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1 Introduction

This note presents analysis of solution of Helmholtz equation in two dimen-
sions (2D) using finite difference discretization of Helmholtz equation. We are
considering only the case of homogeneous boundary conditions.

First in Section 2 we discuss method of separation of variables to solve
Helmholtz equation with homogeneous boundary conditions in 2D. Then Section
3 uses material of Section 2 for eigenvalue analysis of Helmholtz equation in 2D.
In this section we also answer to the question: when the solution of Helmholtz
equation is an ill-posed problem ?

We follow material of the classical book [2] for presentation of material in
both sections. Convergence analysis for a finite difference approximation of the
Dirichlet problem for the Helmholtz equation is presented in [3]. We refer to [1]
for technique of derivation of error estimates for different PDE.
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2 Method of separation of variables for Helmholtz
equation in two dimensions

Let Ω ⊂ R2 is a bounded simply connected space domain with boundary ∂Ω
such that Ω := {(x, y) : x ∈ [0, β1], y ∈ [0, β2]}, see Figure 1.

Our model equation is Helmholtz equation in two dimensions with homo-
geneous boundary conditions at ∂Ω and dielectric permittivity ε(x, y) = 1 in
Ω:

∆u(x, y) + ω2u(x, y) = 0, (x, y) ∈ Ω,

u = 0 on ∂Ω,
(1)

where ∆u in 2D is defined as:

∆u =
∂2u

∂x2
+
∂2u

∂y2
. (2)

In the method of separation of variables we will look a solution of (1) as
product of two functions X(x) and Y (y):

u(x, y) = X(x)Y (y). (3)

Our goal is to find solution of (1) in terms of functions X(x) and Y (y). To do
that we substitute (3) into (1). First, we compute ∆u in terms of X(x) and
Y (y): after substitution of (3) into (2) we get:

∂2u

∂x2
=
∂2X(x)

∂x2
Y (y);

∂2u

∂y2
=
∂2Y (y)

∂y2
X(x). (4)

Next, substituting (4) into the Helmholtz equation in (1) we get :

∂2X(x)

∂x2
Y (y) +

∂2Y (y)

∂y2
X(x) + ω2X(x)Y (y) = 0. (5)
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Dividing both sides of (5) by X(x)Y (y) we obtain:

∂2X(x)

∂x2
X(x)−1︸ ︷︷ ︸
−ν

+
∂2Y (y)

∂y2
Y (y)−1︸ ︷︷ ︸
−µ

+ω2 = 0 ⇐⇒ (6a)

−(ν + µ)+ω2 = 0 ⇐⇒ (6b)

λ := ν + µ =ω2. (6c)

Denoting byX ′′ := ∂2X(x)
∂x2 and Y ′′ := ∂2Y (y)

∂y2 we obtain two eigenvalue problems:{
X′′

X = −ν,
X(0) = 0, X(β1) = 0,

(7)

{
Y ′′

Y = −µ,
Y (0) = 0, Y (β2) = 0.

(8)

Boundary conditions in both eigenvalue problems (7), (8) are derived from the
boundary conditions of Helmholtz equation (1). More precisely, we can rewrite
(1) as

∆u(x, y) + ω2u(x, y) = 0
u(0, y) = 0
u(β1, y) = 0
u(x, 0) = 0
u(x, β2) = 0.

(9)

Here, β1 and β2 are sizes of the domain: Ω, see Figure 1. Using (9) we get the
boundary conditions in eigenvalue problems (7), (8):

u(0, y) = X(0)Y (y) = 0 =⇒ X(0) = 0 since Y (y) 6= 0
u(β1, y) = X(β1)Y (y) = 0 =⇒ X(β1) = 0 since Y (y) 6= 0
u(x, 0) = X(x)Y (0) = 0 =⇒ Y (0) = 0 since X(x) 6= 0
u(x, β2) = X(x)Y (β2) = 0 =⇒ Y (β2) = 0 since X(x) 6= 0

(10)

In (10) functions X(x), Y (y) 6= 0 since we are looking for nontrivial solutions
of (1). For problem (7) we seek the solution in the form X(x) = Cekx. Thus,
X ′′(x) = Ck2ekx. Substituting expressions X ′′(x) = Ck2ekx and X(x) = Cekx

into (7) we obtain

Ck2ekx + νCekx = 0 ⇐⇒
k2 + ν = 0 ⇐⇒
k2 = −ν

(11)

Basing on the last equality in (11) we can consider three cases for ν:
1) When ν < 0, then the problem (7) has solution given by

X(x) = C1e
√
−νx + C2e

−
√
−νx. (12)

Using boundary conditions of (7) in (12) we get

X(0) = 0 =⇒ X(0) = C1 + C2 = 0 =⇒ C1 = −C2,

X(β1) = 0 =⇒ X(β1) = C1e
√
−νβ1 + C2e

−
√
−νβ1 = 0.

(13)
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Since C1 = −C2 then from last equation in (13) it follows that:

C1( e
√
−νβ1 − e−

√
−νβ1︸ ︷︷ ︸

6=0 since
√
−ν is real (ν<0)

) = 0. (14)

Thus,
C1 = 0 =⇒ C1 = −C2 = 0 =⇒ X(x) = 0. (15)

We observe from the equation above that for ν < 0 we obtain only trivial
solution X(x) = 0.

2) When ν = 0 we obtain again only trivial solution X(x) = 0.

3) When ν > 0 the solution of (7) can be written as

X(x) = D1 cos(
√
νx) +D2 sin(

√
νx). (16)

Using boundary condition in (7) we get

X(0) = D1 cos(0) +D2 sin(0) = 0 =⇒ D1 = 0 (17)

and
X(β1) = D1︸︷︷︸

=0

cos(
√
νβ1) +D2 sin(

√
νβ1) = D2 sin(

√
νβ1). (18)

Here, the constantD2 6= 0, meaning sin(
√
νβ1) = 0. We observe that sin(

√
νβ1) =

0 when
√
ν = πn

β1
, n ∈ Z. Thus, non-zero solution of (7) exists when

ν = (
πn

β1
)2, n ∈ Z. (19)

Taking the coefficient D2 = 1, the solution of (7) will be written as Xn(x) =
sin(πnβ1

x), n ∈ Z.

In the same way we can find non-trivial solution of (8). When µ > 0 the
solution of (8) can be written as

Y (y) = C1 cos(
√
µy) + C2 sin(

√
µy). (20)

Using boundary condition in (8) we get C1 = 0. We observe that sin(
√
µβ2) = 0

when
√
µ = πm

β2
,m ∈ Z. Thus, the non-trivial solution of (8) will be when

µ = (
πm

β2
)2, m ∈ Z. (21)

Again, taking coefficient C2 = 1 the non-trivial solution of (8) will be:

Ym(y) = sin
πm

β2
y,m ∈ Z. (22)

We can conclude that discrete solutions of the problem (1) can be written as

unm(x, y) = Xn(x)Ym(y) = unm sin
πn

β1
x sin

πm

β2
y, m, n ∈ Z (23)

4



and they are particular solutions for problem (1). Here, unm are coefficients
which can be determined computationally. We observe that functions unm(x, y)
are orthogonal.

The common solution of (1) is given by summing particular solutions in (23):

u(x, y) =
∑
m

∑
n

unm(x, y) =
∑
m

∑
n

unm sin
πn

β1
x sin

πm

β2
y, (24)

or as
u(x, y) =

∑
m

∑
n

unmρn(x)ρm(y) (25)

with eigenfunctions

ρn(x) = sin
πn

β1
x,

ρm(y) = sin
πm

β2
y.

(26)

Their corresponding eigenvalues are

λnm = ω2
nm = vn + µm = (

πn

β1
)2 + (

πm

β2
)2. (27)

3 Solvability of Helmholtz equation in 2D

Let us consider now the following problem for Helmholtz equation in 2D in Ω:

∆u(x, y) + ω2ε(x, y)u(x, y) = f(x, y),

u(x, y) = 0 on ∂Ω.
(28)

3.1 Homogeneous medium

Let us analyze first the case ε(x, y) = 1 in (28). Thus, we consider the problem
(1). As we already know from the previous section, we can seek solution of (1)
in the form (25)

u(x, y) =

∞∑
m=1

∞∑
n=1

unmρn(x)ρm(y). (29)

Substituting (29) in (28) noting that

f(x, y) =

∞∑
m=1

∞∑
n=1

fnmρn(x)ρm(y), (30)

we obtain

f(x, y) =

∞∑
m=1

∞∑
n=1

unm[
∂2ρn(x)

∂x2
ρm(y) +

∂2ρm(y)

∂y2
ρn(x)]

+ ω2
∞∑
m=1

∞∑
n=1

unmρn(x)ρm(y).

(31)
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This equation can be rewritten as:

f(x, y) =

∞∑
m=1

∞∑
n=1

unm[
∂2ρn(x)

∂x2
ρm(y) +

∂2ρm(y)

∂y2
ρn(x) + ω2ρn(x)ρm(y)]. (32)

Here, ρn(x) and ρm(y) are eigenfunctions

ρn(x) = sin
nπ

β1
x, n ∈ Z,

ρm(y) = sin
mπ

β2
y, m ∈ Z,

(33)

corresponding to the eigenvalues

νn = (
nπ

β1
)2,

µn = (
mπ

β2
)2,

(34)

such that

ω2
n,m = λn,m = νn + µn = (

nπ

β1
)2 + (

mπ

β2
)2. (35)

Since ρn(x) = sin nπ
β1
x, then

∂2ρn(x)

∂x2
=

∂

∂x
(
∂ρn(x)

∂x
) = −(

nπ

β1
)2 sin

nπ

β1
x,

∂ρn(x)

∂x
=
nπ

β1
cos

nπ

β1
x.

(36)

Next, since ρm(y) = sin mπ
β2
y we get:

∂2ρm(y)

∂y2
=

∂

∂y
(
∂ρm(y)

∂y
) = −(

mπ

β2
)2 sin

mπ

β2
y,

∂ρm(y)

∂y
=
mπ

β2
cos

mπ

β2
y.

(37)

Note that for Ω ⊂ R2,∆u = ∂2u
∂x2 + ∂2u

∂y2 . Using (29) we get

∂2u

∂x2
=

∞∑
m=1

∞∑
n=1

unm
∂2ρn(x)

∂x2
ρm(y)

∂2u

∂y2
=

∞∑
m=1

∞∑
n=1

unm
∂2ρm(y)

∂y2
ρn(x)

(38)
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Using (36), (37) equations (38) can be rewritten as

∂2u

∂x2
=

∞∑
m=1

∞∑
n=1

unm(−nπ
β1

)2(sin
nπ

β1
x)(sin

mπ

β2
y), (39a)

∂2u

∂y2
=

∞∑
m=1

∞∑
n=1

unm(−mπ
β2

)2(sin
mπ

β2
y)(sin

nπ

β1
x) (39b)

Thus, for ∆u = ∂2u
∂x2 + ∂2u

∂y2 = we get:

∆u =

∞∑
m=1

∞∑
n=1

unm (−nπ
β1

)2︸ ︷︷ ︸
−νn

(sin
nπ

β1
x)︸ ︷︷ ︸

ρn(x)

(sin
mπ

β2
y)︸ ︷︷ ︸

ρm(y)

+

∞∑
m=1

∞∑
n=1

unm (−mπ
β2

)2︸ ︷︷ ︸
−µm

(sin
mπ

β2
y)︸ ︷︷ ︸

ρm(y)

(sin
nπ

β1
x)︸ ︷︷ ︸

ρn(x)

,

(40)

which we can write as

∆u =

∞∑
m=1

∞∑
n=1

unm[−νn − µm]ρn(x)ρm(y). (41)

We also can rewrite the above equation as

∆u =

∞∑
m=1

∞∑
n=1

unm[− (νn + µm)︸ ︷︷ ︸
λnm

]ρn(x)ρm(y) =

∞∑
m=1

∞∑
n=1

unm(−λnm)ρn(x)ρm(y).

(42)

Substituting (42) into discretized Helmholtz equation (32) we have

f(x, y) =

∞∑
m=1

∞∑
n=1

unm(−λnm)ρn(x)ρm(y)

+ ω2
∞∑
m=1

∞∑
n=1

unmρn(x)ρm(y),

(43)

or applying (30) in the left hand side of (43) we get

∞∑
m=1

∞∑
n=1

fnmρn(x)ρm(y), =

∞∑
m=1

∞∑
n=1

(−λnm + ω2)unmρn(x)ρm(y). (44)

From the above equation we observe that

unm =
fnm

−λnm + ω2
. (45)
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Basing on (50) we can formulate conditions when the problem (1) is well-
defined and when it is an ill-posed problem in 2D. These conditions are formu-
lated in Lemma 1.

Lemma 1 The problem (1)

∆u(x, y) + ω2u(x, y) = 0, (x, y) ∈ Ω,

u = 0 on ∂Ω,

is well defined if ω2 6= λnm with

λnm = νn + µm = (
nπ

β1
)2 + (

mπ

β2
)2, n,m ∈ Z. (46)

More precisely, the problem (1)

• 1) has unique solution if ω2 6= λnm,∀m,n ∈ Z.

• 2) has no solution if ω2 = λnm for some m,n ∈ Z and fnm 6= 0.

• 3) has an infinite set of solutions if ω2 = λnm, for some m,n ∈ Z and
fnm = 0.

3.2 Non-homogeneous medium

Let us now analyze the case ε(x, y) ∈ C2(Ω) and consider the following problem
for Helmholtz equation in 2D:

∆u(x, y) + ω2ε(x, y)u(x, y) = f(x, y), (x, y) ∈ Ω

u(x, y) = 0 on ∂Ω.
(47)

Figure below illustrates the computational domain with non-constant function
ε(x, y).:

β2

β1

Ω

ε(x, y) ∈ C2(Ω)

x

y

∂Ω

Performing similar analysis as in section
3.1 we can obtain eigenvalues λ := ν+µ
and their discrete analog will be:

λnm = νn+µm = (
πn

β1
)2+(

πm

β2
)2. (48)
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We approximate now ε(x, y) by piecewise-constant functions εnm for all m,n
such that equations (43) will be transformed to the following equations

f(x, y) =

∞∑
m=1

∞∑
n=1

unm(−λnm)ρn(x)ρm(y) + ω2
∞∑
m=1

∞∑
n=1

εnmunmρn(x)ρm(y),

f(x, y) =

∞∑
m=1

∞∑
n=1

(−λnm + εnmω
2)unmρn(x)ρm(y).

(49)

Applying (30) in the left hand side of (49) we get

unm =
fnm

−λnm + εnmω2
. (50)

Thus, we can formulate following Lemma for the problem (47):
Lemma 2 The problem (49)

∆u(x, y) + ω2εu(x, y) = 0, (x, y) ∈ Ω,

u = 0 on ∂Ω,

is well defined if ω2εnm 6= λnm with

λnm = νn + µm = (
nπ

β1
)2 + (

mπ

β2
)2, n,m ∈ Z. (51)

More precisely, the problem (49)

• 1) has unique solution if ω2 6= λnm

εnm
∀m,n ∈ Z.

• 2) has no solution if ω2 = λnm

εnm
for some m,n ∈ Z and fnm 6= 0.

• 3) has an infinite set of solutions if ω2 = λnm

εnm
, for some m,n ∈ Z and

fnm = 0.

3.3 Non-homogeneous medium in stabilized model

Let us now analyze the case ε(x, y) ∈ C2(Ω) for stabilized problem for Helmholtz
equation in 2D:

∆u(x, y) + ω2ε(x, y)u(x, y) + iωαu = f(x, y), (x, y) ∈ Ω

u(x, y) = 0 on ∂Ω.
(52)

Here, the term iωαu is a damping term with damping coefficient α > 0
which plays roll of regularizaton of solution of Helmholtz equation.
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Again, we perform analysis as in previous sections and obtain eigenvalues
λ := ν + µ and their discrete analog

λnm = νn + µm = (
πn

β1
)2 + (

πm

β2
)2. (53)

We approximate now ε(x, y) by piecewise-constant functions εnm for all m,n
such that equations (52) will be transformed to the following regularized equa-
tions

f(x, y) =

∞∑
m=1

∞∑
n=1

unm(−λnm)ρn(x)ρm(y)

+ ω2
∞∑
m=1

∞∑
n=1

εnmunmρn(x)ρm(y) + iωα

∞∑
m=1

∞∑
n=1

unmρn(x)ρm(y),

f(x, y) =

∞∑
m=1

∞∑
n=1

(−λnm + εnmω
2 + iωα)unmρn(x)ρm(y).

(54)

Applying (30) in the left hand side of (54) we get discrete solutions

unm =
fnm

−λnm + εnmω2 + iωα
. (55)

Thus, we can formulate following Lemma for stabilized problem (52):
Lemma 3 The regularized problem (52)

∆u(x, y) + ω2εu(x, y) + iωα = 0, (x, y) ∈ Ω,

u = 0 on ∂Ω,

is well defined for all ω.
Proof
Assume that denominator in (55) is zero, or

−λnm + εnmω
2 + iωα = 0.

We want to find such ω > 0 such that the above equation is true. Let us rewrite
this equation in the form

εnmω
2 + iαω − λnm = 0

and solve it for ω. We get following solutions of quadratic equation:

ω =
−iα±

√
D

2εnm
(56)

with D = 4λnmεnm −α2. One can choose such α > 0 that D ≥ 0. From (56) it
follows that ω is complex. However, ω is not complex, and thus,

−λnm + εnmω
2 + iωα 6= 0.
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