LOGIC University of Gothenburg EXAM 2020-10-26 Logical theory part I, LOG111

Books and lecture notes are permitted, as are computers. However, no interaction with other people (except with the teacher) during the exam is allowed.

- Deduce the following formulas when possible and prove that no such deduction exists other- (4p) wise:
 - (a) $\exists x P(x, x) \to \exists x \exists y P(x, y)$
 - (b) $\exists x \exists y P(x, y) \rightarrow \exists x P(x, x)$
 - (c) $\forall x P(x) \rightarrow \forall x (P(x) \lor Q(x))$
 - (d) $(\varphi \to (\psi \to \sigma)) \to ((\varphi \to \psi) \to \sigma)$
- 2. Let $\mathscr{L} = \emptyset$ be the empty language, i.e., there are no non-logical symbols (remember that (3p) equality is a logical symbol). Let $\Gamma = \{ \forall x \forall y (x = y) \}.$
 - (a) Show that for all \mathscr{L} -sentences φ either $\Gamma \vdash \varphi$ or $\Gamma \vdash \neg \varphi$.
 - (b) Find a sentence φ in a larger language such that $\Gamma \not\vdash \varphi$ and $\Gamma \not\vdash \neg \varphi$.
- 3. For each pair of the following structures decide whether $M \equiv N$ and/or $M \cong N$. Motivate (3p) your answer.
 - $(\mathbb{N}, <),$
 - $(\mathbb{N} \setminus \{0\}, <)$
 - $(\mathbb{Z}, <)$

where < is the usual strict order on natural numbers and integers.

4. Let Γ₁ and Γ₂ be sets of sentences in the same language L and suppose that an L-structure M (3p) is a model of Γ₁ iff it is not a model of Γ₂. Show that both Γ₁ and Γ₂ are finitely axiomatizable.
(Γ is finitely axiomatizable if there is a finite set of sentences Δ such that Γ ⊢ φ iff Δ ⊢ φ.)

Continued on Next page.

- 5. Consider the following formal system for partial orders. Fix a non-empty (countable) set X. (12p)
 - The symbols used are one constant symbol, c_x , for each $x \in X$, and two binary relation symbols: < and $\not<$.
 - The formulas are of the forms (and only of these forms) $c_x < c_y$, $c_x \not< c_y$, or \perp for $x, y \in X$. Observe that there are no connectives and no quantifiers in this system, and thus no complex formulas.
 - The structures are of the form (X, R) where X (same fixed set as above) is the domain and R is a partial order on X, i.e., a binary relation that is irreflexive and transitive.
 - $\Gamma \vdash \varphi$ is defined by using the following rules:

$$\frac{c_x < c_x}{\bot} \mathbf{R} \qquad \begin{array}{c} \frac{c_x < c_y & c_y < c_z}{c_x < c_z} \mathbf{T} & [c_x \not< c_y] & [c_x < c_y] \\ \vdots & \vdots \\ \frac{c_x < c_y & c_x \not< c_y}{\bot} \bot & \frac{\bot}{c_x < c_y} \mathbf{RAA_1} & \frac{\bot}{c_x \not< c_y} \mathbf{RAA_2} \end{array}$$

- (a) Give a deduction showing that $c_x < c_y \vdash c_y \not< c_x$.
- (b) Give a definition of (X, R) ⊨ φ where R is a partial order on X and of Γ ⊨ φ, where Γ is a set of formulas and φ is a single formula.
- (c) Give an outline of a soundness proof for the formal system and prove the induction step for RAA₁ in detail.
- (d) Prove that $\Gamma \models \varphi$ implies $\Gamma \vdash \varphi$.
- (e) Let $\Gamma \vdash_i \varphi$ mean that φ is deducible from Γ without using RAA₁ or RAA₂. Prove the model existence lemma, i.e., that if $\Gamma \nvDash_i \bot$ then Γ is satisfiable.
- (f) Prove that $\Gamma \models \varphi$ does not in general imply $\Gamma \vdash_i \varphi$.

Max points: 25. 12 points are required for Pass (G) and 18 for Pass with distinction (VG).

Fredrik Engström, fredrik.engstrom@gu.se, +46 - 31 - 786 6335