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Outline

Time-adaptive parameter identification in mathematical model

of HIV infection with drug therapy

Lagrangian approach in time domain

Newtons’ method for solution of forward and adjoint problems

Matlab code for adaptive in time simulations:

https://github.com/larisa70/AFEM_HIV

L. Beilina, M. Eriksson, I. Gainova, Time-Adaptive Determination of Drug Efficacy in Mathematical Model of HIV Infection,

Differential Equations and Dynamical Systems, https://doi.org/10.1007/s12591-021-00572-w
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Outline

Model problem System of ODE describing dynamics of HIV

infection under treatment of a reverse transcriptase inhibitor [SBC].

Inverse problem: Find the efficacy of the drug, given

time-dependent noisy observations of the solution of the model

problem. [BG]

Aim: comparison of different techniques (analytic approach,

time-adaptive fem [BG], least squares approach and machine

learning methods) for efficient reconstruction of the efficacy of the

drug in the model problem.

[ME] M. Eriksson, Parameter identification in a mathematical model of HIV infection with drug therapy, Master thesis,

https://gupea.ub.gu.se/handle/2077/54664, 2017.

[SBC] P.K. Srivastava, M. Banerjee and P. Chandra, Modeling the drug therapy for HIV infection, Journal of Biological

Systems, 17, 213-223, 2009.

[BG] L. Beilina, I. Gainova, Time-adaptive FEM for distributed parameter identification in mathematical model of HIV

infection with drug therapy, Inverse Problems and Application, Springer Proceedings in Mathematics and Statistics, vol.

120, Springer, 2015, pp. 111-124.

[BG2] L. Beilina, I. Gainova, Time-adaptive optimization in a parameter identification problem of HIV infection,

arXiv:1912.01112v1
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Global HIV epidemic (2016)

Source: UNAIDS/WHO estimates

Human Immunodeficiency Virus (HIV) is one of the most infectious

and dangerous viral agents which still remains a major public health

challenge in the world.

According to UNAIDS for 2016, 36.7 million people living with HIV

and about 2.1 million new infections were recorded in 2015.

UNAIDS. (2017). The Joint United Nations Programme on HIV and AIDS. Fact sheet July 2017 Global HIV

statistics. Retrieved on January 20, 2018. http://www.unaids.org/sites/default/files/media asset/UNAIDS FactSheet

en.pdf.



The main features of HIV

HIV attacks the immune system cells that have CD4 receptors, such

as T-lymphocyte-helper cells, macrophages, dendritic cells, etc. As

a result, the immune system is depleted and the tissues of the

lymphoid organs are destroyed.

The persistence of latent (asymptomatic) infection is an important

feature of the pathogenesis of HIV infection: constant presence of

large reservoirs of latently infected cells is one of the main obstacles

of treatment of HIV infection.

HIV differs from other viruses by a high mutation level, the mutation

rate is 10−5 − 10−4 per nucleotide during one replication cycle.

This allows the virus to "escape" from humoral and cellular defense

factors of our immune system and to form multiplicity of

drug-resistant strains.

Paradoxical feature of HIV is that activation of the immune system

does not lead to a suppression of virus multiplication, but to

opposite to activation of latently infected cells, which start to

produce new viral particles.



HIV life-cycle

1 HIV first locates the CD4 cell, attaches to its surface and then

releases its genetic material (viral RNA) and enzymes into the CD4

cell.

2 The enzyme reverse transcriptase (RT) copies the viral RNA into

viral DNA.

3 The viral DNA is integrated in to the CD4 cellâs nuclear material.

4 The individual components of HIV are then produced within the CD4

cell.

5 The individual components of HIV are then assembled together to

make new HIV viruses.

6 New viruses are released from the CD4 cell. These infect other CD4

cells where the cycle repeats itself.



Three phases of HIV infection

Weeks Years

Clinical Latency

Acute HIV syndrome
Wide dissemination of virus
Seeding of lymphoid organs

Primary
Infection

Constitutional
Symptoms

Opportunistic
Diseases

Death

OâBrien, S., Hendrickson, S. Host genomic influences on HIV/AIDS, Genome Biology 14:201, (2013).



Highly active antiretroviral therapy (HAART)

In 1996-1997 started active antiretroviral therapy (HAART)

treatment of HIV which was based on the use of a combination of

antiviral drugs. HAART led to a significant improvement in the

quality of life of patients, has caused a clear decrease in

AIDS-related diseases and mortality.

At the present stage, the development of an optimal HAART

strategy is impossible without using of methods of mathematical

modelling and mathematical programming, due to a complex

combinatorics of the drugs used and, as a result, the appearance of

many drug-resistant strains. For example, a treatment scheme

known as the mega-therapy (MDRT — multi-drug rescue therapy)

may include combinations of 9 to 15 antiretroviral drugs.



The role of mathematical methods

development of personalized therapy that takes into account

individual characteristics of a patient;

development of complex combinatorial treatment schemes, studies

of the joint action of drugs;

assessing the toxicity of applied drugs for the patient;

development and research of new treatment strategies;

identification of unknown parameters that cannot be measured

experimentally;

processing and analysis of large data arrays: both recorded clinical

cases and experimental data obtained using modern measurement

methods (BIG DATA ANALYSIS);

assessing the cost of treatment and making recommendations at

the governmental levels to prevent the spread of the disease over

the world.



Model problem: The forward problem

Let Ω = [0,T ] be the time domain of our problem. The model is given by

the following system of ODE for u(0) = (u0
1
, u0

2
, u0

3
, u0

4
):
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u̇1 = s − ku1u4 − µu1 + (ηα+ b)u2,

u̇2 = ku1u4 − (µ1 + α+ b)u2,

u̇3 = (1 − η)αu2 − δu3,

u̇4 = Nδu3 − cu4,

u1(0) = u0
1
= 300 mm−3, u2(0) = u0

2
= 10 mm−3,

u3(0) = u0
3
= 10 mm−3, u4(0) = u0

4
= 10 mm−3.

(1)

where u1 = healthy T cells, u2 = pre-RT infected cells, u3 = post-RT

infected cells and u4 = virus.

In green are biological constants, known at great accuracy, see Table. In

black is the solution of the model problem. The function u4 is known at a

subset of the time domain. In red is the unknown function η(t).

[SBC] P.K. Srivastava, M. Banerjee and P. Chandra, Modeling the drug therapy for HIV infection, Journal of Biological

Systems, 17, 213-223, 2009.
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Known parameters in the model problem

Parameter Value Units Description

s 10 mm−3day−1 inflow rate of T cells

µ 0.01 day−1 natural death rate of T cells

k 2.4E-5 mm3day−1 interaction-infection rate of T cells

µ1 0.015 day−1 death rate of infected cells

α 0.4 day−1 transition rate from pre-RT to post-RT class

b 0.05 day−1 reverting rate of infected cells to uninfected

δ 0.26 day−1 death rate of actively infected cells

c 2.4 day−1 clearance rate of virus

N 1000 vir/cell total number of viral particles
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Model problem: The forward problem
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u̇1 = s − ku1u4 − µu1 + (ηα+ b)u2,

u̇2 = ku1u4 − (µ1 + α+ b)u2,

u̇3 = (1 − η)αu2 − δu3,

u̇4 = Nδu3 − cu4.

(2)
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Parameter Identification Problem

Let Mη = {η ∈ C(ΩT ) : η(t) ∈ (0, 1) ∀t ∈ ΩT } be the set of

admissible functions for η. The inverse, or parameter identification

problem, is defined as follows:

Parameter Identification Problem (PIP)

Determine η(t) ∈ Mη, assuming the following function is known

u4(t) = g(t), t ∈ Ωobs ⊆ ΩT (3)

The function g(t) represents (noisy) observations of the virus

function inside the set Ωobs .

[BG] L. Beilina, I. Gainova, Time-adaptive optimization in a parameter identification problem of HIV infection,

arXiv:1912.01112v1
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Analytic reconstruction of η

Recall the model ODE system:
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






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


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







u̇1 = s − ku1u4 − µu1 + (ηα+ b)u2,

u̇2 = ku1u4 − (µ1 + α+ b)u2,

u̇3 = (1 − η)αu2 − δu3,←−

u̇4 = Nδu3 − cu4.

(4)

From the third equation we can get:

η(t) = 1 −
u̇3 + δu3

αu2

. (5)

The derivative u̇3 can be approximated using the central difference

rule u̇3(t) ≈
u3(t+τ)−u3(t−τ)

2τ
, τ is the time step.
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Continuous observation on entire time domain
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Optimized finite difference
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Calculated drug efficiency

Exact

Optimized finite difference

η(t) = 0.8e−3t/T , σ = 15% η(t) = 0.8(1 − t/T), σ = 20%

The random noise:

uσ(t) = uσ(t)(1 + σα),

where σ ∈ [0, 1] is nose level and α ∈ [−1, 1] is random number.

[ME] M. Eriksson, Parameter identification in a mathematical model of HIV infection with drug therapy, Master thesis,

https://gupea.ub.gu.se/handle/2077/54664, 2017.
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Theory: Ill-posed and inverse problems

Let H1 and H2 be Hilbert spaces. Let G ⊆ H1. Consider a

continuous mapping F : G → H2 and let y ∈ H2 be given.

Suppose we want to find x ∈ G such that

F(x) = y. (6)

Definition: The inverse problem is well-posed by Hadamard if

1 For each y ∈ H2 there exists an x ∈ G that solves the problem

above (i.e. F is onto).

2 For each y ∈ H2 there is at most one such x (i.e. F is

one-to-one).

3 The solutions x(y) depends continuously on y (i.e. the inverse

mapping F−1 is continuous).

M. M. Lavrentiev Some Improperly Posed Problems of Mathematical Physics, Springer Tracts in Natural Philosophy, vol.

11, Springer Verlag, Berlin, 1967.
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Theory: Stable solution of ill-posed problems

Assume: Forward problem is well-posed (but the inverse problem is

ill-posed). There exists an ideal exact solution, x∗, with a small

neighborhood, G, where the inverse problem is well-posed (!). The

set G is a compact set.

Then given noisy observations, yδ, the best approximation is

obtained by finding x ∈ G that minimizes

Q(x) = ‖F(x) − yδ‖
2. (7)

This is called the quasi-solution or least squares solution.

But

In general, we do not know x∗ and thus usually not the set G.

The minimum may not be unique. There may be local minima and

ravines that make minimization difficult.
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Theory: Tikhonov functional for model problem

The Tikhonov functional Jγ : G → R is defined as

Jγ(x) =
1

2
‖F(x) − yδ‖

2 +
1

2
γ‖x − x0‖2, (8)

where x0 ∈ G, γ(δ)→ 0 and δ2

γ(δ)
→ 0 as δ→ 0.

The Tikhonov functional is Fréchet differentiable and locally strongly

convex in a neighborhood of its minimum if ‖x0 − x∗‖ is small

enough.

If ‖x0 − x∗‖ is small enough, then the regularized solution xγ of (7)

will be also in this neighborhood such that

‖xγ − x∗‖ ≤ ξ‖x0 − x∗‖, ξ ∈ (0, 1), i.e. the minimum of (8) is always a

better approximation to x∗ than x0.

[BK] A. B. Bakushinskii and M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Springer,

New York, 2004.
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The parameter identification problem

Parameter Identification Problem (PIP). Assume that parameters

{s, µ, k , µ1, α, b, δ, c, N} are known. Assume further that the function η(t)
is unknown inside the domain ΩT . The PIP is: determine η(t) for t ∈ ΩT ,

under the condition that the virus population function g(t) is known

u4(t) = g(t), t ∈ [T1,T2], 0 ≤ T1 < T2 ≤ T . (9)

Here, the function g (t) presents observations of the function u4 (t) inside

the observation interval [T1,T2].
The Tikhonov functional is given by

J(η) =
1

2

∫ T2

T1

(u4(t) − g(t))2zζ(t)dt +
1

2
γ

∫ T

0

(η − η0)2dt , (10)

where gi are observations, η0 the initial guess, γ the regularization

parameter and zζ a bump function making J continuous.

[BG] L. Beilina, I. Gainova, Time-adaptive FEM for distributed parameter identification in mathematical model of HIV

infection with drug therapy, Inverse Problems and Application, Springer Proceedings in Mathematics and Statistics, vol.

120, Springer, 2015, pp. 111-124.
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Optimization method

We seek for a stationary point of the Tikhonov functional with

respect to η which satisfies

J′(η)(η̄) = 0, ∀η̄ ∈ H. (11)

To do this, we introduce the Lagrangian

L(ν) = J(η) +
4
∑

i=1

∫ T

0

λi(u̇i − fi)dt . (12)

where the fi are the RHS of (1) and ν = (u, λ, η) ∈ U, where

H1
u(ΩT ) = {f ∈ H1(ΩT ) : f(0) = 0},

H1
λ
(ΩT ) = {f ∈ H1(ΩT ) : f(T) = 0}.

U = H1
u(ΩT ) × H1

λ
(ΩT ) × C(ΩT ).

(13)

Now we seek

0 = L ′(ν)(ν̄) =
∂L

∂λ
(v)(λ̄)+

∂L

∂u
(v)(ū)+

∂L

∂η
(v)(η̄), ∀ν̄ = (λ̄, ū, η̄) ∈ U.

(14)
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Finite element formulation

We discretize the initial ΩT into a uniform mesh, Jτ, with step length

τ := tk − tk−1 and time intervals Jk = (tk−1, tk ]. Then, we define the

following spaces:

Wu
τ (ΩT ) = {f ∈ H1

u : f |Jk
∈ P1(Jk ) ∀Jk ∈ Jτ},

Wλ
τ (ΩT ) = {f ∈ H1

λ
: f |Jk

∈ P1(Jk ) ∀Jk ∈ Jτ},

W
η
τ (ΩT ) = {f ∈ L2(ΩT ) : f |Jk

∈ P0(Jk ) ∀Jk ∈ Jτ},

Uτ = Wu
τ (ΩT ) ×Wλ

τ (ΩT ) ×W
η
τ (ΩT ).

(15)

The finite element method for (14) is: find ντ ∈ Uτ such that

L ′ (ντ; ν̄) = 0, ∀ν ∈ Uτ. (16)

Newton’s method is used for the solution of forward and adjoint problems.
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Optimality conditions yields:

0 =
∂L

∂λ
(v)(λ̄) = −α

T
∫

0

u2(λ1 − λ3)η̄dt

+

T
∫

0

(u̇1 − s + ku1u4 + µu1 − (ηα+ b)u2)λ̄1dt

+

T
∫

0

(u̇2 − ku1u4 + (µ1 + α+ b)u2)λ̄2dt

+

T
∫

0

(u̇3 − (1 − η)αu2 + δu3)λ̄3dt

+

T
∫

0

(u̇4 − Nδu3 + cu4)λ̄4dt ∀λ̄ ∈ H1
u(ΩT ),

(17)
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0 =
∂L

∂u
(v)(ū) = −

T
∫

0

(λ̇1 − λ1ku4 − λ1µ+ λ2ku4)ū1dt

−

T
∫

0

(λ̇2 − λ2(µ1 + α+ b) + λ1(ηα+ b) + (1 − η)αλ3)ū2dt

−

T
∫

0

(λ̇3 − λ3δ+ λ4Nδ)ū3dt

−

T
∫

0

(λ̇4 − λ4c − λ1ku1 + λ2ku1)ū4dt

+

T2
∫

T1

(u4 − g)zζ ū4dt ,∀ū ∈ H1
λ(ΩT ),

(18)
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0 =
∂L

∂η
(v)(η̄) = γ

T
∫

0

(η − η0)η̄dt + α

∫ T

0

u2(λ3 − λ1)η̄dt ∀η̄ ∈ C (ΩT ) .

(19)

The equation (17) corresponds to the forward problem, the equation (18)

— to the following adjoint problem

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
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






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


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



















∂λ1

∂t
= f̃1(λ(t), η(t)) = λ1(t)ku4(t) + λ1(t)µ − λ2(t)ku4(t),

∂λ2

∂t
= f̃2(λ(t), η(t)) = λ2(t)(µ1 + α+ b) − λ1(t)(η(t)α+ b) − (1 − η(t))αλ3(t),

∂λ3

∂t
= f̃3(λ(t), η(t)) = λ3(t)δ − λ4(t)Nδ,

∂λ4

∂t
= f̃4(λ(t), η(t)) = λ4(t)c + λ1(t)ku1(t) − λ2(t)ku1(t) + (u4(t) − g)zζ ,

λi(T) = 0, i = 1, . . . , 4,

(20)

which can be rewritten in the compact form as














∂λ
∂t

= f̃(λ(t), η(t)),

λi(T) = 0, i = 1, . . . , 4.
(21)
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Newton’s method for the forward problem

For the discretization
∂u

∂t
=

uk+1 − uk

τk

the variational formulation of the forward problem for all ū ∈ H1
u(ΩT ) is:

(uk+1, ū) − (uk , ū) − τk (f(u
k+1), ū) = 0. (22)

Denoting

ũ = uk+1,

F(ũ) = ũ − τk f(ũ) − uk
(23)

we can rewrite (22) as

(F(ũ), ū) = 0. (24)

For solution F(ũ) = 0 the Newton’s method can be used:

ũn+1 = ũn − [F ′(ũn)]−1 · F(ũn). (25)

Here, we can determine F ′(ũn) via definition of F(ũ) in (23) as

F ′(ũn) = I − τk f ′(ũn).
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The explicit entries in the Jacobian f ′(ũn) are:

f ′(ũn) =




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


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




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∂f2

∂u4

∂f3

∂u1

∂f3
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∂f3

∂u3

∂f3

∂u4

∂f4

∂u1

∂f4

∂u2

∂f4

∂u3

∂f4

∂u4
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






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












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



(ũn)
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
























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
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










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Newton’s method for the adjoint problem

Since we solve the adjoint problem backwards in time starting from the

known λ(T) = 0, we discretize time derivative as

∂λ

∂t
=
λk+1 − λk

τk
(26)

for the already known λk+1, and write the variational formulation of the

adjoint problem for all λ̄ ∈ H1
λ
(ΩT ) as

− (−λk+1 + λk + τk f̃(λk ), λ̄) = 0. (27)

The finite element method for (21) will be: find λk
τ ∈ H1

λ
(ΩT ) such that for

all λ̄ ∈ H1
λ
(ΩT )

(λk
τ − λ

k+1
τ + τk f̃(λk

τ ), λ̄) = 0. (28)
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Denoting

λ̃ = λk
τ ,

Ṽ(λ̃) = λ̃+ τk f̃(λ̃) − λk+1
τ ,

(29)

we can rewrite (28) for all λ̄ ∈ H1
λ
(ΩT ) as

(Ṽ(λ̃), λ̄) = 0. (30)

For solution Ṽ(λ̃) = 0 we use again Newton’s method:

λ̃n+1 = λ̃n − [Ṽ ′(λ̃n)]−1 · Ṽ(λ̃n). (31)

We compute Ṽ ′(λ̃n) using the definition of Ṽ(λ̃) in (29) as

Ṽ ′(λ̃n) = I + τk f̃ ′(λ̃n).
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The entries in the Jacobian f̃ ′(λ̃n) for the adjoint system (21) are:

f̃ ′(λ̃n) =
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


























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
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Adaptive time-mesh refinement

Refinement of the time mesh is be based on the following theorem [BG].

Theorem (A posteriori error estimate for the regularized solution)

Let ητ ∈ W
η
τ be a finite element approximation on the finite element mesh

Jτ of the minimizer η ∈ L2(ΩT ) with the mesh function τ(t). Then there

exists an interpolation constant CI independent on τ such that the

following a posteriori error estimate for the minimizer η holds

||ητ − η||L2(ΩT ) ≤
‖R(ητ)‖

γ
CI ||τητ||L2(ΩT ) ∀ητ ∈ W

η
τ , (32)

where R(ητ) is the residual defined as

R(ητ)(t) = γ(ητ − η
0)(t) + αu2τ(λ3τ − λ1τ)(t). (33)

[BG] L. Beilina, I. Gainova, Time-adaptive optimization in a parameter identification problem of HIV infection,

arXiv:1912.01112v1
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Conjugate gradient algorithm

Algorithm

Step 0. Choose time partition Jτ of the time interval (0,T). Start with the initial guess

η = η0 and compute the sequences of ηm via the following steps:

Step 1. Compute solutions u(t , η) and λ(t , η) of state and adjoint problems on Jτ.

Step 2. Update the coefficient η := ηm+1 on Jτ using the conjugate gradient method

ηm+1 = ηm + αmdm(x),

dm(x) = −gm(x) + βmdm−1(x),

βm =
‖gm(x)‖2

‖gm−1(x)‖2
,

(34)

where d0(x) = −g0(x). In (34) the step size α in the gradient update is computed as

αm = −
(gm , dm)

γm‖dm‖2
. (35)
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Conjugate gradient algorithm

Algorithm

The regularization parameter γ is computed iteratively accordingly to [BKS] as

γm =
γ0

(m + 1)p
, p ∈ (0, 1). (36)

Step 3. Stop computing ηm and obtain the function η at M = m if either

‖gm‖L2(Uτ) ≤ θ or norms ‖ηm‖L2(Uτ) are stabilized. Here θ is the tolerance in updates

m of gradient method. Otherwise set m := m + 1 and go to step 1.

Refine the time mesh where

|RM(ητ)(t)| ≥ βmax
t∈ΩT

|RM(ητ)(t)|, (37)

where β ∈ (0, 1) is chosen by the user. Then go to step 1.

[BKS] A. Bakushinsky, M.Y. Kokurin, A. Smirnova, Iterative Methods for Ill-posed Problems, Inverse and Ill-Posed

Problems Series 54, De Gruyter, 2011.
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Time-adaptive two-stage procedure for random data

0. Initialize data g on the initial time-mesh Jτ.

1. First stage: obtain initial guess η0 by solving least squares

problem minη ‖Aη − g‖2
2
. Can be used method of normal equations,

QR or SVD decompositions. As test functions in constructing of

elements of matrix A can be used td , d = 1, ...,m, t ∈ [0,T ], or

splines.

2. Second stage: minimize the Tikhonov functional

J(η) =
1

2

∫ T2

T1

(u4(t) − g(t))2zζ(t)dt +
1

2
γ

∫ T

0

(η − η0)2dt , (38)

where gi are observations, η0 the initial guess obtained at the first

stage, γ the regularization parameter and zζ a bump function

making J continuous.

3. Refine mesh using a posteriori error indicator and obtain a new

time-mesh Jτ. Interpolate observed data g into a new time mesh.

Go to step 1.
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Tests with observed virus function u4 on Tobs = [0, 400]

u4, σ = 10% LS fitting to η0 optimized η
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Tests with observed virus function u4 on Tobs = [0, 400]

u4, σ = 20% LS fitting to η0 optimized η

0 50 100 150 200 250 300 350 400

Time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

u
4

 number of refinements: 0 number of input points 15random noise 20

simulated u
4

 noisy u
4

0 50 100 150 200 250 300 350 400

Time

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Fitting via LS, number of refinements: 0 number of input points 15

  measured 

 approximated guess for 
0

0 50 100 150 200 250 300 350 400

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Calculated , number of refinements: 0number of  points15

exact 

guess for  (LS)

computed  (CGM)

computed  (smoothed CGM)

0 50 100 150 200 250 300 350 400

Time

0

1000

2000

3000

4000

5000

6000

7000

u
4

 number of refinements: 4 number of input points 79random noise 20

simulated u
4

 noisy u
4

0 50 100 150 200 250 300 350 400

Time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Fitting via LS, number of refinements: 4 number of input points 79

  measured 

 approximated guess for 
0

0 50 100 150 200 250 300 350 400

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Calculated , number of refinements: 4number of  points79

exact 

guess for  (LS)

computed  (CGM)

computed  (smoothed CGM)

www.math.chalmers.se/∼larisa Lecture 10



Tests with observed virus function u4 on Tobs = [0, 200]

u4, σ = 10% LS fitting to η0 optimized η
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Tests with observed virus function u4 on Tobs = [0, 300]

u4, σ = 10% LS fitting to η0 optimized η
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Tests with observed virus function u4 on Tobs = [50, 300]

u4, σ = 10% LS fitting to η0 optimized η
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Tests with observed virus function u4 on Tobs = [100, 300]

u4, σ = 40% LS fitting to η0 optimized η
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Tests with observed virus function u4 on Tobs = [50, 300]

u4, σ = 40% LS fitting to η0 optimized η
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Conclusions

The adaptive optimization method works for simulated data. It is

desirable to test method on real data. How to get them ?

Test other functionals can be minimized for the same model. We

minimized the functional

J(η) =
1

2

∫ T2

T1

(u4(t) − gi(t))
2zζ(t)dt +

1

2
γ

∫ T

0

(η − η0)2dt . (39)

One can minimize other functionals, see for example,

E. F. Arruda, C. M. Dias, , C. V. de Magalhaes, D. H. Pastore, R. C. A. Thomé, H. M. Yang, An optimal control

approach to HIV immunology, Applied Mathematics, 1115-1130, 2015. http://dx.doi.org/10.4236/am.2015.66102

The method can be extended to other biological models and to the

reconstruction of several unknown parameters.
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