Exam Set theory, LOG120

2019-10-30

This exam is marked and graded anonymously using code numbers. Please enter your name and personal identity number below. Then enter only the code number on each answer sheet.

Name / Namn:
Personal identity number / Personnummer:
Code number / Tentamensnummer:

No aids are permitted.

- 1. State the definition of an ordered pair and list all the elements of the set (3p) $\langle \{\emptyset\}, \emptyset \rangle$.
- 2. Show that if $A, B \neq \emptyset$ and $A \times B = B \times A$ then A = B. (3p)
- 3. Show that if $f : A \to B$, $g : B \to A$ are such that $g \circ f : A \to A$ is a (4p) bijection then f is one-one and g is onto.
- 4. The successor (class) function $x^+ = x \cup \{x\}$ is defined on all sets x. Show (3p) that if $x^+ = y^+$ then x = y.
- 5. (a) What is an ordinal? Define. (4p)
 - (b) What is a transitive set? Define.
 - (c) Give an example of a transitive set that is not an ordinal.
- 6. Show that $1 \oplus \omega = \omega$ and that $\omega \oplus 1 \neq \omega$. (4p)
- 7. Frege defined the natural number 1 as the set A of all sets with exactly one (3p) element, i.e., $A = \{ x \mid x \approx \{ \emptyset \} \}$. Show in ZF that no such set A exists.

Max points: 24. 12 points are required for Pass (G) and 18 for Pass with distinction (VG).

Fredrik Engström, fredrik.engstrom@gu.se, 031 - 786 6335