Machine learning algorithms for inverse
problems
Regularized and non-regularized neural networks
Lecture 9

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Artificial neural networks

b ¥ outputsignals

oUtpUt newnon s

hidden newrons

input signals

] X3 X3 x4

Flg Ure: Example of neural network which contains two interconnected layers (M. Kurbat, An Introduction to machine

learning, Springer, 2017.)

@ In an artificial neural network simple units - neurons- are
interconnected by weighted links into structures of high
performance.

@ Multilayer perceptrons and radial basis function networks will
be discussed.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Neurons

Figure: Structure of a typical neuron (Wikipedia).

@ A neuron, also known as a nerve cell, is an electrically excitable cell
that receives, processes, and transmits information through
electrical and chemical signals. These signals between neurons
occur via specialized connections called synapses.

@ An artificial neuron is a mathematical function which presents a
model of biological neurons, resulting in a neural network.

www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Artificial neurons

@ Artificial neurons are elementary units in an artificial neural network.
The artificial neuron receives one or more inputs and sums them to
produce an output (or activation, representing a neuron’s action
potential which is transmitted along its axon).

@ Each input is separately weighted by weights wy;, and the sum
2.k WkiXk is passed as an argument X = >, wg;xx through a
non-linear function f(X) which is called the activation function or
transfer function.

@ Assume that attributes x, are normalized and belong to the interval
[-1,1].

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Artificial neurons

Biological Neuron versus Artificial Neural Network

impuises carried)
toward cell body W

h
T4 / branches
Yl r

dandritas of axon

—— | -
X = axon Inputs - -
nucleus— == g L axon -"'/':Zrmuna!s W,

Qutput

=]

0 N impulses cartied L 2 i Sum Activation

away from cell body b~ /,4’ W, Function
cell body _ £

i
o,
oA

Figure: Perceptron neural network consisting of one neuron (source: DataCamp(datacamp.com)).

Each input is separately weighted by weights wy;, and the sum 3, wgjxk
is passed as an argument > = 3, wXx through a non-linear function
f(X) which is called the activation function or transfer function.

www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Artificial neurons: transfer functions

Figure: Sigmoid and Gaussian (for b = 1,0 = 3 in (2)) transfer functions.

@ Different transfer (or activation) functions f(X) with X = Y wikjxk
are used. We will study sigmoid and gaussian functions.

@ Sigmoid function:

f(r) = H% (1)
@ Gaussian function centered at b for a given variance o
- (E-b)?
f(X) = P)

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Forward propagation

Example of neural network called multilayer perceptron (one hidden layer of neurons and one output layer). (M. Kurbat, An

Introduction to machine learning, Springer, 2017.)

input signale

@ Neurons in adjacent layer are fully interconnected.

@ Forward propagation is implemented as

1 2
yi = (Tl x) = f(Ze) H(Zewd X)), 3)
N’
Xj
where ‘”15'1) and wfq?) are weights of the output and the hidden

neurons, respectively, f is the transfer function.

www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

[*) Using inputs x1, xo compute inputs of hidden-layer neurons:

) =084 (~1.0) + 0105 = -0.75, {2 = 0.8+ 0.1+ 0.140.7 = 0.1
@ Compute in our case):
hy = L hy =
*] Compute input of output-layer neurons
1) = 032+0.9+054+05 = 056, x") = 0.32 ¢ (-03) + 054 + (~0.1) = ~0.15.
*] Compute outputs of output-layer neurons using in our case):

= s Y2 =

/www.math.chalmers.se, risa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Backpropagation of error through the network

Our goal is to find optimal weights w(and a)) in forward propagation

yi = (5ol x) = (Zwl) (Tl x)). (4)
‘.\,_../
Xj

To do this we introduce functional
2 1 m
Pl o) = ”t' k=3 -Z‘(ti - i) (5)
i=

Here, t = t(x) is the target vector which depends on the concrete
example x. In the domain with m classes the target vector
t = (t(x), ..., tm(x)) consists of m binary numbers such that

‘) 1, example x belongs to i-th class,
ti(x) = { 0, otherwise. (6)

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Examples of target vector and mean square error

Let there exist three different classes ¢y, ¢, ¢z and x belongs to the class
C2. Then the target vector is t = (¢, t2, t3) = (0,1, 0).
The mean square error is defined as

m

1 o 1 >
E=—llti—yil? = — > (t - (7

i=1

Let us assume that we have two different networks to choose from, every
network with 3 output neurons corresponding to classes ¢y, c, c3. Let

t = (t,t,t3) = (0,1,0) and for the example x the first network output is
y1 = (0.5,0.2,0.9) and the second network output is y» = (0.6,0.6,0.7).

3

Ey = % Dti-yi)? = %((0 -05)2 4+ (1-02)% + (0-0.9)%)) = 057,
i=1
3

E, = % Dti-yi)? = %((0 -06)% + (1-0.6)2 + (0-0.7)%)) = 0.34.

Since E; < E; then the second network is less wrong on the example x
than the first network.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Backpropagation of error through the network

To find minimum of the functional (29) F(w) with w = (w](,)"”/(q)) recall it
below:

Flw) = Fw)).) = ||t, yilP =

i (8)

I\) |

we need to solve the minimization problem
mhin F(w) 9)
and find a stationary point of (8) with respect to w such that
F(w)(@) =0, (10)

where F’(w) is the Fréchet derivative such that

F(0)(@) = Fl (@)(@}) + Fg (@)@) (1)

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Backpropagation of error through the network

Recall now that y; in the functional (8) is defined as

=" %) =1 0V 1| w0 xc)). (12)
J J k

—_———
X

Thus, if the transfer function f in (12) is sigmoid, then
, _(1 1
Fro (@)@ = (6= y) ¥} o) (@;")
=(t-y) x- f(zw“)x,) Z (13)

= (t—y) - x-yi(1 - y) @),

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Backpropagation of error through the network

Here we have used that for the sigmoid function f'(¥X) = f(X)(1 - f(X))

since
, B 1 " 14+e -1
f(z)_(1+e-z) (14 e %)
(1+e*)-1 (1+e*) 1 (14)

= K(X)(1 - (T)).

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Backpropagation of error through the network

Again, since

yi =13 w%) = 13 0 H(w0 xe)). (1)
J J k

D
Xj

for the sigmoid transfer function f we also get

, —(2 ’ ~(2
Flo(@)(@) = (6= ¥ o) (@)
i
(1) ~(2) (16)
=|h(1-h)- ZM‘U = yi)(ti = yi)w; | - X | (@)
N—— 7 —

() (i)
since for the sigmoid function f we have:
f'(hy) = f(h)(1 = (). £ (vi) = f(yi))(1 = f(yi)) (prove this). Hint:
hy = f(Xk w;(q?)xk),}’i = (% w,(,-ﬂxj)-

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Backpropagation of error through the network

Usually, F'm(w)/x,, (w)/xk in (13), (16) are called responsibilities of

output Iayer neurons and hidden-layer neurons 651),652), respectively, and
they are defined as

5,(1) = (= yi)yi(1 =),
s® = h(1-hy) Z(s(‘ (17)

By knowing responsibilities (17), weights can be updates using usual
gradient update formulas:

1 1
wj(,)—w()+n6()
@ _ (@ @)y, (18)
Wy’ = Wy +n6
Here, 7 is the step size in the gradient update of weights and we use
value of learning rate for it such that € (0, 1).

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Algorithm A1: backpropagation of erro

network with one hidden layer

o
(*]
o
(*]

Step 0. Initialize weights.
Step 1. Take example x in the input layer and perform forward propagation.
Step 2. Let y = (¥1..... ym) be the output layer and let t = (t1, ..., tm) be the target vector.

Step 3. For every output neuron y;, i = 1,..., m calculate its responsibility 6[1 as
s = -y -y 19
= (t = yi)yi(1 = yi)- (19)

for the network’s error as

@ Step 4. For every hidden neuron compute responsibility 6}(.2)

6@ = (1 -ty 36wy, (20)
i

(1)

where 6; " are computed using (30).

@ step 5. Update weights with learning rate 5 € (0,1) as

(21)

Lecture 9

http://www.math.chalmers.se/~larisa/

Algorithm A2: backpropagation of error through the

network with [hidden layers

o
(*]
(*]
o

Step 0. Initialize weights and take | = 1.
Step 1. Take example x!'in the input layer and perform forward propagation.
Step 2. Lety' = (y1,.... yly) be the output layer and let t/ = (1!, ..., t,) be the target vector.

Step 3. For every output neuron yl.’,i: 1, ..., m calculate its responsibility (5f1>)’ as
(DN — 4 _ ! |
(6,) = (t,' 7y[)yy(1 —y,-), (22)

Step 4. For every hidden neuron compute responsibility (61(.2))’ for the network’s error as
S\ pleq _ply. NONPON
¢ = hj(1 -) Z(o,.) (), @3)

where (b‘lm)’ are computed using (30).

Step 5. Update weights with learning rate n‘ €(0,1)as

(m](’_1))/+1 — (m](’_1))/+”l(5’(1))lxj_/y e
(wf;))m _ (wqu))l +'7’(5,(2))1X/(4

Step 6. If the mean square error less than tolerance, or ”(wl(/_‘))lﬁ - (w}:))lll < € and H(mfj))/*‘ - (w)(qz))lll <é
stop, otherwise go to the next layer | =1+ 1, assign x! = xI*1 and return to the step 1. Here, €1, e are
tolerances chosen by the user.

risa Beilina, http://www.math.chalmer: arisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

@ Assume that after forward propagation with sigmoid transfer function we have
hy = ($?) = 0.12, hp = 1(x{?) = 05,
(

yi = (M) = 0.65, yo = 1(x{V) = 0.50.

@ Let the target vector be t(x) = (1,0) for the output vector y = (0.65,0.59).

[*] Compute responsibility for the output neurons:

o$" = g1 (1= y1)(t - y1) = 0.65(1 - 0.65)(1 - 0.65) = 0.0796,

o) = o x (1= ya)(ta ~ y2) = 0.59(1 - 0.59)(0 - 0.59) = ~0.1427

risa/ Lecture 9

/www.math.chalmers.se,

http://www.math.chalmers.se/~larisa/

[*] Compute the weighted sum for every hidden neuron

51 =MD 4 ow() — 0.0796 + 1+ (-0.1427) » (1) = 0.2223,

5o = ol ol wd) — 0.0796 « 1+ (-0.1427) « 1 = —0.0831.
o Compute responsibility for the hidden neurons for above computed 61, 52:

o = hy (1= hy)oy = -00235, o) = hy(1 — hp)s, = 0.0158.

/www.math.chalmers.se, risa/ Lecture 9

http://www.math.chalmers.se/~larisa/

(M

[*) Compute new weights wj;

@14

@Way

(1)

Wiy = Wiy T N0,

(1)

M _
M _

for output layer with learning rate n = 0.1 as:

WD 4508V hy = 14 0.1+ 0.0796 + 0.12 = 1.0006,

o) 4508 h, = 14 0.1 £ 0.0796 + 0.5 = 1.00398,

O 4ol hy = —1 4 0.1« (-0.1427) £ 0.12 = ~1.0017,

o) = o) + 50 hy = 1401 ¢ (<0.1427) + 0.5 = 0.9926.

o Compute new weights w()

(2) _

Wiy =
2) _

“’;1
(2) _

Wi =

(2) _

Wy =

for hidden layer with learning rate = 0.1 as:

= o) 4 nol®x = —14 0.1 4 (-0.0235) « 1

0@ 4+ nolPxo =14 0.1 (-0.0235) « 1 = 1.0024,

= —1.0024,

@ o = 140100158+ 1 = 1.0016,

(’+nzr(Vxp = 1+ 0.1+0.0158 (—1) = 0.9984.

[*] Using computed weights for hidden and output layers, one can test a neural network for a new example.

/www.math.chalmer:

e/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Perceptron non-regularized neural network

@ Step 0. Initialize weights w; to small random numbers.

@ Step 1. If X7, wix; > 0 we will say that the example is positive and
h(x) =1.

@ Step 2. If 37, wix; < 0 we will say the the example is negative and
h(x) = 0.

@ Step 3. Update every weight w; using algorithm of backpropagation
of error through the network (perform steps 3-5 of A1 or A2)

@ Step 4. If ¢(x) = h(x) for all learning examples - stop. Otherwise
return to step 1.

Here, n € (0, 1] is called the learning rate.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Non-regularized and regularized neural network

Our goal is to find optimal weights w(andw in forward propagation
yi = H(Ejf %) = H(Zf) (i x). (25)
‘.\,_../

Xj

To do this we introduce functional
2 1
Flof, @) = Jlit - yiP = Z(ti -y (26)
=

Here, t = t(x) is the target vector which depends on the concrete
example x. In the domain with m classes the target vector
t = (t(x), ..., tm(x)) consists of m binary numbers such that

H(x) = 1, example x belongs to i-th class,
2770 0, otherwise.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

@ Non-regularized neural network

]
Fw)=35lti-y w)|? =

i . (28)

N |

@ Regularized neural network
1 1 1& 1 o
Fw) = gl = y(w)I* + 5wl = 5) (8 = yi(w)* + 57/21 w?
(29)

Here, y is reg.parameter, [w|? = w'w = w2 + ... + w2, Mis
number of weights.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 9

http://www.math.chalmers.se/~larisa/

Algorithm: backpropagation of error t

regularized network with one hidden layer

o
(*]
o
(*]

Step 0. Initialize weights.
Step 1. Take example x in the input layer and perform forward propagation.
Step 2. Let y = (¥1..... ym) be the output layer and let t = (t1, ..., tm) be the target vector.

Step 3. For every output neuron y;, i = 1,..., m calculate its responsibility 6[1 as
sV = (b -yyi(1 -y 30
= (t = yi)yi(1 = yi)- (30)

for the network’s error as

@ Step 4. For every hidden neuron compute responsibility 6}(.2)

6@ = (1 -ty 36wy, (31)
i

(1)

where 6; " are computed using (30).

@ step 5. Update weights with learning rate 5 € (0, 1) and regularization parameters y1,y2 € (0,1) as

W’ = w; +”(651))X1+71w1(i1)‘
(32)

wf{j?) = “’I(q?) + W(&jgz))xk + ygwi}x

Lecture 9

http://www.math.chalmers.se/~larisa/

