Machine learning algorithms for inverse problems

Regularized and non-regularized neural networks
Lecture 9

Artificial neural networks

Figure: Example of neural network which contains two interconnected layers (M. Kurbat, An Introduction to machine learning, Springer, 2017.)

- In an artificial neural network simple units - neurons- are interconnected by weighted links into structures of high performance.
- Multilayer perceptrons and radial basis function networks will be discussed.

Neurons

Figure: structure of a typical neuron (Wikipedia).

- A neuron, also known as a nerve cell, is an electrically excitable cell that receives, processes, and transmits information through electrical and chemical signals. These signals between neurons occur via specialized connections called synapses.
- An artificial neuron is a mathematical function which presents a model of biological neurons, resulting in a neural network.

Artificial neurons

- Artificial neurons are elementary units in an artificial neural network. The artificial neuron receives one or more inputs and sums them to produce an output (or activation, representing a neuron's action potential which is transmitted along its axon).
- Each input is separately weighted by weights $\omega_{k j}$, and the sum $\sum_{k} \omega_{k j} x_{k}$ is passed as an argument $\Sigma=\sum_{k} \omega_{k j} x_{k}$ through a non-linear function $f(\Sigma)$ which is called the activation function or transfer function.
- Assume that attributes x_{k} are normalized and belong to the interval $[-1,1]$.

Artificial neurons

Biological Neuron versus Artificial Neural Network

Figure: Perceptron neural network consisting of one neuron (source: DataCamp(datacamp.com)).

Each input is separately weighted by weights $\omega_{k j}$, and the sum $\sum_{k} \omega_{k j} x_{k}$ is passed as an argument $\Sigma=\sum_{k} \omega_{k j} x_{k}$ through a non-linear function $f(\Sigma)$ which is called the activation function or transfer function.

Artificial neurons: transfer functions

Figure: Sigmoid and Gaussian (for $b=1, \sigma=3$ in (2)) transfer functions.

- Different transfer (or activation) functions $f(\Sigma)$ with $\Sigma=\sum_{k} \omega_{k j} x_{k}$ are used. We will study sigmoid and gaussian functions.
- Sigmoid function:

$$
\begin{equation*}
f(\Sigma)=\frac{1}{1+e^{-\Sigma}} \tag{1}
\end{equation*}
$$

- Gaussian function centered at b for a given variance σ^{2}

$$
\begin{equation*}
f(\Sigma)=\frac{e^{-(\Sigma-b)^{2}}}{2 \sigma^{2}} \tag{2}
\end{equation*}
$$

Forward propagation

Example of neural network called multilayer perceptron (one hidden layer of neurons and one output layer). (M. Kurbat, An Introduction to machine learning, Springer, 2017.)

- Neurons in adjacent layer are fully interconnected.
- Forward propagation is implemented as

$$
\begin{equation*}
y_{i}=f\left(\Sigma_{j} \omega_{j i}^{(1)} x_{j}\right)=f(\Sigma_{j} \omega_{j i}^{(1)} \underbrace{f\left(\Sigma_{k} \omega_{k j}^{(2)} x_{k}\right)}_{x_{j}}), \tag{3}
\end{equation*}
$$

where $\omega_{j i}^{(1)}$ and $\omega_{k j}^{(2)}$ are weights of the output and the hidden neurons, respectively, f is the transfer function.

Example of forward propagation through the network

Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

- Using inputs x_{1}, x_{2} compute inputs of hidden-layer neurons:

$$
x_{1}^{(2)}=0.8 *(-1.0)+0.1 * 0.5=-0.75, x_{2}^{(2)}=0.8 * 0.1+0.1 * 0.7=0.15
$$

- Compute transfer function (sigmoid $f(\Sigma)=\frac{1}{1+e^{-\Sigma}}$ in our case):

$$
h_{1}=f\left(x_{1}^{(2)}\right)=0.32, h_{2}=f\left(x_{2}^{(2)}\right)=0.54
$$

- Compute input of output-layer neurons

$$
x_{1}^{(1)}=0.32 * 0.9+0.54 * 0.5=0.56, x_{2}^{(1)}=0.32 *(-0.3)+0.54 *(-0.1)=-0.15
$$

- Compute outputs of output-layer neurons using transfer function (sigmoid in our case):

$$
y_{1}=f\left(x_{1}^{(1)}\right)=0.66, y_{2}=f\left(x_{2}^{(1)}\right)=0.45
$$

Backpropagation of error through the network

Our goal is to find optimal weights $\omega_{j i}^{(1)}$ and $\omega_{k j}^{(2)}$ in forward propagation

$$
\begin{equation*}
y_{i}=f\left(\sum_{j} \omega_{j i}^{(1)} x_{j}\right)=f(\sum_{j} \omega_{j i}^{(1)} \underbrace{f\left(\sum_{k} \omega_{k j}^{(2)} x_{k}\right)}_{x_{j}}) . \tag{4}
\end{equation*}
$$

To do this we introduce functional

$$
\begin{equation*}
F\left(\omega_{j i}^{(1)}, \omega_{k j}^{(2)}\right)=\frac{1}{2}\left\|t_{i}-y_{i}\right\|^{2}=\frac{1}{2} \sum_{i=1}^{m}\left(t_{i}-y_{i}\right)^{2} . \tag{5}
\end{equation*}
$$

Here, $t=t(x)$ is the target vector which depends on the concrete example x. In the domain with m classes the target vector $t=\left(t_{1}(x), \ldots, t_{m}(x)\right)$ consists of m binary numbers such that

$$
t_{i}(x)= \begin{cases}1, & \text { example } x \text { belongs to } i \text {-th class, } \tag{6}\\ 0, & \text { otherwise }\end{cases}
$$

Examples of target vector and mean square error

Let there exist three different classes c_{1}, c_{2}, c_{3} and x belongs to the class c_{2}. Then the target vector is $t=\left(t_{1}, t_{2}, t_{3}\right)=(0,1,0)$.
The mean square error is defined as

$$
\begin{equation*}
E=\frac{1}{m}\left\|t_{i}-y_{i}\right\|^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(t_{i}-y_{i}\right)^{2} \tag{7}
\end{equation*}
$$

Let us assume that we have two different networks to choose from, every network with 3 output neurons corresponding to classes c_{1}, c_{2}, c_{3}. Let $t=\left(t_{1}, t_{2}, t_{3}\right)=(0,1,0)$ and for the example x the first network output is $y_{1}=(0.5,0.2,0.9)$ and the second network output is $y_{2}=(0.6,0.6,0.7)$.

$$
\begin{aligned}
& \left.E_{1}=\frac{1}{3} \sum_{i=1}^{3}\left(t_{i}-y_{i}\right)^{2}=\frac{1}{3}\left((0-0.5)^{2}+(1-0.2)^{2}+(0-0.9)^{2}\right)\right)=0.57, \\
& \left.E_{2}=\frac{1}{3} \sum_{i=1}^{3}\left(t_{i}-y_{i}\right)^{2}=\frac{1}{3}\left((0-0.6)^{2}+(1-0.6)^{2}+(0-0.7)^{2}\right)\right)=0.34 .
\end{aligned}
$$

Since $E_{2}<E_{1}$ then the second network is less wrong on the example x than the first network.

Backpropagation of error through the network

To find minimum of the functional (29) $F(\omega)$ with $\omega=\left(\omega_{j i}^{(1)}, \omega_{k j}^{(2)}\right)$, recall it below:

$$
\begin{equation*}
F(\omega)=F\left(\omega_{j i}^{(1)}, \omega_{k j}^{(2)}\right)=\frac{1}{2}\left\|t_{i}-y_{i}\right\|^{2}=\frac{1}{2} \sum_{i=1}^{m}\left(t_{i}-y_{i}\right)^{2}, \tag{8}
\end{equation*}
$$

we need to solve the minimization problem

$$
\begin{equation*}
\min _{\omega} F(\omega) \tag{9}
\end{equation*}
$$

and find a stationary point of (8) with respect to ω such that

$$
\begin{equation*}
F^{\prime}(\omega)(\bar{\omega})=0, \tag{10}
\end{equation*}
$$

where $F^{\prime}(\omega)$ is the Fréchet derivative such that

$$
\begin{equation*}
F^{\prime}(\omega)(\bar{\omega})=F_{\omega_{j i}^{(1)}}^{\prime}(\omega)\left(\bar{\omega}_{j i}^{(1)}\right)+F_{\omega_{k j}^{(2)}}^{\prime}(\omega)\left(\bar{\omega}_{k j}^{(2)}\right) . \tag{11}
\end{equation*}
$$

Backpropagation of error through the network

Recall now that y_{i} in the functional (8) is defined as

$$
\begin{equation*}
y_{i}=f\left(\sum_{j} \omega_{j i}^{(1)} x_{j}\right)=f(\sum_{j} \omega_{j i}^{(1)} \underbrace{f\left(\sum_{k} \omega_{k j}^{(2)} x_{k}\right)}_{x_{j}}) \tag{12}
\end{equation*}
$$

Thus, if the transfer function f in (12) is sigmoid, then

$$
\begin{align*}
&{F_{\omega_{i j}^{(1)}}^{\prime}(\omega)\left(\bar{\omega}_{j i}^{(1)}\right)}_{(1)}=\left(t_{i}-y_{i}\right) \cdot y_{i}^{\prime}\left(\omega_{j i}^{(1)}\right)\left(\bar{\omega}_{j i}^{(1)}\right) \\
&=\left(t_{i}-y_{i}\right) \cdot x_{j} \cdot f\left(\sum_{j} \omega_{j i}^{(1)} x_{j}\right)\left(1-f\left(\sum_{j} \omega_{j i}^{(1)} x_{j}\right)\right)\left(\bar{\omega}_{j i}^{(1)}\right) \tag{13}\\
&\left.=\left(t_{i}-y_{i}\right) \cdot x_{j} \cdot y_{i}\left(1-y_{i}\right)\right)\left(\bar{\omega}_{j i}^{(1)}\right),
\end{align*}
$$

Backpropagation of error through the network

Here we have used that for the sigmoid function $f^{\prime}(\Sigma)=f(\Sigma)(1-f(\Sigma))$ since

$$
\begin{align*}
f^{\prime}(\Sigma) & =\left(\frac{1}{1+e^{-\Sigma}}\right)^{\prime}=\frac{1+e^{-\Sigma}-1}{\left(1+e^{-\Sigma}\right)^{2}} \\
& =f(\Sigma)\left[\frac{\left(1+e^{-\Sigma}\right)-1}{1+e^{-\Sigma}}\right]=f(\Sigma)\left[\frac{\left(1+e^{-\Sigma}\right)}{1+e^{-\Sigma}}-\frac{1}{1+e^{-\Sigma}}\right] \tag{14}\\
& =f(\Sigma)(1-f(\Sigma)) .
\end{align*}
$$

Backpropagation of error through the network

Again, since

$$
\begin{equation*}
y_{i}=f\left(\sum_{j} \omega_{j i}^{(1)} x_{j}\right)=f(\sum_{j} \omega_{j i}^{(1)} \underbrace{f\left(\sum_{k} \omega_{k j}^{(2)} x_{k}\right)}_{x_{j}}) \tag{15}
\end{equation*}
$$

for the sigmoid transfer function f we also get

$$
\begin{align*}
F_{\omega_{k j}^{(2)}}^{\prime}(\omega)\left(\bar{\omega}_{k j}^{(2)}\right) & =\left(t_{i}-y_{i}\right) \cdot y_{i}^{\prime}\left(\omega_{k j}^{(2)}\right) \\
& =[\underbrace{h_{j}\left(1-h_{j}\right)}_{f^{\prime}\left(h_{j}\right)} \cdot[\sum_{i}^{(2)} \underbrace{y_{i}\left(1-y_{i}\right)}_{f^{\prime}\left(y_{i}\right)}\left(t_{i}-y_{i}\right) \omega_{j i}^{(1)}] \cdot x_{k}]\left(\bar{\omega}_{k j}^{(2)}\right), \tag{16}
\end{align*}
$$

since for the sigmoid function f we have:
$f^{\prime}\left(h_{j}\right)=f\left(h_{j}\right)\left(1-f\left(h_{j}\right)\right), f^{\prime}\left(y_{i}\right)=f\left(y_{i}\right)\left(1-f\left(y_{i}\right)\right)$ (prove this). Hint:
$h_{j}=f\left(\sum_{k} \omega_{k j}^{(2)} x_{k}\right), y_{i}=f\left(\sum_{j} \omega_{j i}^{(1)} x_{j}\right)$.

Backpropagation of error through the network

 output layer neurons and hidden-layer neurons $\delta_{i}^{(1)}, \delta_{i}^{(2)}$, respectively, and they are defined as

$$
\begin{align*}
\delta_{i}^{(1)} & =\left(t_{i}-y_{i}\right) y_{i}\left(1-y_{i}\right) \\
\delta_{j}^{(2)} & =h_{j}\left(1-h_{j}\right) \cdot \sum_{i} \delta_{i}^{(1)} \omega_{j i}^{(1)} \tag{17}
\end{align*}
$$

By knowing responsibilities (17), weights can be updates using usual gradient update formulas:

$$
\begin{align*}
& \omega_{j i}^{(1)}=\omega_{j i}^{(1)}+\eta \delta_{i}^{(1)} x_{j}, \\
& \omega_{k j}^{(2)}=\omega_{k j}^{(2)}+\eta \delta_{j}^{(2)} x_{k} . \tag{18}
\end{align*}
$$

Here, η is the step size in the gradient update of weights and we use value of learning rate for it such that $\eta \in(0,1)$.

Algorithm A1: backpropagation of error through the network with one hidden layer

- Step 0. Initialize weights.
- Step 1. Take example x in the input layer and perform forward propagation.
- Step 2. Let $y=\left(y_{1}, \ldots, y_{m}\right)$ be the output layer and let $t=\left(t_{1}, \ldots, t_{m}\right)$ be the target vector.
- Step 3. For every output neuron $y_{i}, i=1, \ldots, m$ calculate its responsibility δ_{i}^{1} as

$$
\begin{equation*}
\delta_{i}^{(1)}=\left(t_{i}-y_{i}\right) y_{i}\left(1-y_{i}\right) \tag{19}
\end{equation*}
$$

- Step 4. For every hidden neuron compute responsibility $\delta_{j}^{(2)}$ for the network's error as

$$
\begin{equation*}
\delta_{j}^{(2)}=h_{j}\left(1-h_{j}\right) \cdot \sum_{i} \delta_{i}^{(1)}\left(\omega_{j i}\right)^{1}, \tag{20}
\end{equation*}
$$

where $\delta_{i}^{(1)}$ are computed using (30).

- Step 5. Update weights with learning rate $\eta \in(0,1)$ as

$$
\begin{align*}
& \omega_{j i}^{(1)}=\omega_{j i}^{(1)}+\eta\left(\delta_{i}^{(1)}\right) x_{j}, \\
& \omega_{k j}^{(2)}=\omega_{k j}^{(2)}+\eta\left(\delta_{j}^{(2)}\right) x_{k} . \tag{21}
\end{align*}
$$

Algorithm A2: backpropagation of error through the network with / hidden layers

- Step 0. Initialize weights and take $I=1$.
- Step 1. Take example x^{\prime} in the input layer and perform forward propagation.
- Step 2. Let $y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)$ be the output layer and let $t^{\prime}=\left(t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right)$ be the target vector.
- Step 3. For every output neuron $y_{i}^{\prime}, i=1, \ldots, m$ calculate its responsibility $\left(\delta_{i}^{(1)}\right)^{\prime}$ as

$$
\begin{equation*}
\left(\delta_{i}^{(1)}\right)^{\prime}=\left(t_{i}^{\prime}-y_{i}^{\prime}\right) y_{i}^{\prime}\left(1-y_{i}^{\prime}\right) . \tag{22}
\end{equation*}
$$

- Step 4. For every hidden neuron compute responsibility $\left(\delta_{j}^{(2)}\right)^{\prime}$ for the network's error as

$$
\begin{equation*}
\left(\delta_{j}^{(2)}\right)^{\prime}=h_{j}^{\prime}\left(1-h_{j}^{\prime}\right) \cdot \sum_{i}\left(\delta_{i}^{(1)}\right)^{\prime}\left(\omega_{j i}^{(1)}\right)^{\prime}, \tag{23}
\end{equation*}
$$

where $\left(\delta_{i}^{(1)}\right)^{\prime}$ are computed using (30).

- Step 5. Update weights with learning rate $\eta^{l} \in(0,1)$ as

$$
\begin{align*}
& \left(\omega_{j i}^{(1)}\right)^{I+1}=\left(\omega_{j i}^{(1)}\right)^{\prime}+\eta^{\prime}\left(\delta_{i}^{(1)}\right)^{\prime} x_{j}^{\prime}, \tag{24}\\
& \left(\omega_{k j}^{(2)}\right)^{I+1}=\left(\omega_{k j}^{(2)}\right)^{\prime}+\eta^{\prime}\left(\delta_{j}^{(2)}\right)^{\prime} x_{k}^{\prime} .
\end{align*}
$$

- Step 6. If the mean square error less than tolerance, or $\left\|\left(\omega_{j i}^{(1)}\right)^{I+1}-\left(\omega_{j i}^{(1)}\right)^{\prime}\right\|<\epsilon_{1}$ and $\left\|\left(\omega_{k j}^{(2)}\right)^{I+1}-\left(\omega_{k j}^{(2)}\right)^{I}\right\|<\epsilon_{2}$ stop, otherwise go to the next layer $I=I+1$, assign $x^{I}=x^{I+1}$ and return to the step 1 . Here, $\epsilon_{1}, \epsilon_{2}$ are tolerances chosen by the user.

Example of backpropagation of error through the network

Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

- Assume that after forward propagation with sigmoid transfer function we have

$$
\begin{aligned}
& h_{1}=f\left(x_{1}^{(2)}\right)=0.12, h_{2}=f\left(x_{2}^{(2)}\right)=0.5 \\
& y_{1}=f\left(x_{1}^{(1)}\right)=0.65, y_{2}=f\left(x_{2}^{(1)}\right)=0.59
\end{aligned}
$$

- Let the target vector be $t(x)=(1,0)$ for the output vector $y=(0.65,0.59)$.
- Compute responsibility for the output neurons:

$$
\begin{aligned}
\sigma_{1}^{(1)} & =y_{1} *\left(1-y_{1}\right)\left(t_{1}-y_{1}\right)=0.65(1-0.65)(1-0.65)=0.0796 \\
\sigma_{2}^{(1)} & =y_{2} *\left(1-y_{2}\right)\left(t_{2}-y_{2}\right)=0.59(1-0.59)(0-0.59)=-0.1427
\end{aligned}
$$

Example of backpropagation of error through the network

Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

- Compute the weighted sum for every hidden neuron

$$
\begin{aligned}
& \delta_{1}=\sigma_{1}^{(1)} w_{11}^{(1)}+\sigma_{2}^{(1)} w_{12}^{(1)}=0.0796 * 1+(-0.1427) *(-1)=0.2223 \\
& \delta_{2}=\sigma_{1}^{(1)} w_{21}^{(1)}+\sigma_{2}^{(1)} w_{22}^{(1)}=0.0796 * 1+(-0.1427) * 1=-0.0631
\end{aligned}
$$

- Compute responsibility for the hidden neurons for above computed δ_{1}, δ_{2} :

$$
\sigma_{1}^{(2)}=h_{1}\left(1-h_{1}\right) \delta_{1}=-0.0235, \sigma_{2}^{(2)}=h_{2}\left(1-h_{2}\right) \delta_{2}=0.0158
$$

- Compute new weights $\omega_{j i}^{(1)}$ for output layer with learning rate $\eta=0.1$ as:

$$
\begin{aligned}
& \omega_{11}^{(1)}=\omega_{11}^{(1)}+\eta \sigma_{1}^{(1)} h_{1}=1+0.1 * 0.0796 * 0.12=1.00096 \\
& \omega_{21}^{(1)}=\omega_{21}^{(1)}+\eta \sigma_{1}^{(1)} h_{2}=1+0.1 * 0.0796 * 0.5=1.00398 \\
& \omega_{12}^{(1)}=\omega_{12}^{(1)}+\eta \sigma_{2}^{(1)} h_{1}=-1+0.1 *(-0.1427) * 0.12=-1.0017, \\
& \omega_{22}^{(1)}=\omega_{22}^{(1)}+\eta \sigma_{2}^{(1)} h_{2}=1+0.1 *(-0.1427) * 0.5=0.9929
\end{aligned}
$$

- Compute new weights $\omega_{k j}^{(2)}$ for hidden layer with learning rate $\eta=0.1$ as:

$$
\begin{aligned}
\omega_{11}^{(2)} & =\omega_{11}^{(2)}+\eta \sigma_{1}^{(2)} x_{1}=-1+0.1 *(-0.0235) * 1=-1.0024 \\
\omega_{21}^{(2)} & =\omega_{21}^{(2)}+\eta \sigma_{1}^{(2)} x_{2}=1+0.1 *(-0.0235) * 1=1.0024 \\
\omega_{12}^{(2)} & =\omega_{12}^{(2)}+\eta \sigma_{2}^{(2)} x_{1}=1+0.1 * 0.0158 * 1=1.0016 \\
\omega_{22}^{(2)} & =\omega_{22}^{(2)}+\eta \sigma_{2}^{(2)} x_{2}=1+0.1 * 0.0158 *(-1)=0.9984
\end{aligned}
$$

- Using computed weights for hidden and output layers, one can test a neural network for a new example.

Perceptron non-regularized neural network

- Step 0 . Initialize weights ω_{i} to small random numbers.
- Step 1. If $\sum_{i=0}^{n} \omega_{i} x_{i}>0$ we will say that the example is positive and $h(x)=1$.
- Step 2. If $\sum_{i=0}^{n} \omega_{i} x_{i}<0$ we will say the the example is negative and $h(x)=0$.
- Step 3. Update every weight ω_{i} using algorithm of backpropagation of error through the network (perform steps 3-5 of A1 or A2)
- Step 4. If $c(\mathbf{x})=h(\mathbf{x})$ for all learning examples - stop. Otherwise return to step 1.

Here, $\eta \in(0,1]$ is called the learning rate.

Non-regularized and regularized neural network

Our goal is to find optimal weights $\omega_{j i}^{(1)}$ and $\omega_{k j}^{(2)}$ in forward propagation

$$
\begin{equation*}
y_{i}=f\left(\Sigma_{j} \omega_{j i}^{(1)} x_{j}\right)=f(\Sigma_{j} \omega_{j i}^{(1)} \underbrace{f\left(\Sigma_{k} \omega_{k j}^{(2)} x_{k}\right)}_{x_{j}}) \tag{25}
\end{equation*}
$$

To do this we introduce functional

$$
\begin{equation*}
F\left(\omega_{j i}^{(1)}, \omega_{k j}^{(2)}\right)=\frac{1}{2}\left\|t_{i}-y_{i}\right\|^{2}=\frac{1}{2} \sum_{i=1}^{m}\left(t_{i}-y_{i}\right)^{2} . \tag{26}
\end{equation*}
$$

Here, $t=t(x)$ is the target vector which depends on the concrete example x. In the domain with m classes the target vector $t=\left(t_{1}(x), \ldots, t_{m}(x)\right)$ consists of m binary numbers such that

$$
t_{i}(x)= \begin{cases}1, & \text { example } x \text { belongs to } i \text {-th class, } \tag{27}\\ 0, & \text { otherwise }\end{cases}
$$

- Non-regularized neural network

$$
\begin{equation*}
F(w)=\frac{1}{2}\left\|t_{i}-y_{i}(w)\right\|^{2}=\frac{1}{2} \sum_{i=1}^{m}\left(t_{i}-y_{i}(w)\right)^{2} . \tag{28}
\end{equation*}
$$

- Regularized neural network

$$
\begin{equation*}
F(w)=\frac{1}{2}\left\|t_{i}-y_{i}(w)\right\|^{2}+\frac{1}{2} \gamma\|w\|^{2}=\frac{1}{2} \sum_{i=1}^{m}\left(t_{i}-y_{i}(w)\right)^{2}+\frac{1}{2} \gamma \sum_{j=1}^{M}\left|w_{j}\right|^{2} \tag{29}
\end{equation*}
$$

Here, γ is reg.parameter, $\|w\|^{2}=w^{\top} w=w_{1}^{2}+\ldots+w_{M}^{2}, M$ is number of weights.

Algorithm: backpropagation of error through the regularized network with one hidden layer

Step 0 . Initialize weights.

- Step 1. Take example x in the input layer and perform forward propagation.
- Step 2. Let $y=\left(y_{1}, \ldots, y_{m}\right)$ be the output layer and let $t=\left(t_{1}, \ldots, t_{m}\right)$ be the target vector.
- Step 3. For every output neuron $y_{i}, i=1, \ldots, m$ calculate its responsibility δ_{i}^{1} as

$$
\begin{equation*}
\delta_{i}^{(1)}=\left(t_{i}-y_{i}\right) y_{i}\left(1-y_{i}\right) . \tag{30}
\end{equation*}
$$

- Step 4. For every hidden neuron compute responsibility $\delta_{j}^{(2)}$ for the network's error as

$$
\begin{equation*}
\delta_{j}^{(2)}=h_{j}\left(1-h_{j}\right) \cdot \sum_{i} \delta_{i}^{(1)}\left(\omega_{j i}\right)^{1}, \tag{31}
\end{equation*}
$$

where $\delta_{i}^{(1)}$ are computed using (30).

- Step 5. Update weights with learning rate $\eta \in(0,1)$ and regularization parameters $\gamma_{1}, \gamma_{2} \in(0,1)$ as

$$
\begin{align*}
& \omega_{j i}^{(1)}=\omega_{j i}^{(1)}+\eta\left(\delta_{i}^{(1)}\right) x_{j}+\gamma_{1} \omega_{j i}^{(1)}, \\
& \omega_{k j}^{(2)}=\omega_{k j}^{(2)}+\eta\left(\delta_{j}^{(2)}\right) x_{k}+\gamma_{2} \omega_{k j}^{(1)} . \tag{32}
\end{align*}
$$

