
Chapter 24

Lindström’s Theorem

24.1 Introduction

In this chapter we aim to prove Lindström’s characterization of first-order
logic as the maximal logic for which (given certain further constraints) the
Compactness and the Downward Löwenheim-Skolem theorems hold (Theo-
rem 19.21 and Theorem 19.30). First, we need a more general characterization
of the general class of logics to which the theorem applies. We will restrict
ourselves to relational languages, i.e., languages which only contain predicate
symbols and individual constants, but no function symbols.

24.2 Abstract Logics

Definition 24.1. An abstract logic is a pair 〈L, |=L〉, where L is a function that
assigns to each language L a set L(L) of sentences, and |=L is a relation
between structures for the language L and elements of L(L). In particular,
〈F, |=〉 is ordinary first-order logic, i.e., F is the function assigning to the lan-
guage L the set of first-order sentences built from the constants in L, and |= is
the satisfaction relation of first-order logic.

Notice that we are still employing the same notion of structure for a given
language as for first-order logic, but we do not presuppose that sentences are
build up from the basic symbols in L in the usual way, nor that the relation
|=L is recursively defined in the same way as for first-order logic. So for in-
stance the definition, being completely general, is intended to capture the case
where sentences in 〈L, |=L〉 contain infinitely long conjunctions or disjunction,
or quantifiers other than ∃ and ∀ (e.g., “there are infinitely many x such that
. . . ”), or perhaps infinitely long quantifier prefixes. To emphasize that “sen-
tences” in L(L) need not be ordinary sentences of first-order logic, in this
chapter we use variables α, β, . . . to range over them, and reserve ϕ, ψ, . . . for
ordinary first-order formulas.
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Definition 24.2. Let ModL(α) denote the class {M : M |=L α}. If the language
needs to be made explicit, we write ModLL (α). Two structures M and N for L
are elementarily equivalent in 〈L, |=L〉, written M ≡L N, if the same sentences
from L(L) are true in each.

Definition 24.3. An abstract logic 〈L, |=L〉 for the language L is normal if it
satisfies the following properties:

1. (L-Monotony) For languages L and L′, if L ⊆ L′, then L(L) ⊆ L(L′).

2. (Expansion Property) For each α ∈ L(L) there is a finite subset L′ of L
such that the relation M |=L α depends only on the reduct of M to L′;
i.e., if M and N have the same reduct to L′ then M |=L α if and only if
N |=L α.

3. (Isomorphism Property) If M |=L α and M ' N then also N |=L α.

4. (Renaming Property) The relation |=L is preserved under renaming: if the
language L′ is obtained from L by replacing each symbol P by a symbol
P′ of the same arity and each constant c by a distinct constant c′, then
for each structure M and sentence α, M |=L α if and only if M′ |=L α′,
where M′ is the L′-structure corresponding to L and α′ ∈ L(L′).

5. (Boolean Property) The abstract logic 〈L, |=L〉 is closed under the Boolean
connectives in the sense that for each α ∈ L(L) there is a β ∈ L(L)
such that M |=L β if and only if M 6|=L α, and for each α and β there
is a γ such that ModL(γ) = ModL(α) ∩ModL(β). Similarly for atomic
formulas and the other connectives.

6. (Quantifier Property) For each constant c in L and α ∈ L(L) there is a
β ∈ L(L) such that

ModL
′

L (β) = {M : (M, a)} ∈ ModLL (α) for some a ∈ |M|},

where L′ = L \ {c} and (M, a) is the expansion of M to L assigning a
to c.

7. (Relativization Property) Given a sentence α ∈ L(L) and symbols R, c1,
. . . , cn not in L, there is a sentence β ∈ L(L ∪ {R, c1, . . . , cn}) called the
relativization of α to R(x, c1, . . . cn), such that for each structure M:

(M, X, b1, . . . , bn) |=L β) if and only if N |=L α,

where N is the substructure of M with domain |N| = {a ∈ |M| :
RM(a, b1, . . . , bn)} (see Remark 1), and (M, X, b1, . . . , bn) is the expan-
sion of M interpreting R, c1, . . . , cn by X, b1, . . . , bn, respectively (with
X ⊆ Mn+1).
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Definition 24.4. Given two abstract logics 〈L1, |=L1〉 and 〈L2, |=L2〉we say that
the latter is at least as expressive as the former, written 〈L1, |=L1〉 ≤ 〈L2, |=L2

〉, if for each language L and sentence α ∈ L1(L) there is a sentence β ∈
L2(L) such that ModLL1

(α) = ModLL2
(β). The logics 〈L1, |=L1〉 and 〈L2, |=L2〉

are equivalent if 〈L1, |=L1〉 ≤ 〈L2, |=L2〉 and 〈L2, |=L2〉 ≤ 〈L1, |=L1〉.

Remark 5. First-order logic, i.e., the abstract logic 〈F, |=〉, is normal. In fact,
the above properties are mostly straightforward for first-order logic. We just
remark that the expansion property comes down to extensionality, and that
the relativization of a sentence α to R(x, c1, . . . , cn) is obtained by replacing
each subformula ∀x β by ∀x (R(x, c1, . . . , cn)→ β). Moreover, if 〈L, |=L〉 is
normal, then 〈F, |=〉 ≤ 〈L, |=L〉, as can be can shown by induction on first-
order formulas. Accordingly, with no loss in generality, we can assume that
every first-order sentence belongs to every normal logic.

24.3 Compactness and Löwenheim-Skolem Properties

We now give the obvious extensions of compactness and Löwenheim-Skolem
to the case of abstract logics.

Definition 24.5. An abstract logic 〈L, |=L〉 has the Compactness Property if each
set Γ of L(L)-sentences is satisfiable whenever each finite Γ0 ⊆ Γ is satisfiable.

Definition 24.6. 〈L, |=L〉 has the Downward Löwenheim-Skolem property if any
satisfiable Γ has an enumerable model.

The notion of partial isomorphism from Definition 21.15 is purely “alge-
braic” (i.e., given without reference to the sentences of the language but only
to the constants provided by the language L of the structures), and hence it
applies to the case of abstract logics. In case of first-order logic, we know
from Theorem 21.17 that if two structures are partially isomorphic then they
are elementarily equivalent. That proof does not carry over to abstract logics,
for induction on formulas need not be available for arbitrary α ∈ L(L), but
the theorem is true nonetheless, provided the Löwenheim-Skolem property
holds.

Theorem 24.7. Suppose 〈L, |=L〉 is a normal logic with the Löwenheim-Skolem prop-
erty. Then any two structures that are partially isomorphic are elementarily equiva-
lent in 〈L, |=L〉.

Proof. Suppose M 'p N, but for some α also M |=L α while N 6|=L α. By the
Isomorphism Property we can assume that |M| and |N| are disjoint, and by
the Expansion Property we can assume that α ∈ L(L) for a finite language L.
Let I be a set of partial isomorphisms between M and N, and with no loss of
generality also assume that if p ∈ I and q ⊆ p then also q ∈ I .
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|M|<ω is the set of finite sequences of elements of |M|. Let S be the ternary
relation over |M|<ω representing concatenation, i.e., if a, b, c ∈ |M|<ω then
S(a, b, c) holds if and only if c is the concatenation of a and b; and let T be the
ternary relation such that T(a, b, c) holds for b ∈ M and a, c ∈ |M|<ω if and
only if a = a1, . . . an and c = a1, . . . an, b. Pick new 3-place predicate symbols
P and Q and form the structure M∗ having the universe |M| ∪ |M|<ω, having
M as a substructure, and interpreting P and Q by the concatenation relations
S and T (so M∗ is in the language L ∪ {P, Q}).

Define |N|<ω, S′, T′, P′, Q′ and N∗ analogously. Since by hypothesis M 'p

N, there is a relation I between |M|<ω and |N|<ω such that I(a, b) holds if
and only if a and b are isomorphic and satisfy the back-and-forth condition of
Definition 21.15. Now, let M be the structure whose domain is the union of the
domains of M∗ and N∗, having M∗ and N∗ as substructures, in the language
with one extra binary predicate symbol R interpreted by the relation I and
predicate symbols denoting the domains |M|∗ and |N| ∗.

M

M N

M∗ N∗

I

Figure 24.1: The structure M with the internal partial isomorphism.

The crucial observation is that in the language of the structure M there is
a first-order sentence θ1 true in M saying that M |=L α and N 6|=L α (this re-
quires the Relativization Property), as well as a first-order sentence θ2 true in
M saying that M 'p N via the partial isomorphism I. By the Löwenheim-
Skolem Property, θ1 and θ2 are jointly true in an enumerable model M0 con-
taining partially isomorphic substructures M0 and N0 such that M0 |=L α and
N0 6|=L α. But enumerable partially isomorphic structures are in fact isomor-
phic by Theorem 21.16, contradicting the Isomorphism Property of normal
abstract logics.

24.4 Lindström’s Theorem

Lemma 24.8. Suppose α ∈ L(L), with L finite, and assume also that there is an
n ∈ N such that for any two structures M and N, if M ≡n N and M |=L α then
also N |=L α. Then α is equivalent to a first-order sentence, i.e., there is a first-order
θ such that ModL(α) = ModL(θ).
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Proof. Let n be such that any two n-equivalent structures M and N agree on
the value assigned to α. Recall Proposition 21.19: there are only finitely many
first-order sentences in a finite language that have quantifier rank no greater
than n, up to logical equivalence. Now, for each fixed structure M let θM be
the conjunction of all first-order sentences α true in M with qr(α) ≤ n (this
conjunction is finite), so that N |= θM if and only if N ≡n M. Then put θ =∨{θM : M |=L α}; this disjunction is also finite (up to logical equivalence).

The conclusion ModL(α) = ModL(θ) follows. In fact, if N |=L θ then for
some M |=L α we have N |= θM, whence also N |=L α (by the hypothesis
of the lemma). Conversely, if N |=L α then θN is a disjunct in θ, and since
N |= θN, also N |=L θ.

Theorem 24.9 (Lindström’s Theorem). Suppose 〈L, |=L〉 has the Compactness and
the Löwenheim-Skolem Properties. Then 〈L, |=L〉 ≤ 〈F, |=〉 (so 〈L, |=L〉 is equivalent
to first-order logic).

Proof. By Lemma 24.8, it suffices to show that for any α ∈ L(L), with L finite,
there is n ∈ N such that for any two structures M and N: if M ≡n N then M

and N agree on α. For then α is equivalent to a first-order sentence, from which
〈L, |=L〉 ≤ 〈F, |=〉 follows. Since we are working in a finite, purely relational
language, by Theorem 21.23 we can replace the statement that M ≡n N by the
corresponding algebraic statement that In(∅, ∅).

Given α, suppose towards a contradiction that for each n there are struc-
tures Mn and Nn such that In(∅, ∅), but (say) Mn |=L α whereas Nn 6|=L α. By
the Isomorphism Property we can assume that all the Mn’s interpret the con-
stants of the language by the same objects; furthermore, since there are only
finitely many atomic sentences in the language, we may also assume that they
satisfy the same atomic sentences (we can take a subsequence of the M’s oth-
erwise). Let M be the union of all the Mn’s, i.e., the unique minimal structure
having each Mn as a substructure. As in the proof of Theorem 24.7, let M∗

be the extension of M with domain |M| ∪ |M|<ω, in the expanded language
comprising the concatenation predicates P and Q.

Similarly, define Nn, N and N∗. Now let M be the structure whose domain
comprises the domains of M∗ and N∗ as well as the natural numbers N along
with their natural ordering≤, in the language with extra predicates represent-
ing the domains |M|, |N|, |M|<ω and |N|<ω as well as predicates coding the
domains of Mn and Nn in the sense that:

|Mn| = {a ∈ |M| : R(a, n)}; |Nn| = {a ∈ |N| : S(a, n)};
|M|<ω

n = {a ∈ |M|<ω : R(a, n)}; |N|<ω
n = {a ∈ |N|<ω : S(a, n)}.

The structure M also has a ternary relation J such that J(n, a, b) holds if and
only if In(a, b).

Now there is a sentence θ in the language L augmented by R, S, J, etc.,
saying that ≤ is a discrete linear ordering with first but no last element and
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such that Mn |= α, Nn 6|= α, and for each n in the ordering, J(n, a, b) holds if
and only if In(a, b).

Using the Compactness Property, we can find a model M∗ of θ in which
the ordering contains a non-standard element n∗. In particular then M∗ will
contain substructures Mn∗ and Nn∗ such that Mn∗ |=L α and Nn∗ 6|=L α. But
now we can define a set I of pairs of k-tuples from |Mn∗ | and |Nn∗ | by putting
〈a, b〉 ∈ I if and only if J(n∗ − k, a, b), where k is the length of a and b. Since
n∗ is non-standard, for each standard k we have that n∗ − k > 0, and the set I
witnesses the fact that Mn∗ 'p Nn∗ . But by Theorem 24.7, Mn∗ is L-equivalent
to Nn∗ , a contradiction.
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