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1 Introduction

This note presents analysis of solution of Helmholtz equation in two dimen-
sions (2D) using finite difference discretization of Helmholtz equation. We are
considering only the case of homogeneous boundary conditions.

First in Section 2 we discuss method of separation of variables to solve
Helmholtz equation with homogeneous boundary conditions in 2D. Then Section
3 uses material of Section 2 for eigenvalue analysis of Helmholtz equation in 2D.
In this section we also answer to the question: when the solution of Helmholtz
equation is an ill-posed problem ?

We follow material of the classical book [2] for presentation of material in
both sections. Convergence analysis for a finite difference approximation of the
Dirichlet problem for the Helmholtz equation is presented in [3]. We refer to [1]
for technique of derivation of error estimates for different PDE.
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2 Method of separation of variables for Helmholtz
equation in two dimensions

Let Q C R? is a bounded simply connected space domain with boundary 9
such that Q := {(z,y) : © € [0, 81],y € [0, B2]}, see Figure 1.

Our model equation is Helmholtz equation in two dimensions with homo-
geneous boundary conditions at 9Q and dielectric permittivity e(z,y) = 1 in
Q:

Au(z,y) +wu(z,y) =0, (z,y) €Q,

1
=0 on 09, )
where Au in 2D is defined as:
%u  O%u
Au= — + —. 2
T o2 + Oy? )

In the method of separation of variables we will look a solution of (1) as
product of two functions X (x) and Y (y):

u(z,y) = X(2)Y (y)- 3)

Our goal is to find solution of (1) in terms of functions X (z) and Y (y). To do
that we substitute (3) into (1). First, we compute Au in terms of X (z) and
Y (y): after substitution of (3) into (2) we get:

Pu_#Xwy Pu_ BV
0r2 Qa2 vh oyz  Oy?

X(x). (4)

Next, substituting (4) into the Helmholtz equation in (1) we get :

0?X (z) 9%Y (y)
0z ) Oy?

X(z) 4+ w?X(2)Y (y) = 0. (5)



Dividing both sides of (5) by X (2)Y (y) we obtain:
92X (z) %Y (y)

Ox2 X(z)™t + o Y(y) ' 4+w? =0 «— (6a)
—_—
7 ~
~VH )t =0 <= (6b)
Ni=v+p=w’ (6¢)

Denoting by X" := % and Y := ‘”’%gy) we obtain two eigenvalue problems:

= v (®)
{ X ’ (7) Y(0)=0, Y(Bs)=0.

X(0)=0, X(B1)=0,
Boundary conditions in both eigenvalue problems (7), (8) are derived from the
boundary conditions of Helmholtz equation (1). More precisely, we can rewrite
(1) as

Au(z,y) +w?u(z,y) = 0
’U,(O, y) = 0
u(zx,0) = 0
u(z, Ba) = 0.

Here, 51 and S5 are sizes of the domain: €, see Figure 1. Using (9) we get the
boundary conditions in eigenvalue problems (7), (8):

u(0,y) = X(0)Y (y) =0= X(0) =0sinceY(y)#0
u(B1,y) = X(B1)Y(y) =0= X(B1) =0since Y(y)#0 (10)
u(z,0) = X(x)Y(0) =0=Y(0) =0since X(x)#0
w(z, f2) = X(2)Y(B2) =0=Y(82) = 0since X(z)#0

n (10) functions X (z),Y (y) # 0 since we are looking for nontrivial solutions
)-

of (1). For problem (7) we seek the solution in the form X (z) = Ce*. Thus,
X”(x) Ck?e*®. Substituting expressions X" (r) = Ck%e** and X (x) = Cek®
into (7) we obtaln
Ck?e™ 4 vCe™ =0 =
Eir=0 (11)
k= —v

Basing on the last equality in (11) we can consider three cases for v:
1) When v < 0, then the problem (7) has solution given by

X(z) = CreV "% 4 Che™ VY2, (12)
Using boundary conditions of (7) in (12) we get
X0)=0 = X(0)=C1+C,=0=C;=—-0Cs,
X(B)=0 = X(Bi)=CreV "+ Coe V" =0,



Since C; = —C5 then from last equation in (13) it follows that:
Ci( eV VP — VTR Yy — (14)

#0 since /—v is real (v<0)

Thus,
01 =0 — Cl = —Cg =0 — X(:c) =0. (15)

We observe from the equation above that for v < 0 we obtain only trivial
solution X (z) = 0.
2) When v = 0 we obtain again only trivial solution X (z) = 0.

3) When v > 0 the solution of (7) can be written as
X (x) = Dy cos(v/vz) + Dysin(y/vz). (16)
Using boundary condition in (7) we get
X(0) = Dycos(0) + Dysin(0) =0 = D;=0 (17)
and
X(B) = \Dfl’cos(ﬁﬁl) + Dy sin(v/vB1) = Dasin(vvp). (18)
=0

Here, the constant Dy # 0, meaning sin(y/vf1) = 0. We observe that sin(/v01) =
0 when /v = £, n € Z. Thus, non-zero solution of (7) exists when

v=("2)2 nez. (19)
1
Taking the coefficient Dy = 1, the solution of (7) will be written as X, (z) =
sin(Gre),n € Z.
In the same way we can find non-trivial solution of (8). When p > 0 the
solution of (8) can be written as

Y (y) = Cy cos(y/uy) + Casin(y/py). (20)

Using boundary condition in (8) we get C; = 0. We observe that sin(/z32) = 0
when /u = 7, m € Z. Thus, the non-trivial solution of (8) will be when

B
™
=(—=)% meclk. 21
p=( % ) (21)
Again, taking coefficient Co = 1 the non-trivial solution of (8) will be:
. Tm
Y (y) = sin ﬁ—y, m € Z. (22)
2

We can conclude that discrete solutions of the problem (1) can be written as

Unm (2, 1Y) = Xn ()Y (y) = tpm sin T8 sin 22 m,n €7 (23)

By Y



and they are particular solutions for problem (1). Here, wuy,;, are coeflicients
which can be determined computationally. We observe that functions wpm, (z, )
are orthogonal.

The common solution of (1) is given by summing particular solutions in (23):

u(z,y) = ZZunm(m,y) = ZZunm sin %x sin %y, (24)

m

or as

u(z,y) = Z Z Unm pn(T) P (Y) (25)

with eigenfunctions

pu() = sin =,

B
m (26)
pm(y) = s ——y.
B2
Their corresponding eigenvalues are
Aum = Wl = U + fim = (52)2 4+ (500 (27)
B B2

3 Solvability of Helmholtz equation in 2D
Let us consider now the following problem for Helmholtz equation in 2D in Q:

Au(w,y) +w?e(z,y)u(z,y) = f(z,y),

u(z,y) =0 on 0. (28)

3.1 Homogeneous medium

Let us analyze first the case e(x,y) = 1 in (28). Thus, we consider the problem
(1). As we already know from the previous section, we can seek solution of (1)
in the form (25)

u(z,y) = Z Zunmpn<x)pm(y)~ (29)

m=1n=1

Substituting (29) in (28) noting that

f(:v,y) = Z Z fnmpn(x)pm(y)’ (30)

m=1n=1

we obtain

Fe) =33 (2 o) )+ Lm0 (o)

0x? Oy?
m:lozzloo (31)
+ w? Z Z unmpn(x)pm(y)
m=1n=1



This equation can be rewritten as:

oo o0

= 3> wnl T o) + 22 0) + )]

m=1n=1

Here, p,,(z) and p,,(y) are eigenfunctions
pn () = sin H:r:, n € Z,
B

. mm
pm(y) = sin Ey, m € 7,

corresponding to the eigenvalues

nm
Vn = (E)Qv
mm
Hn = (E)27
such that
2 =A =Vp+ Un = E 2 m 2~
B b i = (02 + (50)
Since py(z) = sin 5T, then
Ppul) _ D Opula) _mm, nm
Ox? 81‘( ox ) (ﬁl) Sm/j v
dpn () nm Ex
oxr B B
Next, since pm (y) = sin ‘Zry we get:
Ppm(y) 9 dpm(y), _ 5. T
ayQ - aiy( 8y )7 (62) SI 5 Y,
Opmly) _ mm - mm
dy B B

Note that for Q C R? Au = 612 + 8 . Using (29) we get

o0 o0 2
J Z => Zunm;’ g;gx)pm(y)

m=1n=1

=3 Y wan P 0

m=1n=1

(32)

(33)

(34)

(38)



Using (36), (37) equations (38) can be rewritten as

Z Z Upn (— mT (sin n—a:)(bln —), (39a)

m=1n=1 B ﬁQ
32% S S (T2 i T ) (sin P
— mz_; ;unm G (sin ") (sin ) (39D)

Thus, for Au = L %’; = we get:

ox?

—Vn pn () pm(Y)
mm nmw
+ Unm (———)* (sin ——y) (sin —x),
>y 2 i 0T ) s 2"
a,_/%,_/a,_/
—Hm pm(y) pn ()
which we can write as

Au = Z Z Unm [—Vn = pn] o () pin (Y).- (41)

m=1n=1

We also can rewrite the above equation as

Z Z (Un + tm)] pn () pim ( Z Zunm Anm) P (@) P (Y).-

——

Moo m=1n=1
(42)
Substituting (42) into discretized Helmholtz equation (32) we have

=2 2 (= am)pn(@)pm ()

m=1n=1
(43)

+ w2 Z Z Unmpn(x)pm(y)u
m=1n=1

or applying (30) in the left hand side of (43) we get

m=1n=1 m=1
From the above equation we observe that

fom
“ _)\nm + w2 ( )



Basing on (50) we can formulate conditions when the problem (1) is well-
defined and when it is an ill-posed problem in 2D. These conditions are formu-
lated in Lemma 1.

Lemma 1 The problem (1)

Au(z,y) +wu(z,y) =0, (z,y) €,
uw=0 on 0f,
is well defined if w? # A, with

nm

By

mi

E)Q’ n,m € Z. (46)

Anm:Vn""/me:( )2+(

More precisely, the problem (1)

e 1) has unique solution if w? # A\, Vm,n € Z.
e 2) has no solution if w? = \,,, for some m,n € Z and f,,,, # 0.

e 3) has an infinite set of solutions if w? = A\, for some m,n € Z and
fnm =0.

3.2 Non-homogeneous medium

Let us now analyze the case e(z,y) € C2(£2) and consider the following problem
for Helmholtz equation in 2D:

Au(m,y) + WQE(may)u(Iay) = f(a:,y), (:v,y) €N

u(z,y) =0 on . (47)

Figure below illustrates the computational domain with non-constant function
e(z,y).:
y

65

Performing similar analysis as in section
3.1 we can obtain eigenvalues A := v+p
and their discrete analog will be:

™

By

) +(Z2)2 (48)

Anm = Un+pm = ( 62




We approximate now £(z,y) by piecewise-constant functions &, for all m,n
such that equations (43) will be transformed to the following equations

Unim (= Anm) P (T) pm (y) + w? Z Z EnmUnm Pn(T) pm (Y),

m=1n=1

NE
NE

fz,y) =

Il
-
3
Il
N

m

f(xv y) = (_Anm + Enmw2)unmpn(m)pm(y)

M8
e

3
I
_
3
I
_

(49)
Applying (30) in the left hand side of (49) we get
fnm

Upm — V5 -
_)\nm + Enmw2

(50)
Thus, we can formulate following Lemma for the problem (47):

Lemma 2 The problem (49)

Au(z,y) + w?eu(z,y) =0, (2,y) € Q,
u=0 on 0,

is well defined if w?e,,, # Apm With

nm
631
More precisely, the problem (49)

mi

E)27 n,m € Z. (51)

)\nm:Vn"_,U/m:( )2+

e 1) has unique solution if w? # ’E\ﬁ%Vm, n € 7.

e 2) has no solution if w? = ’E\’“"

for some m,n € Z and f,,, # 0.

nm

e 3) has an infinite set of solutions if w? = 2‘"’", for some m,n € Z and

fnm =0.

3.3 Non-homogeneous medium in stabilized model

Let us now analyze the case e(z,y) € C*(f) for stabilized problem for Helmholtz
equation in 2D:

Au(z,y) +we(z,y)u(,y) + iwau = f(z,y), (z,) € Q

u(z,y) =0  on ON. (52)

Here, the term iwawu is a damping term with damping coefficient o > 0
which plays roll of regularizaton of solution of Helmholtz equation.



Again, we perform analysis as in previous sections and obtain eigenvalues
A= v+ p and their discrete analog

My L (T
B B2
We approximate now e(z,y) by piecewise-constant functions &, for all m,n

such that equations (52) will be transformed to the following regularized equa-
tions

Anm = Vp + pim = ( )2 )2- (53)

flz,y) = Z Zunm(_)‘nm)pn(x)pm(y)

m=1n=1

=1n=1 m=1n=1

[z, y) = Z Z(_/\nm + aanQ + 1W) Uy P () P (Y).-

+
&

Applying (30) in the left hand side of (54) we get discrete solutions

_ Jrm
Unm = TN o F Enmw? + iwa (55)

Thus, we can formulate following Lemma for stabilized problem (52):
Lemma 3 The regularized problem (52)

Au(z,y) + w?eu(z,y) +iva =0, (z,y) €Q,
u=0 on 09,

is well defined for all w.
Proof
Assume that denominator in (55) is zero, or

—Anm + Enmw? + iwa = 0.

We want to find such w > 0 such that the above equation is true. Let us rewrite
this equation in the form

2 .
Enmw” + 10w — Ay, = 0

and solve it for w. We get following solutions of quadratic equation:

—ta + \/5
= 56
w ST (56)

with D = 4\ mEnm — @?. One can choose such a > 0 that D > 0. From (56) it
follows that w is complex. However, w is not complex, and thus,

_)\nm + EanQ + wa 7é 0

10
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