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Outline

QR and SVD decompositions of full-rank problems

SVD for image compression

QR and SVD decompositions of rank-deficient problems

Application of SVD: Principal Component Analysis (PCA).

Presentation of the project “PCA for image recognition”.
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QR Decomposition

THEOREM QR decomposition. Let A be m-by-n with m ≥ n. Suppose
that A has full column rank. Then there exist a unique m-by-n orthogonal
matrix Q(QT Q = In) and a unique n-by-n upper triangular matrix R with
positive diagonals rii > 0 such that A = QR.

Proof. Can be two proofs of this theorem: using the Gram-Schmidt
orthogonalization process and using the Hauseholder reflections. The
first proof: this theorem is a restatement of the Gram-Schmidt
orthogonalization process [P. Halmos. Finite Dimensional Vector Spaces.
Van Nostrand, New York, 1958]. If we apply Gram-Schmidt to the
columns ai of A = [a1, a2, . . . , an] from left to right, we get a sequence of
orthonormal vectors (if they are orthogonal and unit vectors) q1 through
qn spanning the same space: these orthogonal vectors are the columns
of Q . Gram-Schmidt also computes coefficients rji = qT

j ai expressing

each column ai as a linear combination of q1 through qi : ai =
∑i

j=1 rjiqj .
The rji are just the entries of R.
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ALGORITHM The classical Gram-Schmidt (CGS) and modified
Gram-Schmidt (MGS) Algorithms for factoring A = QR:

for i = 1 to n /* compute ith columns of Q and R */
qi = ai

for j = 1 to i − 1 /* subtract component in qj direction from ai */
{

rji = qT
j ai CGS

rji = qT
j qi MGS

qi = qi − rjiqj

end for
rii = ||qi ||2
if rii = 0 /* ai is linearly dependent on a1, . . . , ai−1 */

quit
end if
qi = qi/r ii

end for

If A has full column rank, rii will not be zero.
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Notes:

Unfortunately, CGS is numerically unstable in floating point
arithmetic when the columns of A are nearly linearly dependent.

MGS is more stable and will be used in algorithms later in this
course but may still result in Q being far from orthogonal (||QT Q − I||
being far larger than ε) when A is ill-conditioned

Literature on this subject:

Å. Björck. Solution of Equations volume 1 of Handbook of
Numerical Analysis, chapter Least Squares Methods.
Elsevier/North Holland, Amsterdam, 1987.

Å. Björck. Least squares methods. Mathematics Department
Report, Linkoping University, 1991.

Å. Björck. Numerical Methods for Least Squares Problems. SIAM,
Philadelphia, PA, 1996.

N. J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, Philadelphia, PA, 1996.
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We will derive the formula for the x that minimizes ||Ax − b ||2 using the
decomposition A = QR in three slightly different ways. First, we can
always choose m − n more orthonormal vectors Q̃ so that [Q , Q̃] is a
square orthogonal matrix and thus Q̃T Q = 0 (for example, we can
choose any m − n more independent vectors X̃ that we want and then
apply QR Algorithm to the n-by-n nonsingular matrix [Q , X̃ ]). Then

||Ax − b ||22 = ||[Q , Q̃]T (Ax − b)||22

=

∥

∥

∥

∥

∥

∥

[

QT

Q̃T

]

(QRx − b)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

In×n

O(m−n)×n

]

Rx −
[

QT b
Q̃T b

]
∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

Rx − QT b
−Q̃T b

]
∥

∥

∥

∥

∥

∥

2

2

=
∥

∥

∥Rx − QT b
∥

∥

∥

2

2
+ ‖Q̃T b‖22 ≥ ‖Q̃

T b‖22.

We can solve Rx − QT b = 0 for x, since A and R have the same rank, n,
and so R is nonsingular. Then x = R−1QT b, and the minimum value of
||Ax − b ||2 is ||Q̃T b ||2.
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Here is a second, slightly different derivation that does not use the matrix
Q̃ . Rewrite Ax − b as

Ax − b = QRx − b = QRx − (QQT + I − QQT )b
= Q(Rx − QT b) − (I − QQT )b .

Note that the vectors Q(Rx − QT b) and (I − QQT )b are orthogonal,
because (Q(Rx −QT b))T ((I−QQT )b) = (Rx −QT b)T [QT (I−QQT )]b =
(Rx − QT b)T [0]b = 0. Therefore, by the Pythagorean theorem,

‖Ax − b‖22 = ‖Q(Rx − QT b)‖22 + ‖(I − QQT )b‖22
= ‖Rx − QT b‖22 + ‖(I − QQT )b‖22.

where we have used ||Qy ||22 = ||y ||22. This sum of squares is minimized
when the first term is zero, i.e., x = R−1QT b.
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Finally, here is a third derivation that starts from the normal equations
solution:

x = (AT A)−1AT b
= (RT QT QR)−1RT QT b = (RT R)−1RT QT b
= R−1R−T RT QT b = R−1QT b .

www.math.chalmers.se/∼larisa Lecture 7



QR and SVD
Principal component analysis (PCA)

Singular values

The singular values, or s-numbers of a compact operator T : X → Y
acting between Hilbert spaces X and Y , are the square roots of the
eigenvalues of the nonnegative self-adjoint operator T ∗T : X → X (where
T ∗ denotes the adjoint of T ).

σ(T) =
√

λ(T ∗T).

The singular values are nonnegative real numbers, usually listed in
decreasing order (s1(T), s2(T), ...). If T is self-adjoint, then the largest
singular value s1(T) is equal to the operator norm of T .
In the case of a normal matrix A (or A ∗A = AA ∗, when A is real then
AT A = AAT ), the spectral theorem can be applied to obtain unitary
diagonalization of A as A = UΛU∗. Therefore,

√
A ∗A = U|Λ|U∗ and so

the singular values are simply the absolute values of the eigenvalues.
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Singular Value Decomposition

THEOREM SVD. Let A be an arbitrary m-by-n matrix with m ≥ n. Then
we can write A = UΣVT , where U is m-by-n and satisfies UT U = I, V is
n-by-n and satisfies VT V = I, and Σ = diag(σ1, . . . , σn), where
σ1 ≥ · · · ≥ σn ≥ 0. The columns u1, . . . , un of U are called left singular

vectors. The columns v1, . . . , vn of V are called right singular vectors. The
σi are called singular values. (If m < n, the SVD is defined by considering
AT .)
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THEOREM Let A = UΣVT be the SVD of the m-by-n matrix A, where
m ≥ n. (There are analogous results for m < n.)

1. Suppose that A is symmetric, with eigenvalues λi and
orthonormal eigenvectors ui . i.e., A = UΛUT is an
eigendecomposition of A , with Λ = diag(λ1, . . . , λn), and
U = [u1, . . . , un], and UUT = I. Then an SVD of A is A = UΣVT ,
where σi = |λi | and υi = sign(λi)ui , where sign(0) = 1.

2. The eigenvalues of the symmetric matrix AT A are σ2
i . The right

singular vectors υi are corresponding orthonormal eigenvectors.

3. The eigenvalues of the symmetric matrix AAT are σ2
i and m − n

zeroes. The left singular vectors ui are corresponding orthonormal
eigenvectors for the eigenvalues σ2

i . One can take any m − n other
orthogonal vectors as eigenvectors for the eigenvalue 0.
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4. Let H = [
0 AT

A 0
], where A is square and A = UΣVT is the

SVD of A . Let Σ = diag(σ1, . . . , σn), U = [u1, . . . , un], and
V = [υ1, . . . , υn]. Then the 2n eigenvalues of H are ±σi , with

corresponding unit eigenvectors 1√
2

[

υi

±ui

]

.

5. If A has full rank, the solution of minx ‖Ax − b‖2 is x = VΣ−1UT b.

6. ‖A‖2 = σ1. If A is square and nonsingular, then ‖A−1‖−1
2 = σn

and ‖A‖2 · ‖A−1‖2 = σ1
σn

.

7. Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣVT =

∑n
i=1 σiuiυ

T
i (a sum of rank-1 matrices). Then a

matrix of rank k < n closest to A (measured with || · ||2) is
Ak =

∑k
i=1 σiuiυ

T
i and ||A − Ak ||2 = σk+1. We may also write

Ak = UΣk VT where Σk = diag(σ1, . . . , σk , 0, . . . , 0).
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Proof.
1. Suppose that A is symmetric, with eigenvalues λi and

orthonormal eigenvectors ui . In other words A = UΛUT is an

eigendecomposition of A , with Λ = diag(λ1, . . . , λn), and

U = [u1, . . . , un], and UUT = I. Then an SVD of A is A = UΣVT ,

where σi = |λi | and υi = sign(λi)ui , where sign(0) = 1.

This is true by the definition of the SVD.
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2. The eigenvalues of the symmetric matrix AT A are σ2
i . The

right singular vectors υi are corresponding orthonormal

eigenvectors.

AT A = VΣUT UΣVT = VΣ2VT . This is an eigendecomposition of
AT A , with the columns of V the eigenvectors and the diagonal
entries of Σ2 the eigenvalues.
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3. The eigenvalues of the symmetric matrix AAT are σ2
i and

m − n zeroes. The left singular vectors ui are corresponding

orthonormal eigenvectors for the eigenvalues σ2
i . One can

take any m − n other orthogonal vectors as eigenvectors for

the eigenvalue 0.

Choose an m-by-(m − n) matrix Ũ so that [U, Ũ] is square and
orthogonal. Then write

AAT = UΣVT VΣUT = UΣ2UT =
[

U, Ũ
]

·
[

Σ2 0
0 0

]

·
[

U, Ũ
]T
.

This is an eigendecomposition of AAT .
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4. Let H = [
0 AT

A 0
], where A is square and A = UΣVT is the SVD

of A . Let Σ = diag(σ1, . . . , σn), U = [u1, . . . , un], and V = [υ1, . . . , υn].
Then the 2n eigenvalues of H are ±σi , with corresponding unit

eigenvectors 1√
2

[

υi

±ui

]

.
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We substitute A = UΣVT into H to get: H =

[

0 VΣUT

UΣVT 0

]

Choose orthogonal matrix G such that

G =
1
√

2

[

V V
U −U

]

It is orthogonal since I = GGT = 1
2

[

VVT + VVT 0
0 UUT + UUT

]

Then we observe that

G

[

Σ 0
0 Σ

]

GT =

[

0 VΣUT

UΣVT 0

]

= H

Then using the spectral theorem we can conclude that the 2n
eigenvalues of H are ±σi , with corresponding eigenvectors

1√
2

[

vi

±ui

]

.
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5. If A has full rank, the solution of minx ‖Ax − b‖2 is

x = VΣ−1UT b.

‖Ax − b‖22 = ||UΣVT x − b ||22. Since A has full rank, so does Σ, and
thus Σ is invertible. Now let [U, Ũ] be square and orthogonal as
above so

||UΣVT x − b ||22 =

∥

∥

∥

∥

∥

∥

[

UT

ŨT

]

(UΣVT x − b)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

ΣVT x − UT b
−ŨT b

]
∥

∥

∥

∥

∥

∥

2

2

= ||ΣVT x − UT b ||22 + ‖Ũ
T b‖22.

This is minimized by making the first term zero, i.e., x = VΣ−1UT b.
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6. ‖A‖2 = σ1. If A is square and nonsingular, then ‖A−1‖−1
2 = σn and

‖A‖2 · ‖A−1‖2 = σ1
σn

.

It is clear from its definition that the two-norm of a diagonal matrix is the
largest absolute entry on its diagonal. Thus, by property of the norm,
‖A‖2 = ‖UT AV‖2 = ‖UT UΣVT V‖2 = ‖Σ‖2 = σ1 and
‖A−1‖2 = ‖VT A−1U‖2 = ‖Σ−1‖2 = σ−1

n .
Remark: ‖A−1‖2 = ‖VT A−1U‖2 = ‖VT (UΣVT )−1U‖2 = ‖Σ−1‖2 = σ−1

n .
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7. Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣVT =

∑n
i=1 σiuiυ

T
i (a sum of rank-1 matrices). Then a

matrix of rank k < n closest to A (measured with || · ||2) is
Ak =

∑k
i=1 σiuiυ

T
i and ||A − Ak ||2 = σk+1. We may also write

Ak = UΣk VT where Σk = diag(σ1, . . . , σk , 0, . . . , 0).

www.math.chalmers.se/∼larisa Lecture 7



QR and SVD
Principal component analysis (PCA)

7. Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣVT =

∑n
i=1 σiuiυ

T
i (a sum of rank-1 matrices). Then a matrix of

rank k < n closest to A (measured with || · ||2) is Ak =
∑k

i=1 σiuiυ
T
i and

||A − Ak ||2 = σk+1. We may also write Ak = UΣk VT where
Σk = diag(σ1, . . . , σk , 0, . . . , 0).
Ak has rank k by construction and

||A − Ak ||2 =

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

σiuiυ
T
i −

k
∑

i=1

σiuiυ
T
i

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

n
∑

i=k+1

σiuiυ
T
i

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

U



































0
σk+1

. . .

σn



































VT

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

= σk+1.
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It remains to show that there is no closer rank k matrix to A . Let B be any
rank k matrix, so its null space has dimension n − k . The space spanned
by {υ1, ..., υk+1} has dimension k + 1. Since the sum of their dimensions
is (n − k) + (k + 1) > n, these two spaces must overlap. Let h be a unit
vector in their intersection. Then

‖A − B‖22 ≥
∥

∥

∥(A − B)h
∥

∥

∥

2

2
= ‖Ah‖22 =

∥

∥

∥UΣVT h
∥

∥

∥

2

2

=
∥

∥

∥Σ(VT h)
∥

∥

∥

2

2
≥ σ2

k+1

∥

∥

∥VT h
∥

∥

∥

2

2
= σ2

k+1.

�
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Example of application of linear systems: image
compression using SVD
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a) Original image b) Rank k=20 approximation
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Example of application of linear systems: image
compression using SVD in Matlab

See path for other pictures:
/matlab-2012b/toolbox/matlab/demos
load clown.mat;
Size(X) = m × n = 320 × 200 pixels.
[U,S,V] = svd(X);
colormap(map);
k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
Now: size(U)= m × k , size(V)= n × k .
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Image compression using SVD in Matlab
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a) Original image b) Rank k=4 approximation b) Rank k=5 approximation
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c) Rank k=6 approximation d) Rank k=10 approximation d) Rank k=15 approximation
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Example of application of linear systems: image
compression using SVD for arbitrary image

To get image on the previous slide, I took picture in jpg-format and loaded
it in Matlab. You can also try to use following matlab code for your own
pictures:

A = imread(’Child.jpg’); // Real size of A: size(A) ans= 218 171 3

DDA=im2double(A); //convert from ’uint8’ fromat to double format

figure(1); image(DDA);

//size of DDA will be (1:m,1:n,1:3)

[U1,S1,V1] = svd(DDA(:,:,1)); // we perform SVD for every 3 entries of DDA

[U2,S2,V2] = svd(DDA(:,:,2));

[U3,S3,V3] = svd(DDA(:,:,3));

k=15; //number of approximations: this number you can change

svd1 = U1(:,1:k)*S1(1:k,1:k)*V1(:,1:k)’; //compute new approximated matrices svd1, svd2, svd3

svd2 = U2(:,1:k)*S2(1:k,1:k)*V2(:,1:k)’;

svd3 = U3(:,1:k)*S3(1:k,1:k)*V3(:,1:k)’;

DDAnew = zeros(size(DDA));

DDAnew(:,:,1) = svd1; DDAnew(:,:,2) = svd2; DDAnew(:,:,3) = svd3;

figure(2); image(DDAnew);
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Matrix norm. Induced norm

If vector norms on Km and Kn are given (K is field of real or complex
numbers), then one defines the corresponding induced norm or operator
norm on the space of m-by-n matrices as the following maxima:

‖A‖ = max{‖Ax‖ : x ∈ Kn with ‖x‖ = 1}

= max

{

‖Ax‖
‖x‖

: x ∈ Kn with x , 0

}

.

If m = n and one uses the same norm on the domain and the range, then
the induced operator norm is a sub-multiplicative matrix norm.
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Condition number of the square matrix

Condition number of the square matrix in any induced norm

k(A) = cond(A) = ‖A‖ · ‖A−1‖

Example

A =

[

1 0
0 1

]

; AT =

[

1 0
0 1

]

; AT A − λI =
[

1 − λ 0
0 1 − λ

]

= 0;

λ1 = 1, λ2 = 1; ||A ||2 = max
√

λ(AT A) = max(1, 1) = 1.
In this example,

A−1 = A ; ‖A−1‖2 = 1; k(A) = cond(A) = ‖A‖ · ‖A−1‖ = 1.
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Perturbation Theory for the Least Squares Problem

When A is not square, we define its condition number with respect to the
2-norm to be

k2(A) ≡ σmax(A)/σmin(A)

This reduces to the usual condition number when A is square. The next
theorem justifies this definition.
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THEOREM Suppose that A is m-by-n with m ≥ n and has full rank.
Suppose that x minimizes ‖Ax − b‖2. Let r = Ax − b be the residual. Let
x̃ minimize ‖(A + δA)x̃ − (b + δb)‖2. Assume
ǫ ≡ max( ‖δA‖2‖b‖2 ,

‖δb‖2
‖b‖2 ) <

1
k2(A)

=
σmin(A)
σmax (A)

. Then

‖x̃ − x‖
‖x‖

≤ ǫ ·
{

2 · k2(A)

cos θ
+ tan θ · k 2

2 (A)

}

+ O(ǫ2) ≡ ǫ · kLS + O(ǫ2),

where sin θ = ‖r‖2
‖b‖2 . In other words, θ is the angle between the vectors b

and Ax and measures whether the residual norm ‖r‖2 is large (near ‖b‖)
or small (near 0). kLS is the condition number for the least squares
problem.
Sketch of Proof. Expand x̃ = ((A + δA)T (A + δA))−1(A + δA)T (b + δb)
in powers of δA and δb. Then remove all non-linear terms, leave the
linear terms for δA and δb. �
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Rank-deficient Least Squares Problems

Proposition

Let A be m by n with m ≥ n and rank A = r < n. Then there is an
n − r dimensional set of vectors that minimize ||Ax − b ||2.
Proof

Let Az = 0. Then of x minimizes ||Ax − b ||2 then x + z also
minimizes ||A(x + z) − b ||2.
This means that the least-squares solution is not unique.
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Moore-Penrose pseudoinverse for a full rank A

Definition

Suppose that A is m by n with m > n and has full rank with
A = QR = UΣVT being a QR and SVD decompositions of A ,
respectively. Then

A+ ≡ (AT A)−1AT = R−1QT = VΣ−1UT

is called the Moore-Penrose pseudoinverse of A . If m < n then
A+ ≡ AT (AAT )−1.
The pseudoinverse of A allows write solution of the full-rank
overdetermined least squares problem as x = A+b. If A is square
and a full rank then this formula reduces to x = A−1b. The A+ is
computed as pinv(A) in Matlab.
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A+ ≡ (AT A)−1AT = ((QR)T QR)−1(QR)T = (RT QT QR)−1(QR)T

= (RT R)−1RT QT = R−1QT ;

A+ ≡ (AT A)−1AT = ((UΣVT )T UΣVT )−1 · (UΣVT )T

= (VΣUT UΣVT )−1VΣUT = (VΣ2VT )−1VΣUT = VΣ−1UT
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Moore-Penrose pseudoinverse for rank-deficient A

Definition

Suppose that A is m by n with m > n and is rank-deficient with
rank r < n. Let A = UΣVT = U1Σ1VT

1 being a SVD
decompositions of A such that

A =[U1,U2]

[

Σ1 0
0 0

]

[V1,V2]
T = U1Σ1VT

1

Here, size(Σ1) = r × r and is nonsingular, U1 and V1 have r
columns. Then

A+ ≡ V1Σ
−1
1 UT

1

is called the Moore-Penrose pseudoinverse for rank-deficient A .
The solution of the least-squares problem is always x = A+b,
when A is rank-deficient then x has minimum norm.
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The next proposition states that if A is nearly rank deficient then the
solution x of Ax = b will be ill-conditioned and very large.
Proposition

Let σmin > 0 is the smallest singular value of the nearly rank deficient A .
Then

1. If x minimizes ||Ax − b ||2, then ||x ||2 ≥ |u
T
n b |
σmin

where un is the last
column of U in SVD decomposition of A = UΣVT .

2. Changing b to b + δb can change x to x + δx where ||δx ||2 can
be estimated as ||δb ||2

σmin
, or the solution is very ill-conditioned.

Proof

1: We have that for the case of full-rank matrix A the solution of Ax = b
is given by x = (UΣVT )−1b = VΣ−1UT b. The matrix A+ = VΣ−1UT is
Moore-Penrose pseodoinverse of A . Thus, we can write also this solution
as x = VΣ−1UT b = A+b.
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Then taking norms from both sides of above expression we have:

||x ||2 = ||Σ−1UT b ||2 ≥ |(Σ−1UT b)n | =
|uT

n b |
σmin

, (1)

where |(Σ−1UT b)n | is the n-th column of this product.
2. We apply now (1) for ‖x + δx‖ instead of ‖x‖ to get:

||x + δx ||2 = ||Σ−1UT (b + δb)||2 ≥ |(Σ−1UT (b + δb))n |

=
|uT

n (b + δb)|
σmin

=
|uT

n b + uT
n δb |

σmin
.

(2)

We observe that |u
T
n b |
σmin

+
|uT

n δb |
σmin
≤ ||x + δx ||2 ≤ ||x ||2 + ||δx ||2.

Choosing δb parallel to un and applying again (1) for estimation of ‖x‖2
we have

||δx ||2 ≥
||δb ||2
σmin

. (3)
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In the next proposition we prove that the minimum norm solution x is
unique and may be well-conditioned if the smallest nonzero singular
value is not too small.
Proposition

When A is exactly singular, then x that minimize ||Ax − b ||2 can be
characterized as follows. Let A = UΣVT have rank r < n. Write svd of A
as

A =[U1,U2]

[

Σ1 0
0 0

]

[V1,V2]
T = U1Σ1VT

1

Here, size(Σ1) = r × r and is nonsingular, U1 and V1 have r columns. Let
σ = σmin(Σ1).Then

1. All solutions x can be written as x = V1Σ
−1
1 UT

1 + V2z

2. The solution x has minimal norm ||x ||2 when z = 0. Then
x = V1Σ

−1
1 UT

1 and ||x ||2 ≤ ||b ||2σ .

3. Changing b to b + δb can change x as ||δb ||2
σ

.
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Proof
We choose the matrix Ũ such that [U, Ũ] = [U1,U2, Ũ] be an m ×m
orthogonal matrix. Then

||Ax − b ||22 = ||[U1,U2, Ũ]T (Ax − b)||22

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





















UT
1

UT
2

ŨT





















(U1Σ1VT
1 x − b)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

= ||[Ir×r ,Om×(n−r), 0m×m−n]T (Σ1VT
1 x − [U1,U2, Ũ]T · b)||22

= ||[Σ1VT
1 x − UT

1 b;−UT
2 b;−ŨT b]T ||22

= ||Σ1VT
1 x − UT

1 b ||22 + ||U
T
2 b ||22 + ||Ũ

T b ||22

1. Then ||Ax − b ||2 is minimized when Σ1VT
1 x − UT

1 b = 0. We can also
write that the vector x = (Σ1VT

1 )
−1UT

1 b + V2z or x = V1Σ
−1
1 UT

1 b + V2z is
also solution of this minimization problem, because VT

1 V2z = 0 since
columns of V1 and V2 are orthogonal.
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2. Since columns of V1 and V2 are orthogonal, then by Pythagorean
theorem we have that ‖x‖22 = ||V1Σ

−1
1 UT

1 b ||2 + ||V2z||2 which is minimized
for z = 0.
3. Changing b to δb in the expression above we have:

||V1Σ
−1
1 UT

1 δb ||2 ≤ ‖V1Σ
−1
1 UT

1 ‖2 · ‖δb‖2 = ‖Σ−1
1 ‖2 · ‖δb‖2 =

||δb ||2
σ
, (4)

where σ is smallest nonzero singular value of A . In this proof we used
properties of the norm: ‖QAZ‖2 = ‖A‖2 if Q ,Z are orthogonal.
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How to solve rank-deficient least squares problems using
QR decomposition with pivoting

QR decomposition with pivoting is cheaper but can be less accurate than
SVD technique for solution of rank-deficient least squares problems.
If A has a rank r < n with independent r columns QR decomposition can
look like that

A = QR = Q ·





















R11 R12

0 0
0 0





















.

(5)

with nonzingular R11 is of the size r × r and R12 is of the size r × (n − r).
We can try to get

R =





















R11 R12

0 R22

0 0





















, (6)

where elements of R22 are very small and are of the order ε‖A‖2.
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If we set R22 = 0 and choose [Q , Q̃] which is square and orthogonal then
we will minimize

‖Ax − b‖22 =

∥

∥

∥

∥

∥

∥

[

QT

Q̃T

]

(Ax − b)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

QT

Q̃T

]

(QRx − b)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

Rx - QT b
- Q̃T b

]
∥

∥

∥

∥

∥

∥

2

2

= ‖Rx − QT b‖22 + ‖Q̃
T b‖22.

(7)

Here we again used properties of the norm: ‖QAZ‖2 = ‖A‖2 if Q ,Z are
orthogonal.
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Let us now decompose Q = [Q1,Q2] with x = [x1, x2]
T and

R =

[

R11 R12

0 0

]

(8)

such that equation (7) becomes

‖Ax − b‖22 =

∥

∥

∥

∥

∥

∥

[

R11 R12

0 0

]

·
[

x1

x2

]

−
[

QT
1 b

QT
2 b

]
∥

∥

∥

∥

∥

∥

2

2

+ ‖Q̃T b‖22

= ‖R11x1 + R12x2 − QT
1 b‖22 + ‖Q

T
2 b‖22 + ‖Q̃

T b‖22.
(9)

We take now derivative with respect to x to get (‖Ax − b‖22)
′
x = 0. We see

that minimum is achieved when

x =

[

R−1
11 (Q

T
1 b − R12x2)

x2

]

(10)

for any vector x2. If R11 is well-conditioned and R−1
11 R12 is small than the

choice x2 = 0 will be good one.
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The described method is not reliable for all rank-deficient least squares
problems. This is because R can be nearly rank deficient for the case
when no R22 is small. In this case can help QR decomposition with
column pivoting: we factorize AP = QR with permutation matrix P. To
compute this permutation we do as follows:
1. In all columns from 1 to n at step i we select from the unfinished
decomposition of part A in columns i to n and rows i to m the column
with largest norm and exchange it with i-th column.
2. Then compute usual Householder transformation to zero out column i
in entries i + 1 to m.
Recent research is devoted to more advanced algorithms called
rank-revealing QR algorithms which detects rank more faster and more
efficient.
C. Bischof, Incremental condition estimation, SIAM J.Matrix Anal.Appl.,
11:312-322, 1990.
T.Chan, Rank revealing QR factorizations, Linear Algebra Applications,
88/89:67-82, 1987.
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Outline

Principal component analysis (PCA) formulation (mean, covariance
matrix, computation of eigenvalues and eigenvectors of covariance
matrix)

Principal component analysis (PCA) to find patterns, for data
compression and for image orientation

PCA formulation based on SVD for image compression
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Principal component analysis (PCA) is a machine learning
technique which is widely used for data compression in image
processing (data visualization) or in the determination of object
orientation.

PCA problem is closely related to the numerical linear algebra
(NLA) problem of finding eigenvalues and eigenvectors for the
covariance matrix.

We will study application of PCA for image compression and object
rotation.
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Literature

The proposed books in machine learning:

Christopher M. Bishop, Pattern recognition and machine learning,
Springer, 2009.

Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep
Learning, MIT Press, 2016, http://www.deeplearningbook.org

Miroslav Kurbat, An Introduction to Machine Learning, Springer,
2017.
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PCA formulation

Let {xn}, n = 1, ....,N is a data set of observations, where xn is a variable
of the dimension d. The goal in PCA is to project the data onto a space
which has dimension M < d maximizing the variance of the projected
data. Let M = 1 and thus, we will consider projection onto
one-dimensional space. Let the vector u1 is the direction of this space
such that it is a unit vector and uT

1 u1 = 1. Then every point xn is
projected onto a scalar value uT

1 xn.
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PCA formulation

The sample set mean x̄ is defined as

x̄ =
1
N

N
∑

n=1

xn,

and the variance of the projected data uT
1 x̄ is

1
N

N
∑

n=1

(uT
1 xn − uT

1 x̄)2 = uT
1 Su1,

where S is the data covariance matrix

S =
1
N

N
∑

n=1

(xn − x̄)(xn − x̄)T .
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PCA formulation

The next step is maximize the projected variance uT
1 Su1 with respect to

u1 using constrained minimization with the term uT
1 u1 = 1. To enforce this

constraint, we use Lagrange multiplier λ to minimize

L(u1) = uT
1 Su1 + λ1(1 − uT

1 u1)

Now we minimize L ′(u1)(ū1) = 0 to get

0 = L ′(u1)(ū1) = (Su1 − λ1u1)(ū1),

what means that
Su1 = λ1u1 (11)
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PCA formulation

From the equation (11) follows that (λ1, u1) is an eigenpair of S. We
observe that

uT
1 Su1 = λ1

what means that variance is maximum when we set u1 to the eigenvector
for the largest eigenvalue λ1 which is called the first principal component.
One can obtain all other components in the same way. If we consider
M-dimensional projection space then the optimal linear projection for
which the variance of the projected data will have maximum, will consists
of M eigenvectors u1, ..., uM of the covariance matrix S corresponding to
the M largest eigenvalues λ1, ..., λM .
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PCA formulation
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a) Dataset in mnist_test_10.csv dim(X) = 10 × 784

Let now analyze PCA in a common case. Let X be a matrix (for example,
it can be training set data matrix of the size m × n, where m is the
number of samples and n is the variable in the matrix X . An example of
the variable can be some image. Assume, that the data X has been
centered such that it has zero mean for each column. Then the
covariance matrix can be computed for N = n − 1 as

C =
1
N

XXT (12)

such that C is symmetric and dim(C) = n × n.
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PCA formulation

The eigenvalue problem for C is:

Cu = λu. (13)

We observe that

x =
n
∑

i=1

x̂iui (14)

and approximated vector x can be computed as

x ≈
k
∑

i=1

x̂iui (15)

Eigenvalues of C can be found using SVD of X = UΣVT . Taking now
X = XT we can write the covariance matrix as

C =
1
N

XT X =
1
N
(UΣVT )T UΣVT =

1
N

VΣUT UΣVT =
1
N

VΣ2VT . (16)
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The covariance matrix is

C =
1
N

XT X =
1
N

VΣ2VT . (17)

Using above equation we observe that

XT X = VΣ2VT ,

(XT X)V = VΣ2VT V = VΣ2.
(18)

We observe also that XV = (UΣVT )V = UΣ. Thus from the above
equation we see that the right singular vectors V of X = UΣVT are
equivalent to the eigenvectors of XT X . But the singular values σ of X are
equal to

√
λ of XT X (since σ2 = λ).
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We define the score matrix T as

T = XV = (UΣVT )V = UΣ. (19)

We observe that every column of T is given by one of the left singular
vectors of X multiplied by the corresponding singular value.
Next, a truncated n × k score matrix Tk can be obtained by considering
only the first k largest singular values and their singular vectors:

Tk = UkΣk = XVk . (20)

Here, Tk = UkΣk = XVk because of (19). To reduce the dimensionality
of the data to k , we select the k first columns of V . Then the matrix XVk

is of the size m × k with k principal components.
In order to perform digit recognition, we minimize the following functional
for every image i, j in the train and test sets, respectively:

min ‖Tk (test(i)) − Tk (train(j))‖22 (21)

Here, Tk (test) and Tk (train) are the truncated score matrices for the test
and train sets, respectively.
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PCA: some notions of statistics

Variance is measure of the spread of data in dataspace which is defined
as

var(X) =

∑n
i=1(Xi − X̄)2

n − 1

where mean X̄ is defined as

X̄ =

∑n
i=1 Xi

n
.

Standard deviation is defined as

s =
√

var(X) =

√

∑n
i=1(Xi − X̄)2

n − 1
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PCA: some notions of statistics

Let

X (X − X̄) (X − X̄)2

1 -2 4
3 0 0
0 -3 9
5 2 4
6 3 9
Total 26
Divided by (n − 1) 6.5
Deviation, s 2.5495

Table: Calculation of variance var(X) =
∑n

i=1(Xi−X̄)2

n−1 . Here, mean
X̄ = 15/5 = 3.
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PCA: some notions of statistics

Covariance is measure of the spread of data in dataspace which is
defined as

cov(X ,Y) =

∑n
i=1(Xi − X̄)(Yi − Ȳ)

n − 1
Let

X Y (X − X̄) (Y − Ȳ) (X − X̄)(Y − Ȳ)
1 9 -2 5.4 -10.8
3 1 0 -2.6 0
0 3 -3 -0.6 1.8
5 5 2 1.4 2.8
6 0 3 -3.6 -10.8
Total -17
Divided by (n − 1) -4.25

Table: Calculation of covariance. Here, X̄ = 3, Ȳ = 3.6.
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PCA: some notions of statistics

Below is definition of the covariance matrix for a set of data which have
dimension n:

C =





























cov(Dim1,Dim1) ... cov(Dim1,Dimn)
cov(Dim2,Dim1) ... cov(DIm2,Dimn)

... ... ...

cov(Dimn,Dim1) ... cov(Dimn,Dimn)





























Here, dim(C) = n × n.
Covariance is always measured between 2 dimensions. For
three-dimensional data sets x,y,z one can compute covariance matrix

C =





















cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)




















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PCA

PCA can be thought as a way to find patterns in data in order to
highlight similarity or difference of data. Thus, it is a powerful tool to
analyze data.

The main advantage of PCA is as soon as patterns in data is found,
one can compress the data by reducing number of dimensions
without much loss of information. This technique is used in image
compression.
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PCA: example
Let us analyze how works PCA on two datasets using Matlab program ExamplePCA.m.

%first create our 2D data

x=[2.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.1];

y=[2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9];

% compute mean for x

[ax,bx] =size(x);

mean_x= sum(x)/bx;

% compute mean for y

[ay,by] =size(y);

mean_y = sum(y)/by;

% compute adjusted data

adjust_x = x - mean_x;

adjust_y = y - mean_y;

plot(x,y,’o’,’LineWidth’,2,’MarkerEdgeColor’,’k’); grid(’on’); hold on;

plot(adjust_x,adjust_y,’o’,’LineWidth’,2,’MarkerEdgeColor’,’r’);

legend(’original data’, ’adjusted data’);

-1 0 1 2 3 4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

original data

adjusted data
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PCA: example

%compute covariance matrix

C = cov(adjust_x,adjust_y);

% compute eigenvalues and eigenvectors ov the covariance matrix

[eigvec, eigval] = eig(C);

[U,S,V] = svd(C);

% plotting using svd of the covariance matrix ********************************

% first eigenvector via svd: this is the principle component of the data set

% since it’s corresponds to the largest eigenvalue.

% We can call it also as feature vector.

u1x=[2*U(1,1),-2*U(1,1)];

u1y=[2*U(2,1),-2*U(2,1)];

plot(u1x,u1y,’-- b’, ’LineWidth’,2);

% plotting the second eigenvalue vector

u2x=[2*U(2,1),-2*U(2,1)];

u2y=[2*U(2,2),-2*U(2,2)];

plot(u2x,u2y,’-- r’, ’LineWidth’,2);

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
adjusted data

first eigenvector of covariance matrix
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PCA: example

% Now form final rotated data

Data =[adjust_x; adjust_y];

PCA = U*Data;

plot(PCA(1,:),PCA(2,:),’o’,’LineWidth’,2, ’MarkerEdgeColor’,’r’);

axis([-2,2,-2,2])

legend(’adjusted data’,’first eigenvector of covariance matrix’,’second eigenvector of covariance matrix’,’rotated

title(’PCA analysis of transformed data using 2 eigenvectors’)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5
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PCA analysis of transformed data using 2 eigenvectors

adjusted data

first eigenvector of covariance matrix
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rotated adjusted data after PCA analysis
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Principal component analysis (PCA)

PCA: example

% now we plot out vector with the largest eigenvalue

PCAnew1 = U(1,:)*Data;

plot(PCAnew1,PCAnew1,’o’,’LineWidth’,2, ’MarkerEdgeColor’,’r’);

hold on

PCAnew2 = U(2,:)*Data;

plot(PCAnew2,PCAnew2,’o’,’LineWidth’,2, ’MarkerEdgeColor’,’b’);

grid(’on’);

legend(’data points for the first eigenvector in U’,’data points for the second eigenvector in U’)

title(’PCA analysis of transformed data using 1 eigenvector ’)
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QR and SVD
Principal component analysis (PCA)

PCA: example

plot(adjust_x,adjust_y,’o’,’LineWidth’,2,’MarkerEdgeColor’,’k’);

grid(’on’);

hold on

plot(PCA(1,:),PCA(2,:),’o’,’LineWidth’,2, ’MarkerEdgeColor’,’g’);

plot(PCAnew1,PCAnew1,’o’,’LineWidth’,2, ’MarkerEdgeColor’,’r’);

u1x=[5*U(1,1),-5*U(1,1)];

u1y=[5*U(2,1),-5*U(2,1)];

plot(u1x,u1y,’-- b’, ’LineWidth’,2);

axis([-3,3,-3,3])

legend(’adjusted data’,’rotated adjusted data after PCA analysis’,...

’PCA analysis using the first eigenvector of the covariance matrix’,...

’first eigenvector of the covariance matrix’);
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QR and SVD
Principal component analysis (PCA)

Project “PCA for image recognition”

Use PCA to find patterns (recognize handwritten numbers) in MNIST
Dataset of Handwitten Digits which can be downloaded from the course
homepage.

Use Matlab programs

loadmnist_matlab.m

import_mnist.m

on the course homepage to download MNIST Datasets

mnist_test_10.csv

mnist_train.csv

Perform PCA analysis for the following problem: given an image
from the dataset

mnist_test_10.csv

check if there exists the same or similar image in the train dataset

mnist_train.csv

In otyher words, try recognize written digits in train dataset.
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Principal component analysis (PCA)

MNIST datasets
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a) Dataset in mnist_test_10.csv b) Images from mnist_train.csv
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Principal component analysis (PCA)

PCA to find patterns for MNIST dataset
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a) Dataset in mnist_test_10.csv b) Matrix of images

Dataset

mnist_test_10.csv

contains 10 images presented in Figure a). This is a test dataset which should be used to recognise handwritten digits in
the dataset

mnist_train.csv
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Principal component analysis (PCA)

PCA to find patterns for MNIST dataset

Top image of Figure b) represents matrix array Xdata from the program
plotmnist.m of all 10 images presented in Figure a). Bottom image of
Figure b) is the same array which is read in the another array as

[nx,ny] = size(Xdata)

u = zeros(nx,ny);

for j=1:ny

for i=1:nx

u(nx*(j-1)+i) = Xdata(nx*(j-1)+i);

end

end

Every row of this array is a vector of the size nx × ny, where nx is the
number of nodes in x direction and ny is the number of nodes in y
direction of every image presented in Figure a). In our case,
nx = 28, ny = 28, and this 28 · 28 = 784 is size of every row of Figure b)
for 10 rows. We have 10 rows and 784 columns for matrix of test images.
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PCA to find patterns for MNIST dataset
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a) Matrix of test images b) Matrix of train images

We need to perform PCA analysis of matrix of train images and test images. After PCA we will have original data on terms
of eigenvectors and eigenvalues of the covariance matrix.
The next step is to measure difference between the new image and the original image, but not along the original axes, but
along the new axes which are obtained in PCA analysis.
It was shown [1] that these new axes gives better information for the case of image recognition since the PCA analysis
gives the original image in terms of the differences and similarities between data.

[1] J. ZHANG, Y. YAN, M. LADES, Face Recognition: Eigenface, Elastic Matching, and Neural Nets, Proc. IEEE, 1997.
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