

and Programming, 2011, V.11, pp. 362-367 (in Russian).
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Image deblurring: an adaptive refinement, example

a) 7938 elements b) z1, 11270 elements c) z2, 15916 elements

d) z3, 24262 elements e) z4, 40358 elements f) z5, 72292 elements

Figure: Reconstruction from the experimental backscattering data obtained by the microtomograph [KB].
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Image deblurring: an adaptive refinement, example

g) 7938 elements h) 11270 elements i) 15916 elements

j) 24262 elements k) 40358 elements l) 72292 elements

Figure: Reconstruction from the experimental backscattering data obtained by the microtomograph [KB].

[KB] N. Koshev and L. Beilina, An adaptive finite element method for Fredholm integral equations of the first kind and its

verification on experimental data, in the Topical Issue “Numerical Methods for Large Scale Scientific Computing” of CEJM,

11(8), 1489-1509, 2013.
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