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Approximate global convergence and Adaptive finite
element method for solution of hyperbolic CIP

Approximate global convergence

Layer stripping algorithm with respect to pseudo-frequency for
explicit reconstruction of the coefficient in hyperbolic CIP

Two-stage numerical procedure
Stage 1. Approximately globally convergent numerical
method provides a good approximation for the exact solution.
Stage 2. Adaptive Finite Element Method refines it.
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Introduction

A new approach have been developed: approximately globally
convergent numerical methods for Coefficient Inverse Problems for
a hyperbolic and parabolic PDE with the first publication

L. Beilina, M. V. Klibanov, A globally convergent numerical method for some coefficient inverse problems with
resulting second order elliptic equations, SIAM Sci.Comp., V.31, N.1, 478-509, 2008.

L.Beilina, M.V.Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems,

Springer, ISBN 978-1-4419-7804-2, 2012.

This approach works with single measurement data.
• Single measurement means that either only a single position of
the point source or only a single direction of the incident plane wave
is considered.

In our applications we are working with experimental data in military
applications. CIPs with single measurement data are the most
suitable ones for military applications: various dangers on the
battlefield do not allow to arrange multiple measurements.
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Main goals of the approximate globally convergent
method

• Goal 1. To develop such a numerical method, which would have
a rigorous guarantee obtaining a good approximation for the exact
solution of an MCIP without using an advanced knowledge of
neither a small neighborhood of that solution nor of the background
medium in the domain of interest.
• Goal 2. This method should demonstrate a good performance on
both computationally simulated and experimental data.
• It is challenging to achieve both goals simultaneously.
• Therefore some approximate mathematical models are
necessary.
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The two-stage numerical procedure

Stage 1. Approximately globally convergent numerical method
provides a good approximation for the exact solution.
Stage 2. Adaptive Finite Element Method refines it.

a) ε
(5,2)
r = 3.9, n(5,2) = 1.97 b) εr ,h ≈ 4.2, nglob =

√
εr ,h ≈ 2.05

a) A sample of the reconstruction result of the dielectric cube No. 1 (4 cm side) via the first stage. b) Result after applying
the adaptive stage (2-nd stage). The side of the cube is 4 cm=1.33 wavelength.
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Results of the two-stage procedure, cube nr.2 (big)

a) εr (5, 5) = 3.19, n(5,5) = 1.79 b) εr ,h ≈ 3.0, nglob =
√
εr ,h ≈ 1.73

a) Reconstruction of the dielectric cube No. 2 (6 cm side) via the first stage. b) The final reconstruction result after
applying the adaptive stage (2-nd stage). The side 6 cm=2 wavelength.

L.Beilina, M.V.Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive
inverse algorithm, Inverse Problems, 26, 125009, 2010.
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The Forward Problem in the approximate globally
convergent method

εr(x)utt = ∆u in R3 × (0,∞) , (1)

u (x, 0) = 0, ut (x, 0) = δ (x − x0) . (2)

εr(x) ∈ [1, d] , d = const . > 1, εr(x) = 1 for x ∈ R3
�Ω, (3)

εr(x) ∈ C2
(
R

3
)
. (4)

Applications: electromagnetic, acoustics
[RK] V. G. Romanov, M. V. Klibanov, CAN A SINGLE PDE GOVERN WELL THE PROPAGATION OF THE ELECTRIC
WAVE FIELD IN A HETEROGENEOUS MEDIUM IN 3D?, https://arxiv.org/abs/2102.02271
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Inverse Problem 1 (complete data)

Suppose that the coefficient εr(x) satisfies (4) and (5), where the number
d > 1 is given. Assume that the function εr(x) is unknown in the domain
Ω. Determine the function εr(x) for x ∈ Ω, assuming that the following
function g (x, t) is known for a single source position x0 < Ω

u (x, t) = g (x, t) ,∀ (x, t) ∈ ∂Ω × (0,∞) . (6)

The function g (x, t) in (6) is the result of measurement at the entire
boundary.

Uniqueness is known only if δ (x − x0) is replaced with f (x) , 0 in Ω
(1981, the Bukhgeim-Klibanov method of Carleman estimates).

Uniqueness theorem is a long standing open problem.

We assume below that uniqueness holds true.
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Definition of the Approximate Global Convergence
Property

Definition (approximate global convergence)

Consider a nonlinear ill-posed problem P. Suppose that this
problem has a unique solution x∗ ∈ B for the noiseless data y∗,
where B is a Banach space with the norm ‖·‖B . We call x∗ “exact
solution” or “correct solution”.

Suppose that a certain approximate mathematical model M1 is
proposed to solve the problem P numerically. Assume that, within
the framework of the model M1, this problem has unique exact
solution x∗M1

. Also, let one of assumptions of the model M1 be that
x∗M1

= x∗.

Consider an iterative numerical method for solving the problem P.
Suppose that this method produces a sequence of points
{xn}Nn=1 ⊂ B , where N ∈ [1,∞) . Let the number ε ∈ (0, 1) .
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Definition of the Approximate Global Convergence
Property

We call this numerical method approximately globally convergent of the
level ε, or shortly globally convergent, if, within the framework of the
approximate model M1, a theorem is proven, which guarantees that,
without any a priori knowledge of a sufficiently small neighborhood of x∗,
there exists a number N ∈ [1,N) such that

‖xn − x∗‖B ≤ ε,∀n ≥ N. (5)

Suppose that iterations are stopped at a certain number k ≥ N. Then the
point xk is denoted as xk := xglob and is called “the approximate solution
resulting from this method".
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The Approximately Globally Convergent Method

Laplace transform Consider the Laplace transform of the functions u in
the hyperbolic equation (1),

w(x, s) =

∞∫

0

u(x, t)e−stdt , for s > s = const . > 0, (6)

where s is a certain number. We assume that the number s is sufficiently
large and we call the parameter s pseudo frequency. Since x0 < Ω it
follows from (1) and (78) that the function w is the solution of the
following problem

∆w − s2εr(x)w = −δ (x − x0) , x ∈ R3, (7)

lim
|x |→∞

w (x, s) = 0, (8)

where limit in (8) is proved in [BK, Springer]. In [BK, Springer] was shown
that w(x, s) > 0. Hence, we can consider functions v(x, s) and V (x, s)
defined as

v (x, s) =
lnw (x, s)

s2
. (9)
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Lemma 1 (follows from a result of V.G. Romanov, 1984)

Suppose that the function εr(x) satisfies conditions (4), (5). Assume that
geodesic lines, generated by the eikonal equation corresponding to the
function εr(x) are regular. Then the following asymptotic behavior of the
function w and its derivatives takes place for |β| ≤ 2, γ = 0, 1, x , x0

Dβ
x Dγ

s w(x, s) = Dβ
x Dγ

s

{
exp [−sl (x, x0)]

f (x, x0)

[
1 + O

(
1
s

)]}
, s → ∞,

where f (x, x0) is a certain function and f (x, x0) , 0 for x , x0.

Conditions of regularity of geodesic lines cannot be effectively
verified. However, the entire theory of CIPs for hyperbolic PDEs
does not work without this condition.

We verify the asymptotic behavior computationally.
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Assuming that the asymptotic behavior in Lemma 1 holds we get the
following asymptotic behavior of the function v

∥∥∥∥Dβ
x Dk

s v (x, s)
∥∥∥∥

C3(Ω)
= O

(
1

sk+1

)
, s → ∞, k = 0, 1. (10)

Since the source x0 < Ω, we obtain

∆v + s2 (∇v)2 = εr(x), x ∈ Ω. (11)

The next step in our transformation procedure is to denote

q (x, s) = ∂sv (x, s) . (12)

Using (10) and (12) we conclude that

v (x, s) = −
∞∫

s

q (x, τ) dτ.

The integral above can be rewritten also as

v (x, s) = −
s∫

s

q (x, τ) dτ+ V (x, s) . (13)
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The function V (x, s) in (13) is the “ tail function” and such that

V (x, s) = v (x, s) =
lnw (x, s)

s2
, (14)

From (10) and (14) follows that

∥∥∥V (x, s)
∥∥∥

C3(Ω) = O

(
1

s

)
,

∥∥∥∂sV (x, s)
∥∥∥

C3(Ω) = O

(
1

s2

)
. (15)

From (15) follows that the tail function is small for large values of s.
Therefore, one can set V (x, s) := 0 or update the tail function in an
iterative procedure.

www.math.chalmers.se/∼larisa Lecture 6



The next step is differentiate (11) with respect to s. Using (12 ) and (13),
we obtain the following nonlinear integral differential equation

∆q − 2s2∇q

s∫

s

∇q (x, τ) dτ+ 2s



s∫

s

∇q (x, τ) dτ



2

+ 2s2∇q∇V − 4s∇V

s∫

s

∇q (x, τ) dτ+ 2s (∇V)2 = 0, x ∈ Ω.

(16)

(77) and (12) imply that the following Dirichlet boundary condition is given
for the function q

q (x, s) = ψ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] , (17)

where

ψ (x, s) =
∂s lnϕ

s2
− 2 lnϕ

s3
(18)

and ϕ (x, s) is the Laplace transform (78) of the known measured
function g (x, t).
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New model of the tail function

Let the function ε∗r (x) satisfying to (2) be the exact solution of our CIP for
the exact data g∗. Let V∗ (x, s) be the exact “tail function” defined as

V∗ (x, s) =
lnw∗ (x, s)

s2
. (19)

Let q∗ (x, s) ∈ C2+α
(
Ω
)
× C1 [s, s] and ψ∗ (x, s) ∈ C2+α

(
Ω
)
× C1 [s, s] be

the corresponding exact functions for q in (16) and ψ in (18). Then

∆q∗ − 2s2∇q∗ ·
s∫

s

∇q∗ (x, τ) dτ+ 2s



s∫

s

∇q∗ (x, τ) dτ



2

+ 2s2∇q∗∇V∗

− 2s∇V∗ ·
s∫

s

∇q∗ (x, τ) dτ+ 2s (∇V∗)2 = 0, x ∈ Ω, s ∈ [s, s] ,

q∗ |∂Ω = ψ∗ (x, s) := ∂sϕ
∗ (x, s) ∀ (x, s) ∈ ∂Ω × [s, s] .

(20)
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Setting in (20) s = s we get following equation for functions q∗ and V∗

∆q∗ + 2s2∇q∗∇V∗ + 2s (∇V∗)2 = 0, x ∈ Ω,
q∗ |∂Ω = ψ∗ (x, s̄) ∀x ∈ ∂Ω.

(21)

Next, we will assume that the exact functions V∗(x, s̄), q∗(x, s̄), s̄ → ∞
have the following asymptotical behaviour

V∗ (x, s) =
p∗ (x)

s
+ O

(
1

s2

)
≈

p∗ (x)

s
, s → ∞,

q∗ (x, s) = ∂sV∗ (x, s) = −
p∗ (x)

s2
+ O

(
1

s3

)
≈ −

p∗ (x)

s2
, s → ∞.

(22)
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Then, using the first terms in the asymptotic behavior (22) for the exact
tail V∗ (x, s) = p∗(x)

s and for the exact function q∗ (x, s) = − p∗(x)

s2 we have

−∆p∗

s2
− 2s̄2∇p∗

s2

∇p∗

s
+ 2s̄

(∇p∗)2

s2
= 0, x ∈ Ω,

q∗ |∂Ω = ψ∗ (x, s̄) ∀x ∈ ∂Ω,
(23)

which is reduced to the following approximate Dirichlet boundary value
problem for the function p∗ (x)

∆p∗ = 0 in Ω, p∗ ∈ C2+α
(
Ω
)
, (24)

p∗|∂Ω = −s2
ψ∗ (x, s) . (25)
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Approximate mathematical model

There exists a function p∗ (x) ∈ C2+α
(
Ω
)

such that the exact tail function
V∗ (x) has the form

V∗ (x, s) :=
p∗ (x)

s
, ∀s ≥ s. (26)

Since q∗ (x, s) = ∂sV∗ (x, s) for s ≥ s, we can obtain from (26)

q∗ (x, s) = −
p∗ (x)

s2
. (27)

Then we can get following explicit formula for the reconstruction of the
coefficient ε∗r (x)

ε∗r (x) = ∆v∗ + s2 |∇v∗|2 ,

where

v∗ = −
s∫

s

q∗ (x, τ) dτ+
p∗ (x)

s
.
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Using the new mathematical model we will take the function

V1,0 (x) :=
p (x)

s
. (28)

as the first guess for the tail function V(x, s̄) where p(x) is the solution of
the problem following problem:

∆p = 0 in Ω, p ∈ C2+α
(
Ω
)
, (29)

p|∂Ω = −s2
ψ (x, s) . (30)
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The layer stripping procedure

Let us consider a layer stripping procedure with respect to the s by
dividing the interval [s, s] into N small subintervals of the step size
h = sn−1 − sn. Here,

s = sN < sN−1 < ... < s0 = s. (31)

The next step is to approximate the function q(x, s) as a piecewise
constant function with respect to s such that q(x, s) = qn(x) for
s ∈ [sn, sn−1) . Using (13) we can approximate value of the function
v (x, sn) as

v (x, sn) = −h
n∑

j=0

qj (x) + V (x, s) , q0 (x) :≡ 0. (32)

Next, we introduce the s−dependent Carleman Weight Function (CWF)

Cn,µ (s) = exp [µ (s − sn−1)] , (33)

where µ > 1 is a large parameter.
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We multiply both sides of equation (16) by Cn,µ (s) and integrate over
pseudo-frequency to get the following system of equations on every
pseudo-frequency interval (sn, sn−1)

Ln (qn) := ∆qn − A1,n

h
n−1∑

j=0

∇qj − ∇Vn

∇qn = Bn (∇qn)
2

− A2,nh2


n−1∑

j=0

∇qj



2

+ 2A2,n∇Vn

h
n−1∑

j=0

∇qj

 − A2,n (∇Vn)
2
,

qn |∂Ω= ψn(x) :=
1
h

sn−1∫

sn

ψ (x, s) ds, n = 1, ...,N.

(34)

Here integrals A1,n,A2,n,Bn :=
I1,n
I0

can be computed explicitly.
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A finite element method for reconstruction

Once the functions Vn, qn in (34) are calculated, we can compute the
function vn (x) as

vn (x) = −hqn (x) − h
n−1∑

j=0

qj (x) + Vn (x) , x ∈ Ω. (35)

Since

vn (x) =
lnwn (x, sn)

s2
n

, (36)

then wn (x) = exp
[
s2

nvn (x)
]

with known functions vn(x) on every
pseudo-frequency interval (sn, sn−1). Next, we apply the FEM to the
equation (37) to obtain the function εr ,n with already computed wn:

∆wn − s2
nεr ,n (x)wn = 0 in Ω, (37)

∂nwn |∂Ω= fn (x) , (38)

where
fn (x) = ∂n exp

[
s2

nvn (x)
]

for x ∈ ∂Ω.

www.math.chalmers.se/∼larisa Lecture 6



The finite element spaces

In computations we discretize our bounded domain Ω ⊂ R3 by an
unstructured tetrahedral mesh T using non-overlapping tetrahedral
elements K ∈ R3. The elements K are such that T = K1, ...,Kl , where l is
the total number of elements in Ω, and

Ω = ∪K∈T K = K1 ∪ K2... ∪ Kl .

We associate with the mesh T the mesh function h = h(x) as a
piecewise-constant function such that

h(x) = hK ∀K ∈ T ,

where hK is the diameter of K which we define as the longest side of K .
We make the following shape regularity assumption of the mesh T for
every element K ∈ T

a1 ≤ hK ≤ r ′a2; a1, a2 = const . > 0, (39)

where r ′ is the radius of the maximal sphere contained in the element K .
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We introduce now the finite element space Vh as

Vh =
{
v(x) ∈ V : v ∈ C(Ω), v |K ∈ P1(K) ∀K ∈ T

}
, (40)

where P1(K) denotes the set of piecewise-linear functions on K with

V =
{
v(x) : v(x) ∈ H1(Ω)

}
.

Hence, the finite element space Vh consists of continuous piecewise
linear functions in space. The finite dimensional finite element space Vh

is constructed such that Vh ⊂ V . To approximate functions εr ,n we
introduce space of piecewise constants Ch defined by

Ch := {u ∈ L2(Ω) : u|K ∈ P0(K),∀K ∈ Kh},

where P0(K) is the piecewise constant function defined in the vertices of
the element K of the mesh Kh .
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A finite element method

To compute εr ,n from (37), we will formulate the finite element method for
the problem (37)-(38): Find εr ,n ∈ Ch for the known wn ∈ Vh such that
∀v ∈ Vh

(εr ,nwn, v) = −
1

s2
n
(∇wn,∇v) +

1

s2
n
(fn, v)∂Ω. (41)

We expand wn in terms of the standard continuous piecewise linear
functions {ϕk }Nk=1 in space as

wn =
N∑

k=1

wnkϕk (x),

where wnk denote the nodal values of the function wn at the nodes k of
the mesh T . We can determine wnk by knowing already computed
functions vn,k using the formula

wnk = exp
[
s2

nvnk (x)
]
∀x ∈ Ω.

www.math.chalmers.se/∼larisa Lecture 6



We substitute this expansion in the variational formulation (41), choose
v(x) = ϕj(x) and obtain the following system of discrete equations

N∑

k ,j=1

εr ,nk (wnk ϕk , ϕj) = −
1

s2
n

N∑

k ,j=1

wnk (∇ϕk ,∇ϕj) +
1

s2
n

N∑

j=1

(fn, ϕj)∂Ω. (42)

The system (42) can be rewritten in the matrix form for the unknown
εr ,n =

∑N
k=1 εr ,nk and known wn as

Mεr ,n = − 1

s2
n

Gwn +
1

s2
n

F . (43)

Here, M is the block mass matrice in space, G is the stiffness matrix
corresponding to the gradient term, F is the load vector. At the element
level K the matrix entries in (43) are explicitly given by:

MK
k ,j = (wnk ϕk , ϕj)K , (44)

GK
k ,j = (∇ϕk ,∇ϕj)K , (45)

FK
n,j = (fn, ϕj)K . (46)
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To obtain an explicit scheme for the computation of the coefficients εr ,n,
we approximate M by the lumped mass matrix ML in space, i.e., the
diagonal approximation obtained by taking the row sum of M, and get the
following equation

εr ,n = − 1

s2
n
(ML )−1Gwn +

1

s2
n
(ML )−1F . (47)

We note that for the case of linear Lagrange elements we have M = ML

and thus, the lumping procedure does not includes approximation errors
in this case.
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The Approximate Globally Convergent Algorithm

Step 0 Compute the initial tail function Vn,0(x, s) ∈ C2+α(Ω) as in (28).

Step 1 Iterations (n, i), n, i ≥ 1. Solve the boundary value problem (33) and find function qn,i .

Step 2 Compute functions vn,i as

vn,i (x) = −hqn,i − h
n−1∑

j=0

qj + Vn,i (x, s̄)

and then functions wn,i using

wn,i (x) = exp[s2
n vn,i (x)].

Step 3 Compute εr n,i via backwards calculations using the finite element formulation of the equation (37)
as

εr n,i = −
1

s2
n
(ML )−1Gwn,i +

1

s2
n
(ML )−1F ,

where the matrices M,G and the vector F are defined on the element level K ∈ T using (44) for
wn,i .
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Step 4 Solve the hyperbolic forward problem with computed εr n,i , and then compute the Laplace
transform (78) to obtain wn,i .

Step 5 Find a new approximation for the tail function

Vn,i (x, s̄) =
lnwn,i (x, s)

s2
.

Step 6 Iterate with respect to i and stop iterations at i = mn such that εr n,mn := limi→∞ εr n,i .

Step 7 Set on the pseudo-frequency interval [sn , sn−1)

qn := qn,mn , εr n(x) := εr n,mn (x),

Step 8 Stop computing functions εr n in the algorithm until functions εr n are converged . Else set
n = n + 1, take new pseudo-frequency interval [sn , sn−1) for computations and go to step 1.
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Approximate Global Convergence Theorem

(rough formulation) Let Ω ⊂ R3 be a bounded domain with ∂Ω ∈ C3. Let
the source x0 < Ω. Let σ be the error in the boundary data,

∥∥∥ψn − ψ∗n
∥∥∥

C2+α(∂Ω)
≤ C∗σ.

Consider the error parameter

η = 2 (h + σ) .

Let m be the maximal number of functions qn,i for each n and N be the
maximal number of functions qn :

{
qn,i

}(m,N)

(i,n)=(1,1)
.

Introduce the set

P (d, d∗) =

{
c ∈ Cα

(
Ω
)
: |c |α ≤ d∗ +

1
2
, c ∈

[
1, d +

1
2

]}
.

Let the exact solution c∗ ∈ P (d, d∗) , c∗ ∈ C2
(
R3

)
for our CIP for

c∗u∗tt − △u∗ = 0.
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Assume that all reconstructed functions cn,i (x) ≥ 1 in Ω. Let ω ∈ (0, 1) be
a number.Then there exists a constant B = B (Ω, s, d, d∗) > 2 such that if
the error ǫ is so small that

ǫ ∈
(
0,

1
B3Nm/ω

)
,

then all functions cn,i ∈ P (d, d∗) ∩ Cα
(
Ω
)

and

∥∥∥cn,i − c∗
∥∥∥

Cα(Ω) ≤ ǫ
1−ω := θ ∈ (0, 1) .

The DECISIVE ADVANTAGE of this theorem is that it guarantees to
provide a good approximation for the exact solution c∗ without an a
priori knowledge of a small neighborhood of c∗.

Of course, this guarantee is valid only within the framework of the
above approximate mathematical model.
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Improvement of the solution of CIP through the adaptivity

QUESTION: Why a regularized solution of the Tikhonov functional is
usually more accurate than the first guess for the practical case of a
single value of the regularization parameter [1]? Indeed, the theory
guarantees this only in the limiting case.

One can improve the solution obtained in a globally convergent
method

Adaptive approximately globally convergent algorithm [2].

Two-stage numerical procedure [3,4].

Relaxation property in the adaptivity [5].

1. M.V. Klibanov, A.B. Bakushinskii and L. Beilina, Why a minimizer of the Tikhonov functional is closer to the
exact solution than the first guess? J. Inverse and Ill-posed problems, 19, pp.83-105, 2011

2. M.Asadzadeh, L.Beilina, A posteriori error analysis in a globally convergent numerical method for a hyperbolic
coefficient inverse problem, Inverse Problems, 26, 115007, 2010.

3. L. Beilina and M.V. Klibanov, Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse
problem in 3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010.

4. L. Beilina and M.V. Klibanov, A posteriori error estimates for the adaptivity technique for the Tikhonov functional
and global convergence for a coefficient inverse problem, Inverse Problems, 26, 045012, 2010.

5. L. Beilina, M.V. Klibanov and M.Yu. Kokurin, Adaptivity with relaxation for ill-posed problems and global
convergence for a coefficient inverse problem, Journal of Mathematical Sciences, 167, 279-325, 2010.
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Relaxation property in the adaptivity

Theorem [BKK] Let Pn : H1 → Mn be the orthogonal projection operator
on the subspace Mn (a sequence of subspaces obtained via a mesh
refinements). Assume that

xα(δ) , Pnxα(δ)

(otherwise, the regularized solution xα(δ) is found and belongs to the
subspace Mn). Then there

‖xn − xα‖ ≤ θn ‖xn−1 − xα‖ , θn ∈ (0, 1) .

• Hence, [BKK, KBB]

‖xn − x∗‖ ≤ βn

∥∥∥xn−1 − xα(δ)
∥∥∥ + ξ

∥∥∥xα(δ) − x∗
∥∥∥ , ξ ∈ (0, 1) .

L. Beilina, M.V. Klibanov and M.Yu. Kokurin, Adaptivity with relaxation for ill-posed problems and global convergence for a
coefficient inverse problem, Journal of Mathematical Sciences, 167, 279-325, 2010.

M.V. Klibanov, A.B. Bakushinskii and L. Beilina, Why a minimizer of the Tikhonov functional is closer to the exact solution
than the first guess? J. Inverse and Ill-posed problems, 19, pp.83-105, 2011.
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First stage: experimental verification of a globally
convergent method

We use time-dependent experimental backscattered data measured
at the Optoelectronics and Optical Communications Center at
UNCC, USA.

Our goal in experimental verification was to reconstruct different
dielectric and metallic targets. For metallic targets we determine the
effective or appearing dielectric constant such that

εr (metal) ∈ [10, 30] . (48)

for metals. The set of admissible coefficients for the function εr(x) in
Ω is

Mεr = {εr(x) : εr (x) ∈ [1, 25] , εr (x) = 1 ∀x ∈ R3
�Ω.}

We compute refractive indexes ncomp of inclusions as

ε
comp
r = max

Ω
ε
(N)
r (x) , ncomp =

√
ε

comp
r . (49)
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Data collection scheme

a) b) c)

Figure: a) A photograph explaining our data collection process. The distance between the target (wooden block)

and the measurement plane is about 0.8 m, which is about 26 wave lengths. b) Picosecond Pulse Generator which

generates electric pulses. It produced one component of the electrical field with the wavelength 0.03 meter every 10

picoseconds while tektronix oscilloscope registered backscattered data. The pulse goes to the transmitter which is a horn

antenna (source). c) Detected signal is recorded by Textronix Oscilloscope which produces a digitized time resolved signal

with step size in time 10 picoseconds (10 ∗ 10−12sec.). The total time of measurements for one pulse is 10 nanoseconds

(10 ∗ 10−9 sec) = 104 picoseconds = 10−8 seconds which corresponds to 1000 timesteps.
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Time-dependent data collection scheme

a) b)

Figure: (a) Time-dependent data collection scheme using a picosecond pulse generator at the Optoelectronics

Center of UNCC, Charlotte, USA. b) Spatial distribution of measured experimental versus simulated data for a metallic

cylinder after application of the Laplace transform on the time-dependent data.
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A mathematical model in imaging of targets

We choose the computational geometry Ω, see Figure 3. This geometry
is split into two geometries, ΩFEM and ΩFDM such that Ω = ΩFEM ∪ ΩFDM .
Next, we introduce dimensionless spatial variables x′ = x/ (1m) and
obtain that the domain ΩFEM is transformed into our dimensionless
computational domain

ΩFEM =
{
x =(x, y, z) ∈ (−0.5, 0.5) × (−0.5, 0.5) × (−0.1, 0.04)

}
.

To compute tail functions in an approximate globally convergent
algorithm, we solve the forward problem using the software package
WavES (waves24.com) via the hybrid FEM/FDM method [BSA]. The
dimensionless size of our computational domain Ω for the forward
problem is

Ω =
{
x =(x, y, z) ∈ (−0.56, 0.56) × (−0.56, 0.56) × (−0.16, 0.1)

}
.
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Hybrid FEM/FDM geometry

a) b) c

Figure: a) Hybrid FEM/FDM geometry Ω; b) ΩFEM ; c) ΩFDM .
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We use the hybrid method of [BSA] since we know εr(x) = 1 in ΩFDM and
we need to determine εr(x) only in ΩFEM . The forward problem in our
tests is

εr (x) utt −∆u = 0, in Ω × (0,T),
u(x, 0) = 0, ut(x, 0) = 0, in Ω,

u = f (t) , on ∂Ω1 × (0, t1],
∂nu = −∂tu, on ∂Ω1 × (t1,T),
∂nu = −∂tu, on ∂Ω2 × (0,T),
∂nu = 0, on ∂Ω3 × (0,T),

(50)

where f(t) is initialized plane wave,

f(t) = sinωt , 0 ≤ t ≤ t1 :=
2π
ω
. (51)

∂Ω1 - backscattering boundary, ∂Ω2 - transmitted boundary,
∂Ω3 = ∂Ω \ ∂Ω1 ∪ ∂Ω2.
[BSA]L. Beilina, K. Samuelsson and K. Åhlander, Efficiency of a hybrid method for the wave equation. In International
Conference on Finite Element Methods, Gakuto International Series Mathematical Sciences and Applications,
Gakkotosho CO., LTD, 2001.
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Boundary conditions and the choice of the s−interval

To solve uniquely the equations (34) on every pseudo-frequency interval
it is necessary to know the function u (x, t) := g (x, t) at the entire
boundary Γ. However, our backscattering data are given only on the part
Γ1 of the domain ΩFEM . Our observations provide a numerical justification
for assigning the following boundary condition at Γ:

w (x, s) |Γ=
{

wT (x, s) , x ∈ Γ1,

wunif (x, s) , x ∈ Γ�Γ1.
(52)

Here wT (x, s) is the Laplace transform (78) of the total field uT (x, t), and
wunif (x, s) is the the Laplace transform of the solution of (50) for the
uniform medium with εr(x) = 1.
We take the following s− interval

s ∈ [8, 10] , h = 0.05, (53)

where h = sn−1 − sn is step in pseudo-frequency.
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Object names

Object number Name of the object

1 a piece of oak
2 a piece of pine
3 a metallic sphere
4 a metallic cylinder
5 blind target
6 blind target
7 blind target
8 doll, air inside, blind target
9 doll, metal inside, blind target
10 doll, sand inside, blind target
11 two metallic blind targets

Table: Object names.
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Backscattered experimental data, objects 1, 2

a) object 1 b) object 2
a piece of oak a piece of pine

Figure: Test 1. Backscattered experimental data ψ(x, s), x ∈ Γ1 immersed into data ψ(x, s), x ∈ Γ�Γ1 computed with

εr (x) = 1 in ΩFEM at pseudo-frequency s = 9.2.
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Backscattered experimental data

a) object 4 b) object 5 c) object 8
a metallic cylinder blind target blind target

Figure: Test 1. Backscattered experimental data ψ(x, s), x ∈ Γ1 immersed into data ψ(x, s), x ∈ Γ�Γ1 computed with

εr (x) = 1 in ΩFEM at pseudo-frequency s = 9.2.

www.math.chalmers.se/∼larisa Lecture 6



Data pre-processing

Two main steps are:

Data propagation: we used the time-reversal method to propagate
the measured scattered waves from the measurement plane to the
plane which was at only about 4 cm from the targets.

Data calibration: to scale the measured data to the same scaling as
in our simulations. This was done by using calibrating objects. We
calibrated the non-metallic and metallic targets differently. We
assumed that we know object1 (non-metallic) and object4 (metallic).
We simulated the data for these two targets. Then we multiplied our
measured data by the ratio between the simulated and measured
data of our calibrating objects.

Nguyen Trung Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Reconstruction of the refractive index from experimental
backscattering data using a globally convergent inverse method, SIAM J. Scientific Computing, accepted for publication;
preprint: arXiv :1306.3150 [math-ph], 2013.
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Results of experiments of the first stage

Target number 1 2 5 8 10 Average error
blind/non-blind (yes/no) no no yes yes yes
Measured n, error 2.11, 19% 1.84, 18% 2.14, 28% 1.89, 30% 2.1, 26% 24%
ncomp of Test 1, error 1.92, 10% 1.8, 2% 1.83, 17% 1.86, 2% 1.92, 9% 8%
ncomp of Test 2, error 2.07, 2% 2.01, 10% 2.21, 3% 1.83, 3% 2.2, 5% 4.6%
ncomp of Test 3, error 2.017, 5% 2.013, 9% 2.03, 5% 1.97, 4% 2.02, 4% 5%

Table: Computed ncomp and directly measured refractive indices of dielectric targets together with both

measurement and computational errors as well as the average error. Note that the average computing errors are at least

three times less than the average error of direct measurements.

Target number 3 4 6 7 9 11
blind/non-blind (yes/no) no no yes yes yes yes
ε

comp
r of Test 1 14.4 15.0 15 13.6 13.6 13.1
ε

comp
r of Test 2 15 15 15 14.1 14.1 15
ε

comp
r of Test 3 15 15 15 15 14 14.06

Table: Computed appearing dielectric constants εcomp
r of metallic targets number 3,4,6,7,11 as well as of the target

number 9 which is a metal covered by a dielectric.
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Reconstructed results of wooden doll and metallic block
inside

a) estimated xy sizes b) front view

c) 3D view d) side view

Figure: Reconstructed “apparent” ε(x) ≈ 13.56 on the mesh with the
mesh size h=0.02
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Second stage: adaptive finite element method

We use the following model problem for the electric field E with the
stabilizing divergence condition with s ≥ 1 :

εr
∂2E
∂t2

+ ∇ × (∇ × E) − s∇(∇ · (εrE)) = 0, in ΩT , (54)

E(x, 0) = 0, Et(x, 0) = 0 in Ω. (55)

We impose the following boundary conditions

E (x, t) = (0, f(t), 0) on ∂2Ω × (0, t1] , (56)

∂nE(x, t) = −∂tE(x, t) on ∂1Ω × (t1,T) , (57)

∂nE(x, t) = −∂tE(x, t) on ∂2ΩT , (58)

∂nE(x, t) = 0 on ∂3ΩT , (59)

where ∂n is the normal derivative.
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The model problem

Using the transformation ∇ × (∇ × E) = ∇(∇ · E) − ∇ · (∇E), the model
problem (54), (55), (56) – (59) can be rewritten as

εr
∂2E
∂t2

+ ∇(∇ · E) − ∇ · (∇E) − s∇(∇ · (εrE)) = 0, in ΩT , (60)

E(x, 0) = 0, Et(x, 0) = 0 in Ω, (61)

with boundary conditions

E (x, t) = (0, f (t) , 0) on ∂1Ω × (0, t1] , (62)

∂nE(x, t) = −∂tE(x, t) on ∂1Ω × (t1,T) , (63)

∂nE(x, t) = −∂tE(x, t) on ∂2ΩT , (64)

∂nE(x, t) = 0 on ∂3ΩT . (65)

www.math.chalmers.se/∼larisa Lecture 6



Tikhonov functional and optimality conditions

Our goal is to find εr by minimizing the Tikhonov functional:

F(εr) = F(E, εr) :=
1
2

∫

ST

(E − g̃)2zδ(t)dxdt +
1
2
γ

∫

G
(εr − εr glob)

2 dx,

(66)
where γ > 0 is the regularization parameter, and εr ,glob (x) is the
computed coefficient via the globally convergent method.
Minimization is performed via Lagrangian
L(E, λ, εr , ) = F(E, εr)+

∫
ΩT
λ(εr

∂2E
∂t2 +∇(∇·E)−∇·(∇E)−s∇(∇·(εr E))dxdt .

Then we search for a stationary point w ∈ U1 such that

L ′(w) (w) = 0, ∀w ∈ U1, (67)

U1 = H1
E (ΩT ) × H1

λ (ΩT ) × B (Ω) ,

where B (Ω) is the space of functions bounded on Ω with the norm
‖f‖B(Ω) = supΩ |f | . To find the Fréchet derivative L ′(w), we consider
L (w + w) − L (w) , ∀w ∈ U1 and single out the linear, with respect to w,
part to get for x ∈ Ω

L ′(w) (x) = γ (εr − εr ,glob) (x)−
∫ T

0

∂λ

∂t
∂E
∂t

(x, t) dt+s
∫ T

0
(∇·E)(∇·λ)(x, t) dt .

(68)
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The adjoint problem

The adjoint problem is:

εr
∂2λ

∂t2
+ ∇(∇ · λ) − ∇ · (∇λ) − sεr∇(∇ · λ) = 0, in ΩT ,

λ(x,T) = 0, λt(x,T) = 0 in ΩT ,

∂nλ(x, t) = zδ (t) (g̃ − E) (x, t) on ST .

(69)

Here, zδ(t) is used to ensure the compatibility conditions at QT ∩ {t = T }
for the adjoint problem and δ > 0 is a small number.
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The finite element discretization

Consider a partition Kh = {K } of ΩFEM which consists of tetrahedra with a
mesh function h defined as h|K = hK — the local diameter of the element
K . Let Jτ = {J} be a partition of the time interval (0,T) into subintervals
J = (tk−1, tk ] of uniform length τ = tk − tk−1. We also assume the minimal
angle condition on the Kh .
We define the finite element spaces Vh ⊂ L2 (ΩFEM), WE

h ⊂ H1
E (ΩFEMT )

and Wλ
h ⊂ H1

λ
(ΩFEMT ), ΩFEMT = ΩFEM × (0,T), such that

WE
h := {w ∈ H1

E : w |K×J ∈ P1(K) × P1(J),∀K ∈ Kh ,∀J ∈ Jτ},

where P1(K) and P1(J) denote the set of linear functions on K and J,
respectively. We also introduce the finite element test space Wλ

h defined
by

Wλ
h := {w ∈ H1

λ : w |K×J ∈ P1(K) × P1(J),∀K ∈ Kh ,∀J ∈ Jτ}.
Hence, the finite element spaces WE

h and Wλ
h consist of continuous

piecewise linear functions in space and time. To approximate the function
εr(x), we use the space of piecewise constant functions Vh ⊂ L2 (ΩFEM),

Vh := {u ∈ L2(ΩFEM) : u|K ∈ P0(K),∀K ∈ Kh}, (70)

where P0(K) is the set of piecewise constant functions on K .
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We also compute

εr (x) =

{
εr (x) , x ∈ ΩFEM ,

1, x ∈ ΩFDM .
(71)

Next, we set Uh = WE
h ×Wλ

h × Vh . Obviously dimUh < ∞ and Uh ⊂ U1 as
a set. Because of this, we consider Uh as a discrete analogue of the
space U1. We introduce the same norm in Uh as the one in
U0, ‖·‖Uh

:= ‖·‖U0 , with

U0 = L2 (GT ) × L2 (GT ) × L2 (Ω) .

The finite element method for solving equation (67) now reads: Find
uh ∈ Uh , such that

L ′(uh)(ū) = 0, ∀ū ∈ Uh . (72)
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General framework for a posteriori error estimation for
CIPs

We present a posteriori error estimate for three kinds of error:

For the error |L(u) − L(uh)| in the Lagrangian with
u = (E, λ, εr), uh = (Eh , λh , εh) [BJ1, B, BJ2].

For the error |F(εr) − F(εh)| in the Tikhonov functional [BK].

For the error |εr − εh | in the regularized solution of this functional εr

[BK].

To achieve the first and the second goals, we note that

L(u) − L(uh) = L ′(uh)(u − uh) + R(u, uh),

F(εr) − F(εh) = F ′(εh)(εr − εh) + R(εr , εh),
(73)

where R(u, uh),R(εr , εh) are the second order remainders terms. We
assume that εh is located in the small neighborhood of the regularized
solution εr . Thus, the terms R(u, uh),R(εr , εh) are small and we can
neglect them.

[BJ1] L. Beilina and C. Johnson, A hybrid FEM/FDM method for an inverse scattering problem. In Numerical Mathematics
and Advanced Applications, ENUMATH 2001, Springer-Verlag, Berlin, 2001.
[B] Beilina, Adaptive hybrid FEM/FDM methods for inverse scattering problems, Inverse problems and information
technologies, 1 (3), 73-116, 2002
[BJ2] L. Beilina and C. Johnson, A posteriori error estimation in computational inverse scattering, Mathematical Models in
Applied Sciences, 1, 23-35, 2005.
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We now use the Galerkin orthogonality principle

L ′(uh)(ū) = 0 ∀ū ∈ Uh ,

F ′(εh)(b) = 0 ∀b ∈ Vh ,
(74)

together with the splitting

u − uh = (u − uI
h) + (uI

h − uh),

εr − εh = (εr − εI
h) + (εI

h − εh),
(75)

where uI
h ∈ Uh is the interpolant of u, and εI

h ∈ Vh is the interpolant of εr ,
and get the following error representation:

L(u) − L(uh) ≈ L ′(uh)(u − uI
h),

F(εr) − F(εh) ≈ F ′(εh)(εr − εI
h).

(76)

In a posteriori error estimate (76)

Terms L ′(uh) and F ′(εh) represents residuals.

Terms u − uI
h and εr − εI

h are weights.
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Interpolation property and estimation of weights

Let M be a subspace of the space V . Let Ph : V → M for ∀M ⊂ V , be the
operator of the orthogonal projection of V on M. Let the function
f ∈ H1 (Ω) ∩ C (Ω) and ∂xi fxi ∈ L∞ (Ω) . We define by f I

k the standard
interpolant [EEJ, JS] on triangles/tetrahedra of the function f ∈ H. Then
by one of properties of the orthogonal projection

‖f − Ph f‖L2(Ω) ≤
∥∥∥f − f I

k

∥∥∥
L2(Ω)

. (77)

It follows from [EEJ] that

‖f − Ph f‖L2(Ω) ≤ CI ‖h ∇f‖L2(Ω) ,∀f ∈ V . (78)

where CI = CI (Ω) is positive constant depending only on the domain Ω
and the mesh function h = h(x) is a piecewise-constant function such
that

h(x) = hK ∀K ∈ T ,

where hK is the diameter of K which we define as the longest side of K .
In addition, we can estimate [JS]

|∇f | ≤
|[fh ]|
hK

.

[EEJ] K. Eriksson, D. Estep and C. Johnson, Calculus in Several Dimensions, Springer, Berlin, 2004.
[JS] C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error
estimation, Comm. Pure Appl. Math., 48, 199–234, 1995.www.math.chalmers.se/∼larisa Lecture 6



A posteriori error estimate in the reconstructed coefficient

To derive the error εr − εh in the regularized solution εr we use the
convexity property of the Tikhonov functional together with the
interpolation property (78).
Theorem [BKBook] Let zh ∈ Vh be a finite element approximation of the
regularized solution zα ∈ H1(Ω) on the finite element mesh T with the
mesh function h. Then there exists a constant D such that∥∥∥F ′ (z1) − F ′ (z2)

∥∥∥ ≤ D ‖z1 − z2‖ ,∀z1, z2 ∈ H such that the following a
posteriori error estimate for the regularized solution zα holds

||zh − zα||L2(Ω) ≤
D
α

CI ||hzh ||L2(Ω).
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Mesh refinement recommendation

From Theorem 5.1 and Remark 5.1 of [LB] it follows that the finite
element mesh should be locally refined in such subdomain of ΩFEM

where the maximum norm of the Fréchet derivative of the objective
functional is large. We always interpolate the initial approximation εr ,glob

from the previous mesh to the new mesh. Denote by

L ′,mh (x) = −
∫

0

T ∂λm
h

∂t

∂Em
h

∂t
dt + s

∫ T

0
∇ · Em

h ∇ · λ
m
h dt + γ(ε̄h

m − ε̄r ,glob).

(79)

[LB] L. Beilina, Adaptive Finite Element Method for a coefficient inverse problem for the Maxwell’s system, Applicable
Analysis, 90, 1461-1479, 2011.
[BKBook] L. Beilina and M.V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems,
Springer, New York, 2012.
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Adaptive algorithm
Step 0. Choose an initial mesh Kh in Ω and an initial time partition J0 of the time interval (0,T) . Start from the initial

guess ε0
h = εr ,glob , we compute the approximations εm

h via the following steps:

Step 1. Compute the solutions Eh
(
x, t , εm

h

)
and λh

(
x, t , εm

h

)
of the state problem and the adjoint problem on Kh and Jk ,

and compute the Frëchet derivative L ′,mh via (79).

Step 2. Update the coefficient on Kh and Jk using the conjugate gradient method:

εm+1
h := εm

h + αdm(x),

where α > 0 is a step-size in the conjugate gradient method and

dm(x) = −L ′,mh (x) + βmdm−1(x),

with

βm =
||L ′,mh ||2

||L ′,m−1
h ||2

,

where d0(x) = −L ′,0h (x).

Step 3. Stop updating the coefficient and set εh := εm+1
h , M := m + 1, if either ||L ′,mh ||L2(Ω) ≤ θ or norms ||εm

h ||L2(Ω) are
stabilized. Here θ is a tolerance number. Otherwise, set m := m + 1 and go to step 1.

Step 4. Compute L ′,Mh via (79). Refine the mesh at all grid points x where

|L ′,Mh (x) | ≥ β1 max
Ω
|L ′,Mh (x) |. (80)

Here the tolerance number β1 ∈ (0, 1) is chosen by the user.

Step 5. Construct a new mesh Kh and a new time partition Jk such that the CFL condition is satisfied. Return to step 1 at
m = 1 and perform all above steps on the new mesh. Stop mesh refinements if norms defined in step 3 either
increase or stabilize, compared with the previous mesh.
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Names of targets

Target number Specification of the target

1 a piece of oak, rectangular prism
2 a piece of pine
3 a metallic sphere
4 a metallic cylinder
5 a piece of oak
6 a metallic rectangular prism
7 a wooden doll, air inside, heterogeneous target
8 a wooden doll, metal inside, heterogeneous target
9 a wooden doll, sand inside, heterogeneous target
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Target number 1 2 5 7 9 Average error
Measured n, error 2.11, 19% 1.84, 18% 2.14, 28% 1.89, 30% 2.1, 26% 24%
n in glob.conv, error 1.92, 9% 1.8, 2% 1.83, 15% 1.86, 2% 1.92, 9% 8%
n, coarse mesh, error 1.94, 8% 1.82, 1% 1.84, 14% 1.88, 0.5% 1.93, 8% 6%
n, 1 time ref. mesh, error 1.94, 8% 1.82, 1% 1.85, 14 % 1.89, 0% 1.93, 8% 6%
n, 2 times ref.mesh, error 1.84, 0% 1.9, 0.5% 1.96, 7% 2%
n, 3 times ref.mesh, error 1.89,0 % 0%

Table: Computed n(target) and directly measured refractive indices of dielectric targets together with both

measurement and computational errors as well as the average error.

Target number 3 4 6 8
εr (target) of glob.conv. 14.4 15.0 25 13.6
εr (target) coarse mesh 14.4 17.0 25 13.6
εr (target) 1 time ref.mesh 14.5 17.0 25 13.6
εr (target) 2 times ref.mesh 14.6 17.0 25 13.7
εr (target) 3 times ref.mesh 14.6 17.0 14.0
εr (target) 4 times ref.mesh 17.0

Table: Computed appearing dielectric constants εr (target) of metallic targets with numbers 3,4,6 as well as of target

number 8 which is a metal covered by a dielectric.
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Initial guesses obtained on the first stage

a) target 1 b) target 3 c) target 4

d) target 7 e) target 8 f) target 9

Figure: Reconstructions of some targets obtained on the first stage of our
two-stage numerical procedure.
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Reconstruction of a piece of oak

(a) (b) (c) (d)

Figure: (a) xy-projection, (b) xz-projection, and (c) yz-projection of the
once refined (optimal) mesh; d) Computed image of target number 1 (a
piece of oak) on that mesh. Thin lines indicate correct shapes.
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Reconstruction of a piece of oak

(a) Perspective view (b) Front view (c) Side view

(d) Zoom, perspective (e) Zoom, front (f) Zoom, side

Figure: Three views and zooms of the reconstruction of target number 1
(a piece of oak) (figures a)-f)) on the once refined mesh.
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Reconstruction of a metallic sphere

(a) (b) (c) (d)

Figure: (a) xy-projection, (b) xz-projection, and (c) yz-projection of the
three times refined (optimal) mesh; d) Computed image of target number
3 (a metallic sphere) on that mesh. Thin lines indicate correct shape.
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Reconstruction of a metallic sphere

(g) Perspective view (h) Front view (i) Side view

(j) Zoom, perspective (k) Zoom, front (l) Zoom, side

Figure: Three views and zooms of the reconstruction of target number 3
(figures g)-l), a metallic sphere) on three times refined mesh.
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Reconstruction of a wooden doll, air inside

(a) (b) (c) (d)

Figure: (a) xy-projection, (b) xz-projection, and (c) yz-projection of the
three times refined (optimal) mesh; d) Computed image of target number
7 (doll, air inside) on that mesh. Thin lines indicate correct shape.
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Reconstruction of a wooden doll, air inside

(a) Perspective view (b) Front view (c) Side view

(d) Zoom, perspective (e) Zoom, front (f) Zoom, side

Figure: Three views and zooms of targets number 7 (figures a)-f), doll, air
inside) on three times refined mesh. Thin lines indicate correct shape.
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Reconstruction of a wooden doll, metal inside

(a) (b) (c) (d)

Figure: (a) xy-projection, (b) xz-projection, and (c) yz-projection of the
three times refined (optimal) mesh and the reconstruction (d) of target
number 8 (doll, metal inside) on the optimal mesh.
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Reconstruction of a wooden doll, metal inside

(g) Perspective view (h) Front view (i) Side view

(j) Zoom, perspective (k) Zoom, front (l) Zoom, side

Figure: Three views and zooms of targets number 8 (figures g)-l), doll,
metal inside) on three times refined mesh.
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Reconstruction of a wooden doll, sand inside

(a) (b) (c) (d)

Figure: (a) xy-projection, (b) xz-projection, and (c) yz-projection of the
twice refined (optimal) mesh and the reconstruction (d) of target number
9 (doll, sand inside) on the three times refined mesh.
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Reconstruction of a wooden doll, sand inside

(a) Perspective view (b) Front view (c) Side view

(d) Zoom, perspective (e) Zoom, front (f) Zoom, side

Figure: Three views and zooms of target number 9 (doll, sand inside) on
twice refined mesh. Thin lines indicate correct shape.
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Dynamics of reconstruction of a metallic cylinder on a
locally refined meshes

a) once refined b) zoom

c) twice refined d) zoom

Figure: Computed images of target number 4 (a metallic cylinder).
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Dynamics of reconstruction of a metallic cylinder on a
locally refined meshes

a) three times refined b) zoom

c) four times refined d) zoom

Figure: Computed images of target number 4 (a metallic cylinder).
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