
I l@ve RuBoard

• Table of Contents

Object Design: Roles, Responsibilities, and Collaborations
By Rebecca Wirfs-Brock, Alan McKean

Publisher : Addison Wesley

Pub Date : November 08, 2002

ISBN : 0-201-37943-0

Pages : 416

Noted object technologists Rebecca Wirfs-Brock and Alan McKean present a modern, thoughtful treatment on the

design of object software.

Introduces Responsibility-Driven Design, the expert authors' proven method to building better software.

Practical strategies for increasing software's reliability and flexibility.

Helps reader discriminate important design choices from mundane ones, and to acquire a fundamental set

of techniques that can be intelligently practiced

After more than ten years, object technology pioneer Rebecca Wirfs-Brock teams with expert Alan McKean to

present a thoroughly updated, modern, and proven method for the design of software. The book is packed with

practical design techniques that enable the practitioner to get the job done. Like many human endeavors, design is

part art, part engineering, part guesswork, and part experimentation. Discipline, hard work, inspiration, and sound

technique all play their part as well. For any given problem, there are many reasonable, but only a few very good

solutions. The authors' goal is to help readers learn to make those very good design decisions on their own. The

book explores challenges that software developers will face as they build their design, and shows how design

patterns can be used to solve design problems. Long awaited and eagerly anticipated, this book represents the first

great software design book of the century. A FUTURE CLASSIC!

Rebecca Wirfs-Brock is the founder of Wirfs-Brock Associates where she consults with clients on development

http://www.informit.com/safari/author_bio.asp@ISBN=0201379430
http://www.informit.com/safari/author_bio.asp@ISBN=0201379430

practices and methods. Formerly, she was Chief Methodologist and Director of the Object Development Center of

Excellence at Parc-Place Digitalk. She was the lead author of Designing Object-Oreinted Software, Prentice-Hall,

1990. Alan McKean is the co-founder of Wirfs-Brock Associates. He was formerly Object Methodologist at

Parc-Place Digitalk. An experienced speaker and software developer, he has developed socre curricula in

object-oriented design, programming, and distributed object systems.

I l@ve RuBoard

I l@ve RuBoard

• Table of Contents

Object Design: Roles, Responsibilities, and Collaborations
By Rebecca Wirfs-Brock, Alan McKean

Publisher : Addison Wesley

Pub Date : November 08, 2002

ISBN : 0-201-37943-0

Pages : 416

 Copyright

 Foreword

 Foreword

 Preface

 How To Read This Book

 Acknowledgments

 Chapter 1. Design Concepts

 Object Machinery

 Roles

 Object Role Stereotypes

 Roles, Responsibilities, and Collaborations

 Object Contracts

 Domain Objects

 Application-Specific Objects

 Interfaces

 Classes

 Composition

 Inheritance

 Object Organizations

 Components

 Patterns

 Frameworks, Inc.

 Architecture

 Architectural Styles

 Design Description

 Summary

http://www.informit.com/safari/author_bio.asp@ISBN=0201379430
http://www.informit.com/safari/author_bio.asp@ISBN=0201379430

 Further Reading

 Chapter 2. Responsibility-Driven Design

 A Process for Seeing, Describing, and Designing

 Writing the Script: Analysis Descriptions

 Casting the Characters: Exploratory Design

 Tuning the Production: Design Refinement

 Summary

 Further Reading

 Chapter 3. Finding Objects

 A Discovery Strategy

 Looking for Objects and Roles, and Then Classes

 Why Tell a Design Story?

 Search Strategies

 What's in a Name?

 Describing Candidates

 Characterizing Candidates

 Connecting Candidates

 Looking for Common Ground

 Defend Candidates and Look for Others

 SUMMARY

 FURTHER READING

 Chapter 4. Responsibilities

 What Are Responsibilities?

 Where Do Responsibilities Come From?

 Strategies for Assigning Responsibilities

 Implementing Objects and Responsibilities

 Testing Your Candidates' Quality

 Summary

 Further Reading

 Chapter 5. Collaborations

 What Is Object Collaboration?

 The Design Story for the Speak for Me Software

 Collaboration Options

 Strategies for Identifying Collaborations

 Simulating Collaborations

 Designing Good Collaborations

 Making Collaborations Possible

 When Are We Finished?

 Summary

 Further Reading

 Chapter 6. Control Style

 What Is Control Style?

 COntrol Style Options

 Making Trade-Offs

 Developing Control Centers

 A Case Study: Control Style for External User Events

 Summary

 Chapter 7. Describing Collaborations

 Telling Collaboration Stories

 A Strategy for Developing a Collaboration Story

 Establishing Scope, Depth, and Tone

 Listing What You Will Cover

 Deciding on the Level of Detail

 Choosing the Appropriate Form

 Tell It, Draw It, Describe It: Guidelines

 Organizing Your Work

 Preserving Stories

 Summary

 Further Reading

 Chapter 8. Reliable Collaborations

 Understanding the Consequences of Failure

 Increasing Your System's Reliability

 Determining Where Collaborations Can Be Trusted

 Identifying Collaborations To Be Made Reliable

 Designing A Solution

 Documenting Your Exception-Handling Designs

 Reviewing Your Design

 Summary

 Further Reading

 Chapter 9. Flexibility

 What Does It Mean to Be Flexible?

 Degrees of Flexibility

 The Consequences of a Flexible Solution

 Nailing Down Flexibility Requirements

 Recording Variations

 Variations and Realizations

 The Role of Patterns in Flexible Designs

 How to Document a Flexible Design

 Changing a Working System's Design

 Summary

 Further Reading

 Chapter 10. On Design

 The Nature of Software Design

 Tackling Core Design Problems

 Frame the Problem

 Dealing with Revealing Design Problems

 Strategies for Solving Revealing Problems

 Working on the Rest

 Designing Responsibly

 Further Reading

 Bibliography

I l@ve RuBoard

I l@ve RuBoard

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the

designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied

warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or

consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales. For more

information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

(317) 581-3793

international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Control Number: 2002112293

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the

publisher. Printed in the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written request to:

Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/default.htm

Text printed on recycled paper

12345678910—CRW—0605040302

First printing, November 2002

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Foreword

by Ivar Jacobson

Software development is very different than it was over 10 years ago when Rebecca first introduced us to

Responsibility-Driven Design. Use cases are now widely used to gather system requirements. The Unified Modeling

Language is now the common tool for describing software designs and architectures. Object-oriented languages are

everywhere. Business pressures demand that we develop systems quickly and react to changing market demands.

Good software design, however, remains essential. Object Design advances the state of the art as well as the

practice of software design using objects. It offers a powerful way of thinking about software in terms of roles,

responsibilities, and collaborations. Use cases specify the role of your system when interacting with its users.

Designers transform use cases into responsibilities of objects. This higher-level view of a design, which focuses on

responsibilities that are tied to your system's usage, helps you step away from implementation details and focus on

what the appropriate software machinery should be. Once you understand that, then you can decide how to

implement your design using classes, interfaces, and inheritance hierarchies.

Object Design presents a "theatre of design ideas." It is full of stories, design examples, and commonsense advice. It

offers a vocabulary for characterizing object roles, application control styles, and design problems. It presents

practical strategies for finding candidate objects and offers sound advice for naming them.

This book is more than an introduction to design. It also offers in-depth treatments of design topics that will be of

interest to the most experienced software designers. It explores how to effectively use design patterns, make

trade-offs, and reason about design alternatives. It demonstrates the consequences that seemingly simple design

decisions have on the distribution of responsibilities among collaborators. In the chapter on control style, the authors

present one solution to a problem and then work through several alternatives, discussing each of their relative merits.

Another chapter is devoted to designing reliable collaborations and establishing "trusted" collaboration regions. This

book takes design seriously!

There isn't just one way to think about and describe a design. Informal techniques and tools can complement more

formal ones. In this new, agile world, we need to use a variety of tools and techniques to communicate design ideas.

Whether you are new to object technology or an experienced developer, this book is a rich source of practical advice.

Ivar Jacobson

Rational Software Corporation

August 2002

I l@ve RuBoard

I l@ve RuBoard

Foreword

by John Vlissides

What makes for effective pedagogy? Well, first you avoid words like "pedagogy." Next, you learn all about your

subject because a robust mental model is a prerequisite to enlightening others. Then you need a stockpile of

examples that illustrate the model—varied examples that hit it from different angles. Finally, you must present the

material smoothly and progressively like the graceful blooming of a rose under time-lapse photography.

If that's the gist of good teaching, then this book is its embodiment. Rebecca and Alan are master expositors, and

they have done a masterful job conveying Responsibility-Driven Design, their model of object-oriented expertise.

Conceived in the late 1980s, Responsibility-Driven Design has developed into a principled yet pragmatic approach

with a big following. It was perhaps the first methodology to capitalize on the fundamental advance of

objects—moving away from a mathematical, algorithmic view of programming to one of autonomous objects, each

with its own responsibilities, collaborating in time and space much as people do. Object languages had captured the

mechanisms that made an advance possible; Responsibility-Driven Design captures the thinking and practices that

make objects live up to their promise.

This book explains the concept and practice of Responsibility-Driven Design in the context of modern software

technology, rich with examples in contemporary object language, informed by the growing body of software patterns,

and couched in notational (read "UML") standards. Unlike many works with comparable goals, there's nothing

daunting about this book. The authors ease you into the material and keep you engaged with a steady revelation of

wisdom. From beginning to end, this book teaches effectively.

But this isn't just a book for beginners. It's filled with practical techniques and advice for all practitioners, experts

included. The more expertise you have, the harder it is to know what you don't know, and the more susceptible you

become to over design and the dreaded second-system syndrome. The authors' treatments of flexibility and the

nature of software design is especially insightful, revealing the relationship of variability to problem focus, strategies

for solving "wicked" problems, and the synergies between agile and Responsibility-Driven Design. No matter what

your technical persuasion, regardless of the school of design you practice, the wisdom here will enlighten you.

You're holding the definitive work on Responsibility-Driven Design of object software. More importantly you're

embarking on what may be the most efficient path to designing better software.

John Vlissides

IBM T.J. Watson Research

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Preface

This book is about designing object software. Like many human endeavors, design is part art, part engineering, and

part guesswork and experimentation. Discipline, hard work, inspiration, and sound technique all play their parts.

Although software design is a highly creative activity, the fundamentals can be easily learned. Strategies and

techniques exist for developing a design solution, and this book is packed with practical design techniques that help

you get the job done. We hope you will become adept at thinking in objects and excited about devising solutions that

exploit object technology.

You can consider design choices only in light of what you know to be relevant and important. To achieve good

results, you need to learn how to discriminate important choices from mundane ones and how to acquire a good set

of techniques that you intelligently practice. The informal tools and techniques in this book that don't require much

more than a white board, a stack of index cards, a big sheet of paper, and chairs around a table. Oh yeah, be sure to

bring your brain, too!

But more important than a grab bag of techniques are the fundamental ways you view a design. Although the

techniques we present in this book are independent of any particular implementation technology or modeling

language or design method, our approach to object design requires a specific perspective:

Objects are not just simple bundles of logic and data. They are responsible members of an object

community.

This approach, called Responsibility-Driven Design, gives you the basis for reasoning about objects.

Most novice designers are searching for the right set of techniques to rigidly follow in order to produce the correct

design. In practice, things are never that straightforward. For any given problem there are many reasonable solutions,

and a few very good solutions. People don't produce identical designs even if they follow similar practices or apply

identical design heuristics. For each problem you approach, you make a different set of tactical decisions. The effects

of each small decision accumulate. Your current design as well as your current lines of reasoning shape and limit

subsequent possibilities. Given the potential impact of seemingly inconsequential decisions, designers need to

thoughtfully exercise good judgment.

Your primary tool as a designer is your power of abstraction—forming objects that represent the essence of a

working application. In a design, objects play specific roles and occupy well-known positions in an application's

architecture. Each object is accountable for a specific portion of the work. Each has specific responsibilities. Objects

collaborate in clearly defined ways, contracting with each other to fulfill the larger goals of the application.

Design is both a collaborative and a solo effort. To work effectively you need not only a rich vocabulary for describing

your design but also strategies for finding objects, recipes for developing a collaborative model, and a framework for

discussing design trade-offs. You will find these tools in this book. We also explore how design patterns can be used

to solve a particular design problem and demonstrate their effects on a design. We present you with strategies for

increasing your software's reliability and flexibility. We discuss different types of design problems and effective ways

to approach them. This book presents many tools and techniques for reasoning about a design's qualities and

effectively communicating design ideas. Whether you're a student or a seasoned programmer, a senior developer or

a newcomer to objects, you can take away many practical things from this book.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

How To Read This Book

This book is organized into two major parts. The first six chapters—Chapter 1, Design Concepts, Chapter 2,

Responsibility-Driven Design, Chapter 3, Finding Objects, Chapter 4, Responsibilities, Chapter 5, Collaborations, and

Chapter 6, Control Style—form the core of Responsibility-Driven Design principles and techniques. You should get a

good grounding by reading these chapters.

Chapter 1, Design Concepts, introduces fundamental views of object technology and explains how each element

contributes to a coherent way of designing an application. Even if you are a veteran designer, a quick read will set the

stage for thinking about object design in terms of objects' roles and responsibilities. Chapter 2, Responsibility-Driven

Design, provides a brief tour of Responsibility-Driven Design in practice. Chapter 3, Finding Objects, presents

strategies for selecting and, equally important, rejecting candidate objects in an emerging design model. Chapter 4,

Responsibilities presents many techniques for defining responsibilities and intelligently allocating them to objects.

Chapter 5, Collaborations, gives many practical tips and examples of how to develop a collaboration model. Chapter 6,

Control Style, describes strategies for developing your application's control centers and options for allocating

decision-making and control responsibilities.

Chapters 7–10 explore challenges you may encounter as you develop your design. Each chapter covers a specific

topic that builds on the design concepts and techniques presented in the first part of the book. Chapter 7, Describing

Collaborations, explores options for documenting and describing your design. Chapter 8, Reliable Collaborations,

presents strategies for handling exceptions, recovering from errors, and collaborating within and across a "trusted

region." Chapter 9, Flexibility, discusses how to characterize software variations and design to support them. Chapter

10, On Design, discusses how to sort design problems into one of three buckets—the core, the revealing, and the

rest—and treat each accordingly.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Acknowledgments

A lot of people have helped us in this endeavor, and we wish to acknowledge and thank them.

First, we would like to thank our design clients and students, who over the years have kept us on our toes, have

offered much support and enthusiasm for our ideas, and have kept our focus on the practical.

We'd also like to thank our colleagues and friends with whom, over the years, we've had many thoughtful design

discussions. While at Instantiations, and later at Digitalk, we found good design practices and techniques a frequent

and energizing part of daily discussions. Our fellow consultants and trainers kept us honest: If a design technique or

concept didn't work for a real client with a real problem, it was ditched. As a consequence, what's in this book has

been proven in the trenches. And thanks to the engineers at Instantiations, who while they built amazing

object-oriented applications and tools to support Smalltalk development, offered pearls of wisdom whenever we were

able to divert their attention from their keyboards long enough to discuss their current design challenge.

We'd also like to acknowledge our editor, Paul Becker, the publication staff at Addison-Wesley, and our reviewers.

Paul, you offered constant, unwavering support. Thanks.

Rebecca's Acknowledgments

I would like to acknowledge several people who have been a spark of inspiration or a source of strength. First, I'd like

to acknowledge my coauthor, Alan McKean. You truly are a student of design. You like to think and talk and reflect.

You are excited about exploring ideas and turning them into things of value you can teach your students. Thanks for

being my constant collaborator, coauthor, and friend. I'd also like to acknowledge Dave Squire, who (long ago as my

manager at Tektronix) gave me this challenge: "Either write a book on design, lead the color Smalltalk project, or

manage the engineering team. You've got to pick one and just do it." Ignoring Dave's advice, I managed to do all

three. And I've been juggling the roles of designer, author, and manager ever since. Thanks, Dave, for believing I had

something to write about that others would want to read. Sharon Holstein encouraged me more than she knows when

she commented on my first solo efforts at writing in the Smalltalk Report. She told me that she liked reading what I

wrote because it was just like having a conversation with me. John Schwartz is another colleague who sharpened our

ideas. John read and ripped on each and every chapter of this book. I learned to not only accept but also relish his

advice, and our book is better because of it. Finally, I'd like to acknowledge the constant support and occasional

words of wisdom from my best friend and the best designer I know on this planet: my husband, Allen Wirfs-Brock.

Allen, you know how to chip in ideas at just the right time and give me that gentle prod or word of encouragement.

Alan's Acknowledgments

My ideas about design are very broad. The Universal Traveler, by Don Koberg and Jim Bagnell, a design book from

the 1970s, puts it well:

"Design is the process of making your dreams come true."

I would like to acknowledge many of the people who moved me along that path of fulfillment.

R. Buckminster Fuller, architect, industrial designer, philosopher, mathematician, poet, and humanitarian, for

demonstrating how to live a life in which genius involved both heart and mind. He helped me know that I could make

the world a better place.

Murshida Vera Corda, Sufi teacher, for showing me that laughter is the ultimate language. She opened my doors of

perception.

Richard Britz, architect, teacher, builder, and friend, for inspiring me with his devotion to good work. Surely a member

of my karass.

Sarah Douglas and Art Farley, professors at the University of Oregon, for starting me along the Smalltalk path.

Rebecca Wirfs-Brock, business partner and friend, for hiring me at Instantiations. Our work together has been more

collaborative and stimulating than I had even hoped.

Walter and Marjorie McKean, my parents, who gave me their all. Their devotion to each other is an inspiration to

everyone who knows them.

My wife, Brenda Herold, and my son, Jesse Vasilinda, my life's companions. Most of all, for showing me that love is a

verb.

I l@ve RuBoard

I l@ve RuBoard

Chapter 1. Design Concepts

Alan Kay's favorite metaphor for software objects is a biological system. Like cells, software objects don't know what

goes on inside one another, but they communicate and work together to perform complex tasks. In contrast,

monolithic software is like a mechanical clock containing innumerable gears. Each gear functions unintelligently and

only in relation to other adjacent gears. That design is hopelessly flawed. "When you're building gear clocks,

eventually you reach a certain level of complexity and it falls in on itself," says Kay.

A software object may be machinelike, but, crafted by a thoughtful designer, it can be very smart. It makes decisions;

it does things and knows things. It collaborates with potentially many other objects. Living in an enclosing machine, it

is a whole on one level and a part on another. As with a machine, or a cell, the behaviors of an object are strictly

limited to those that are designed into it. Cells and objects follow programmed instructions. But the dynamic behavior

of a software system emerges from the interactions of many objects—each contributing, each playing a responsible

role.

I l@ve RuBoard

I l@ve RuBoard

Object Machinery

All but the simplest of devices, both hardware and software, are designed from parts. These parts interact according

to someone's plan. In a physical machine, these parts touch one another or communicate through a shared medium.

Their interactions may give way to force, transfer motion, or conduct heat.

Like all good questions, "What is an object?" raises a number of others. How do objects help us think

about a problem? How are object applications different? Once we have found an object solution, can

we use it again for other purposes?

Software machinery is similar to physical machinery. A software application is constructed from parts. These

parts—software objects—interact by sending messages to request information or action from others. Throughout its

lifetime, each object remains responsible for responding to a fixed set of requests. To fulfill these requests, objects

encapsulate scripted responses and the information that they base them on (see Figure 1-1). If an object is designed

to remember certain facts, it can use them to respond differently to future requests.

Figure 1-1. An object encapsulates scripts and information.

So how do we invent these software machines?

At the heart of object-oriented software development there is a violation of real-world physics. We

have a license to reinvent the world, because modeling the real world in our machinery is not our

goal.

Building an object-oriented application means inventing appropriate machinery. We represent real-world information,

processes, interactions, relationships, even errors, by inventing objects that don't exist in the real world. We give life

and intelligence to inanimate things. We take difficult-to-comprehend real-world objects and split them into simpler,

more manageable software ones. We invent new objects. Each has a specific role to play in the application. Our

measure of success lies in how clearly we invent a software reality that satisfies our application's requirements—and

not in how closely it resembles the real world.

For example, filling out and filing a form seems simple. But to perform that task in software, behind the simple forms,

the application is validating the data against business rules, reading and refreshing the persistent data, guaranteeing

the consistency of the information, and managing simultaneous access by dozens of users. Software objects display

information, coordinate activities, compute, or connect to services. The bulk of this machine is our invention! We

follow a real-world metaphor—forms and files—but our object model includes a much richer set of concepts that are

realized as objects.

Because they have machinelike behaviors and because they can be plugged together to work in concert, objects can

be used to build very complex machines. To manage this complexity, we divvy the system's behaviors into objects

that play well-defined roles. If we keep our focus on the behavior, we can design the application using several

complementary perspectives:

An application = a set of interacting objects

An object = an implementation of one or more roles

A role = a set of related responsibilities

A responsibility = an obligation to perform a task or know information

A collaboration = an interaction of objects or roles (or both)

A contract = an agreement outlining the terms of a collaboration

"We take a handful of sand from the endless landscape of awareness around us and call that

handful of sand the world. Once we have the handful of sand, the world of which we are

conscious, a process of discrimination goes to work on it. This is the knife. We divide the sand

into parts. This and that. Here and there. Black and white. Now and then. The discrimination is the

division of the conscious universe into parts."

—Robert Pirsig

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Roles

No object exists in isolation. It is always part of a bigger machine. To fit in, an object has a specific purpose—a role it

plays within a given context. Objects that play the same role can be interchanged. For example, there are several

providers that can deliver letters and packages: DHL, FedEx, UPS, Post, Airborne. They all have the same purpose,

if not the same way of carrying out their business. You choose from among them according to the requirements that

you have for delivery. Is it one-day, book rate, valuable, heavy, flammable? You pick among the mail carriers that

meet your requirements.

A role is a set of responsibilities that can be used interchangeably.

It is useful to think about an object, asking, "What role does it play?" This helps us concentrate on what it should be

and what it should do. We have been speaking of objects and roles loosely. What is the real difference? When a role

is always played by the same kind of object, the two are equivalent. But if more than one kind of object can fulfill the

same responsibilities within the community, a role becomes a set of responsibilities that can be fulfilled in different

ways. A role is a slot in the software machinery to be filled with an appropriate object as the program runs.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Object Role Stereotypes

A well-defined object supports a clearly defined role. We use purposeful oversimplifications, or role stereotypes, to

help focus an object's responsibilities. Stereotypes are characterizations of the roles needed by an application.

Because our goal is to build consistent and easy-to-use objects, it is advantageous to stereotype objects, ignoring

specifics of their behaviors and thinking about them at a higher level. By oversimplifying and characterizing it, we can

ponder the nature of an object's role more easily. We find these stereotypes to be useful:

Information holder—knows and provides information

Structurer—maintains relationships between objects and information about those relationships

Service provider—performs work and, in general, offers computing services

Coordinator—reacts to events by delegating tasks to others

Controller—makes decisions and closely directs others' actions

Interfacer—transforms information and requests between distinct parts of our system

Just as an actor tries to play a believable part in a play, an object takes on a character in an

application by assuming responsibilities that define a meaningful role.

Software machinery is made of computation of information, maintenance of relationships, control of

external programs and devices, formatting of information for display, responding to external events

and inputs, error handling, and decision making.

Once we assign and characterize an object's role, its attendant responsibilities will follow. An object may fit into more

than one stereotype.

But is it playing one or two roles? Often we find that a service provider holds information that it needs to provide its

service. In doing so, it assumes two stereotypes—information holder and service provider—but only one role

because the responsibilities are all wrapped up together for the same customers to use. If its information is being

used solely to support its service, it assumes two stereotypes but only one role. But if it is perceived as serving two

different types of clients for different purposes, it is likely playing two roles.

Some objects are hard to stereotype because they seem to fit into more than one category. They're fuzzy. How can

you choose? You must decide what you want to emphasize. A transmission is a service provider if you emphasize

the multiplication of power by the gears. It is an interfacer if you emphasize its connections to the engine and wheels.

Can objects have more than one stereotype? If you want to emphasize more than one aspect, that's OK. There are

blends of stereotypes, just as there are blends of emphasis.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Roles, Responsibilities, and Collaborations

An application implements a system of responsibilities. Responsibilities are assigned to roles. Roles collaborate to

carry out their responsibilities. A good application is structured to effectively fulfill these responsibilities. We start

design by inventing objects, assigning responsibilities to them for knowing information and doing the application's

work. Collectively, these objects work together to fulfill the larger responsibilities of the application.

Objects and their responsibilities provide the common core for our new development process,

techniques, and tools.

One object calls on, or collaborates with, another because it needs something. Both parties are involved. One needs

help; the other provides a service. Objects work in concert to fulfill larger responsibilities. Designing collaborations

forces us to consider objects as cooperating partners and not as isolated individuals. Design is an iterative and

incremental process of envisioning objects and their responsibilities and inventing flexible collaborations within small

neighborhoods.

Clearly defined objects that stick to the point when implementing their roles are easier to understand

and maintain.

The services that an object holds and the information that an object provides define how it behaves when it exists

alongside other objects. In early design, it is enough to know that particular responsibilities are clustered into objects.

First and foremost, an object is responsible for providing and doing for others. A design model arranges

responsibilities among objects. We will explore this issue in greater detail later, but, for now, consider this:

An object embodies a set of roles with a designated set of responsibilities.

As shown in Figure 1-2, an application is a community of objects working together. They collaborate by sending

requests and receiving replies. Every object is held responsible. Each contributes its knowledge and services.

Figure 1-2. Objects collaborate to solve larger problems than they can handle alone.

An object can be more intelligent if it does something with what it knows. The smarter it gets, the fewer details a

client must know to use its services. So the client is liberated to do its work rather than take on the details of figuring

out something that it could have been told. Blending stereotypes makes the responsibilities of clients using these

hybrids easier, streamlined, and to the point. Such clients can focus on their problem, not on putting little details

together that their helpers could have done. Making objects smarter has a net effect of raising the IQ of the whole

neighborhood.

Making objects smarter also makes the system more efficient. Objects can stick to their specific tasks,

rather than worrying about details that are peripheral to their main purpose.

When objects do collaborate, they are designed to follow certain protocols and observe specific conventions: Make

requests only for advertised services. Provide appropriate information. Use services under certain conditions. Finally,

accept the consequences of using them. Object contracts should describe all these terms.

However, some of the value of a given object is determined by its neighbors. As we conceive our design, we must

constantly consider each object's value to its immediate neighborhood. Does it provide a useful service? Is it easy to

talk to? Is it a pest because it is constantly asking for help? Are its effects the desired ones? The fewer demands an

object makes, the easier it is to use. The more it can take on, the more useful it is. If an object can accommodate

many different kinds of objects that might be provided as helpers, it makes fewer demands about the exact kinds of

objects it needs around it to perform its responsibilities. Although we don't want an object's clients to have to know all

these details, we designers must consider this as we balance what each object offers to its clients with the

requirements and demands that it places on its neighbors.

Roles! Responsibilities! Collaborations! We use the roles-responsibilities-collaborations model in each of our activities

to keep our focus on the behaviors of our software machinery. As our understanding of the problem grows, the roles

and responsibilities of our objects evolve. We design and redesign the community's neighborhoods and the ways

they interact. We reinvent the object roles and shift responsibilities among them until they "fit," work together, satisfy

external constraints, and their responsibilities clearly support their purposes. We pin down more of the details until we

reach the point where we can eventually bind the responsibilities to executable code.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Object Contracts

In well-bounded situations, it is possible to know a good deal about whom an object interacts with, the circumstances

under which it is used, and what long-term effects an object has on its environment. These are spelled out in object

contracts. They deepen our knowledge of an object's responsibilities and build our confidence in our design. Without

saying how these things are accomplished, they show the conditions under which these responsibilities are called

upon (conditions-of-use guarantees), and what marks they leave when they are finished (aftereffect guarantees).

An object contract describes the conditions under which it guarantees its work and the effects it

leaves behind when its work is complete.

Conditions-of-Use and Aftereffect Guarantees

Knowing who collaborates with whom says nothing about when collaborations can succeed. "What do they expect

from me? Under what conditions do I guarantee my services? My methods may only be called in this order!" For the

designer to be confident that the object will perform the request, the requirements it places on its context must be

described in its conditions-of-use. For each responsibility, any objects or internal values (or both) that affect its

behavior should be noted, and any controls on them should be described.

This fine print of a contract specifies the conditions-of-use for each service and specifies the aftereffects of using

each of the object's services. When an object is used outside its specified conditions-of-use, it is not obligated to fulfill

the request! If an Account object has responsibilities for withdrawing cash, what are the conditions-of-use? One is

that the balance be greater than or equal to the amount being withdrawn! Or it may be more complex than that,

depending on the bank's policies regarding individual customers. The extra effort in describing these

conditions-of-use pays off in increased reliability and robustness.

Contracts are really meaningful only in the programmer's mind. Objects don't look for advertisements

and read contracts; a programmer does, and writes code with those contracts in mind.

Remember, an object's contracts with others describe how it interacts with them, the conditions under which it

guarantees its work, and the effects it has on other members of the community. For our purposes in design, it is

sufficient to know that particular services are clustered in interfaces and that these services will call on each other and

succeed given the correct conditions.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Domain Objects

Domain objects provide a common ground in which developers and users can meet and discuss the application.

Domain objects represent concepts that are familiar to users and experts in a specific field of interest. We reason

about a banking application using accounts, deposits, withdrawals, interest rates, and the like. In an airline booking

application, we speak of reservations, airplanes, seats, destinations, schedules, and so on, as concepts that we will

find in our software object model. Later, we develop the underlying structures and code and run scenarios for using

the software. Given that users and experts are familiar with these domain concepts, they can discuss these aspects

of the application easily. They feel comfortable manipulating these domain objects' information directly, and they

understand the procedures for requesting their services.

For the developers, these domain objects are only the starting point for constructing a model of the domain and for

developing the internal representations of these and additional concepts that will exist in the software machinery.

Although the original, "common" concepts might not prove valuable in the executable system, they should be

traceable through the design because they clearly express the stakeholders' understanding and issues surrounding

the application.

Although not every software design effort starts by creating a domain model, most designs consist of

certain objects that represent concepts familiar to experts in a particular domain supported by the

application.

In an object-oriented application, the domain is made of information and services that the user needs, along with

structures that relate the two (see Figure 1-3). For example, an inventory control system consists of monitoring the

stock on hand (information), adding and removing the stock (services), and supporting policies for maintaining related

stock (relations). These three aspects (information, services, and structures) apply to virtually all data-centric

applications, and we use them to guide our development of objects that fulfill these roles.

Figure 1-3. A domain model does not represent the entire domain as it is in the real world. It includes only

the concepts that are needed to support the application.

The objects in a domain model embody the application's logic in their interactions. The domain model captures, at the

most abstract level, the semantics of the application and its responses to the environment. It doesn't represent all

concepts of a domain but only those that are necessary to support the application's intended scenarios of usage. The

individual objects in the domain model hold the real, concrete responsibilities for responding to the user actions and

for creating the new information that the user requires. If we are only describing a car and aren't building a model to

execute on a computer, it's enough to construct a domain model that includes, among other things, a frame, an

engine, a transmission, a steering wheel, a steering box, a steering column, wheels, and brakes. But when we must

run it on a computer and design user interactions, we find that the domain of real-world race cars lacks many

important behaviors. We need a richer set of objects and a richer domain—that of a simulated race car in a computer

game. It is important to choose the right domain for your design problem and to recognize that objects designed to

work in one domain won't easily slip into another, seemingly similar domain.

For example, in a race car simulation, the cockpit, racetrack, and competing cars must appear on the screen as

visual images. What object from the domain of the real-world race car will do this? There isn't one! So for this

specialized purpose, we must invent an object that presents the program images and captures user input: an

interfacer.

I l@ve RuBoard

I l@ve RuBoard

Application-Specific Objects

Similarly, we need objects to translate the computer's user inputs (mouse clicks, joystick movements) to commands

to appropriate objects in the racing application. These objects transform or filter user information and then call other

appropriate objects to action. Or they may sequence movement from one screen to another, switching views of the

race track and replaying the images and sounds of exciting crashes. These computer and application-specific

objects—the interfacers, coordinators, and special service providers—supplement the domain model of the simulated

race car with program-specific behaviors and glue the application together.

Object-oriented software is a community of objects. In this community, each citizen provides

information and computing services to a select group of its neighbors. The design of well-formed

patterns of collaboration lies at the heart of any object design.

As we shift our view from the model of the domain to objects that are important to the actual workings of the software,

we encounter many such application objects. For example, when a typical application is launched, there is at least

one special startup object that creates the first population of objects. When this group is initialized and ready, the

startup object passes control to them. The application is off and running. As the user navigates through the

application, this initial group of objects responds to user actions, either by directly fulfilling the requirements of the

application or by creating and delegating work to a new batch of objects that have been designed for specific

purposes. As execution continues, new citizens of this object community are born, live, and die, according to the

needs (and design) of the application.

Designers construct an executable application that is "true" (by some argument) to other stakeholders' views, even

as it adds many new application-specific objects: objects that monitor inputs and user events; application-specific

data formatters, converters, and filters that act out their roles behind the scenes; and other objects that reach out to

the external world of databases, devices, networks, and other computer programs (see Figure 1-4). Developers

naturally need a more detailed view.

Figure 1-4. An application model supplements the domain model with computer-specific objects for

responding to the user, controlling execution, and connecting to outside resources.

The user interface, application specifics, domain concepts, and even persistent stores can be viewed

logically or concretely. Users and domain experts typically are concerned only with a more abstract, or

logical, view. Developers are interested in all views of the system and they must move among

implementation details, design, and more abstract concepts if they want to communicate effectively.

The user's and the designer's views represent two different levels of thinking about applications and objects. The user

view holds a representation of the highest-level concepts—the information, services, and rules of the domain under

consideration. The designer invents aspects of coordination and connectivity to other systems and devices,

reasoning about the application in a fundamentally different, lower level: the level of computer processes,

computations, translation, conditional execution, delegation, and inputs and outputs. The key to developing a

successful application lies in our ability as designers to wed these two views without compromising either.

I l@ve RuBoard

I l@ve RuBoard

Interfaces

Eventually, an object expresses its responsibilities for knowing and doing for others in methods containing code. An

interface describes the vocabulary used in the dialog between an object and its customers: "Shine my shoes. Give

me my shoes. That'll be five bucks, please. Here's your receipt." The interface advertises the services and explains

how to ask for them.

It is often important to know more than just what an interface declares. To use an object's services, the conditions

under which a service can be invoked may be important. Or an important side effect may need to be revealed.

Consider a gear in a machine. The number of teeth and the spacing between the teeth defines the gear's interface.

This determines whether a gear will fit into a machine. But what if we replace one gear with another, built from a

different alloy than the other gears? This new gear fits the interface, but as the gears turn, it may tend to overheat or

break because it has different stress load characteristics. Its interface says nothing about this real-world limitation.

The more we publish about the behavior of an object, the more likely it is that it will be used as its designer intended.

From a client's viewpoint, an object is more than its interface:

An object implements interfaces and affects other objects.

We separate an object's design into three parts: its public interface, the terms and conditions of use,

and the private details of how it conducts its business.

So what about information hiding? We're not talking about exposing everything about an object, but only the services

and terms that are of concern to the client. We purposely hide the workings of our object's machinery. An object is a

semiautonomous member of the community, stating, "It's none of your business how I do my job, as long as I do it

according to our agreement! I don't want customers peeking inside to see how I conduct my business." It is the

implementation of the object, not what to expect from it, that should be hidden.

Only the designers of an object's inner machinery should care about how an object implements its

responsibilities.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Classes

The term class is used, in mathematics and in everyday life, to describe a set of like things. It describes all of these

elements in a general way but allows each instance of the class to vary in nonessential features. Whereas the class is

abstract and conceptual, the instances are concrete, physical objects. The visual image that appears to us at the

mere mention of a tree contains the essential features that enable us to recognize any of the instances of tree when

we see one. We easily distinguish between a car and a truck when one vehicle adheres to one description or the

other, sport utility vehicles aside.

This everyday notion of a class also applies to software objects. We build our applications from sets of like objects.

But a software class has some features that are specific to the software world. An object-oriented programming

language allows a programmer to describe objects using classes and to define their behaviors using methods. There

are additional requirements of an object-oriented programming language, but these two are key. They provide us with

all that we need to build an application from objects.

Unlike a mathematical class, a software class is not simply an abstraction. Like the instances that it describes, it is

concrete. To see it, you don't have to conjure it from nothing because it is described on index cards, diagrammed with

a design notation, and written in programming code. You can pick it up, turn it over, read its description. It is an

object. The features that we give the class are the features that we desire in its instances. Every responsibility for

"knowing," "doing," or "deciding" that we assign to its instances becomes concrete in the class definition and the

instance methods that the class contains.

Two Roles

If a software class provides two distinct sets of services, usually to two different sorts of clients, the class is said to

play two roles. First, it plays a role that has no real-world analog. During program execution, a class acts as a factory

for manufacturing, or instantiating, the instances required by the program (see Figure 1-5). It populates the computer

memory with physical, electromagnetic objects, and it binds these memory areas to sets of instructions that they are

responsible for. Our design objects—the abstract machines, roles, and clusters of responsibility that we invent to

satisfy our design requirements—become classes in program code.

Figure 1-5. A class, when acting as a factory, manufactures (instantiates) objects that the application needs.

Classes play two roles. First, they act as factories, instantiating instances and implementing

responsibilities on their behalf. Second, they act as an independent provider, serving clients in their

neighborhood.

A class holds the blueprints for building instances. By defining a set of instance methods, it declares the names of the

behaviors that other client objects can use. When an instance responds to a request from a client, it performs the

corresponding method scripted in its class. The details of how the instances perform a task are pinned down in the

instance's class definition and in its collection of instance method definitions. By browsing the instance's class and its

instance methods, you can see whether the instance performs its responsibilities alone or delegates portions of its

task to other objects in its neighborhood.

Classes hold the "shape" of the objects that they make.

Classes are the building blocks of our application. Just as we describe a single object through the attributes and

operations defined in its class, we describe the relations among instances via corresponding relations among

classes. For example, the millions of owner relations between people and cars can be abstracted into a single owner

relation between the classes of the two.

Relations among classes describe the myriad potential relations among run-time instances.

In addition to its role as an object factory, the class can act as an object itself, with its own set of responsibilities. In

this role, it provides information and services to other objects through its own interface. Often, its only clients are the

instances that it has produced, but in other cases, it acts as the sole provider of data and services to a number of

different kinds of objects. In fact, as shown in Figure 1-6, when a single object of its kind is sufficient, a class can be

designed to shed its instance factory role and assume the role of the object that is needed.

Figure 1-6. A class can also act as an object when the application needs only one of its kind.

Despite a shared definition, instances will often behave differently because their behavior can depend

on the values of their private data or different helpers in their neighborhood.

Given the same conditions, all instances of a given class behave in the same way. They form a set of like objects.

Each has a structure identical to the others, along with a set of methods that it shares with the others of its kind.

Because each instance is a separate object with its own internal data areas, it can hold private data that it shares with

no other. When asked to perform one of its responsibilities, it can base its response on this private data. A smart

object encapsulates data that affects its decisions about how it fulfills its responsibilities.

"The object has three properties, which makes it a simple, yet powerful model building block. It

has state so it can model memory. It has behavior, so that it can model dynamic processes. And it

is encapsulated, so that it can hide complexity."

—Trygve Reenskaug

Each instance performs its tasks in two contexts. It behaves according to rules established by the community in

which it lives, and it controls its actions according to its own private rules and data. The rules are usually embedded

in the methods as conditional statements in a programming language. An object's state is reflected by data held in

instance variables. These variables define the internal structure of an object and are one way an object sees others in

its neighborhood; an object can hold references to others. These references allow an object to "see," and

subsequently interact, with others. These references say nothing about how they interact—only that the potential

exists for collaboration.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Composition

There are only two types of relationships in an object model: composition and inheritance. Both have analogs in a

family tree. A composition relation is like a marriage between objects. It is dynamic, it happens during the

participating objects' lifetimes, and it can change. Objects can discard partners and get new partners to collaborate

with. Inheritance relations are more like births into the family. Once it happens, it is forever. Just as both marriage and

ancestry appear in the same family tree, composition and inheritance coexist in a single object model.

A family tree describes the structural relations of a group of people. Someone is added to the tree in

one of two ways: by marriage or by birth.

We can extend an object's capabilities by composing it from others. When it lacks the features that it needs to fulfill

one of its responsibilities, we simply delegate the responsibility for the required information or action to one of the

objects that the object holds onto. This is a very flexible scenario for extension. As the program continues execution,

it plugs components together, dynamically, according to the conditions of the application.

For objects to communicate, they must know about each other for the duration of their collaborations. Composition is

one way to create those paths of communication. Passing a helper object along with a request, or creating a new

instance, are two other ways that an object gains visibility of potential collaborations.

I l@ve RuBoard

I l@ve RuBoard

Inheritance

Inheritance is another way to extend an object's capabilities. But whereas composition is dynamic, inheritance isn't.

It's static. The merging of the superclass responsibilities and the extension of its subclasses are done at compile time

and not run time. Objects are not plugged together; instead, the descriptions used to compile them (the classes) are.

An instance uses another's responsibilities through collaboration. An instance assumes another's

responsibilities through inheritance.

Every inheritance relationship between two classes involves two roles: the superclass role and the subclass role.

Each acts out its role during development. With few exceptions, a subclass assumes all of the responsibilities

outlined in the superclass and adds new responsibilities of its own. The subclass inherits all of the features encoded

in the superclass and has the responsibility for instantiating objects having those features. The subclass extends the

superclass. In this arrangement, the superclass contains features that are common to all of its subclasses, and each

subclass not only creates its own instances but also adds features to them that are not described in the superclass. A

subclass extends the superclass by adding attributes and operations. An instance's responsibilities are the union of

all of the responsibilities in its own class and all of the responsibilities of the superclasses that it inherits from.

It's common to say that a subclass "specializes" its superclass because the added responsibilities

make the subclass's role less general than that of the superclass.

Classes sometimes relinquish their responsibility for producing instances to their subclasses. These abstract classes

define many of the features of instances, but they require subclasses to fill in some details and to do the actual

manufacturing.

Inheritance relations demonstrate the Peter Principle. The higher in a hierarchy a class resides, the

less capable of really doing anything it becomes.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Object Organizations

As you begin to decompose your application into logical pieces, you may identify objects or roles and define classes

that implement specific roles. You may also find design elements that have a certain logical integrity but, on further

inspection, can themselves be decomposed into smaller pieces. A common term for a logical grouping of

collaborators is subsystem. Another term we use is object neighborhood. Within these organizations, objects

dynamically form alliances and work together in a loosely knit community. By contracting with each other, such a

confederation of objects serves a larger purpose than is possible for any individual.

Each object in a confederation promises to fulfill the responsibilities outlined in its contracts. Thus, each object can

depend on the others for a reliable and predictable response to its requests. Confederations are composed of

potentially many objects and often have a complex collective behavior. The synergy of the cooperative efforts among

the members creates a new, higher-level conceptual entity.

System architects may partition an application into subsystems early in design. But subsystems can

be discovered later, as the complexity of the system unfolds.

Viewed from the outside, a confederation offers a unified front. Figure 1-7 shows an example. It isn't just a "bunch of

objects"; it forms a good abstraction. Although individually each object has a specific role and responsibilities, it is the

collective behaviors of the objects that define the confederation to the rest of the application. There is no conceptual

difference between the responsibilities of an object and those of a subsystem of objects; it is simply a matter of scale

and the amount of richness and detail in your design. Often, other objects interact with a confederation in limited

ways. There may be a single object—a gatekeeper—that stands as the public representative of the larger group.

Figure 1-7. This confederation of objects forms a company devoted to specific tasks.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Components

There are other ways to package and organize pieces of a design. Components typically are design elements that are

intended to be used in a number of different applications. But designers create components for other reasons, too.

You can update or replace a component without reconfiguring the rest of the system. The insides of a component are

hidden; its services are made available through a well-defined interface. Well-designed components, regardless of

their implementation, can be plugged in and used by any object-oriented application. To be adapted for use, a

component can provide interfaces that allow clients to plug in helper components or to set properties that control

various aspects of its operation. You can design components to be used independently or to be plugged together to

build larger components or systems.

Although a single class may not be a useful unit of reuse, a component that packages a number of

services can be. Components enable medium-grained reuse.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Patterns

So far we've presented fundamental object design concepts. But there is more to object design than applying these

basic techniques. The early adopters of object technology generated many successful object applications and

strategies for solving problems. Wouldn't it be marvelous if we had those experts at our sides during our own projects

to roll their expertise into our own problem-solving efforts? Well, this community of experts has developed a means to

do just that: Patterns.

There is nothing mysterious about patterns. They simply capture the experience of expert practitioners by presenting

solutions to commonly recurring problems in a readable and predictable format. But what good is a solution if the

problem is not well understood? What are the trade-offs? When is the solution applicable? Because problems and

their solutions have an equally important context, patterns include descriptions of other aspects of the problem and its

solution.

Erich Gamma and several of his colleagues wrote the Design Patterns book (Addison-Wesley) in 1994. Their format

for a pattern covers a lot of territory. It includes:

Pattern name and classification

Intent

Also known as

Motivation

Applicability

Structure

Participants

Collaborations

Consequences

Implementation

Sample code

Known uses

Related patterns

Most of the newer pattern books aren't so inclusive. Some patterns simply give a name to a problem and its solution.

Other formats lie somewhere between these two extremes. For our purposes, let's boil a pattern down to this list:

Name: Communicates the pattern easily

Problem: Describes a recurring problem

Forces: Describes what considerations need to be balanced

Context: Describes where the solution is appropriate

Solution: Can be tailored to a specific problem

Consequences: Let's be real!

This is not to say that the other elements have no value. But this intermediate level of detail lets you be productive

without getting bogged down in precision. However you break them down, patterns offer clear benefits to developers:

Vocabulary: In a team of any size, communications are a vital element of a successful project. Patterns

establish a concise way of describing how a group of objects solve a problem, either behaviorally,

structurally, or both.

Expertise: Patterns capture the expertise of years of development. Because they are applicable to any

domain, they can model the behavior and structure of a group of interacting concepts.

Understanding: Documenting how the system uses patterns enables new developers to quickly see the

logical organization.

By condensing many structural and behavioral aspects of the design into a few simple concepts, patterns make it

easier for team members to discuss the design. Let's look at a common problem and see how an appropriate pattern

contributes to a good design.

Applying Double Dispatch to a Specific Problem

To implement the game "Rock, Paper, Scissors" we need to write code that determines whether one object "beats"

another. The game has nine possible outcomes based on the three kinds of objects (see Figure 1-8). The number of

interactions is the cross product of the kinds of objects.

Figure 1-8. This UML sequence diagram shows the process of deciding who wins, based on checking object

type.

A Solution

Case or switch statements are often governed by the type of data that is being operated on. The object-oriented

language equivalent is to base its actions on the class of some other object. In Java, it looks like this:

// In class Rock

public boolean beats(GameObject object) {

 if (object.getClass.getName().equals("Rock") {

 result = false;

 }

 else if (object.getClass.getName().equals("Paper") {

 result = false;

 }

 else if (object.getClass.getName().equals("Scissors") {

 result = true;

 }

 return result;

}

This is not a very good solution. First, the receiver needs to know too much about the argument. Second, there is one

of these nested conditional statements in each of the three classes. If new kinds of objects could be added to the

game, each of the three classes would have to be modified.

A Better Solution

We would like to come up with a solution that would let us avoid touching any working methods. Figure 1-9 shows an

example that uses the double dispatch pattern to do that.

Figure 1-9. This UML sequence diagram shows the process of deciding who wins, based on polymorphism.

Note that rock does not need to know what kind of object it is comparing itself against. The second message clearly

identifies the situation to the second object. Another Rock or a Paper will return false, but a Scissors will return true.

Here are the GameObject, Rock, and Paper definitions in Java:

public interface GameObject {

 public boolean beats(GameObject o);

 public boolean beatsRock(GameObject o);

 public boolean beatsPaper(GameObject o);

 public boolean beatsScissors(GameObject o);

}

public class Rock implements GameObject {

 public boolean beats(GameObject o);

 // the receiver is a Rock. Ask the argument about rocks.

 return o.beatsRock();

 }

 public beatsRock() {

 // could return either false or true

 return false;

 }

 public beatsPaper() {

 // a Rock doesn't beat a Paper

 return false;

 }

 public beatsScissors() {

 // a Rock beats a Scissors!

 return true;

 }

}

public class Paper implements GameObject {

 public boolean beats(GameObject o) {

 // the receiver is a Paper. Ask the argument about papers.

 return o.beatsPaper();

 }

 public beatsRock() {

 // a Paper beats a Rock

 return true;

 }

 public beatsPaper() {

 // could return either false or true

 return false;

 }

 public beatsScissors() {

 // a Paper doesn't beat a Scissors!

 return false;

 }

}

Extending the application to include another kind of GameObject simply requires adding a new declaration of the

comparison method to the GameObject interface, defining the new method in the existing classes, and creating a

new class that implements the new GameObject interface.

The Double Dispatch Pattern

Here's the pattern description:

Name: Double Dispatch

Problem: Select an action based on the type of two objects appearing in combination.

Context: Sometimes you need to write code that makes decisions about what to do based on the class

of one of the parameters to a method.

Forces: Case or switch statements are often used in procedural languages to decide what action to

take. But deciding what to do based on the class of a parameter can result in code that is hard to

maintain; each time you add a new class, working code will have to be modified.

Polymorphism allows an object to send the same message to objects belonging to many different

classes. Code in each of these classes can subsequently make different decisions and perform the

same requested operation differently.

Solution: Instead of writing code that specifically checks the class of a parameter, add new methods

having the same name (a secondary method) to each class of all the potential parameter objects. Write

the original method to simply call this new secondary method, passing the original receiver as an

argument. It is the responsibility of each object receiving this secondary message to know specifically

what should be done. Typically, each secondary method turns around and invokes a specific operation

on the original receiver (hence the name Double Dispatch).

You can tie the specific operation to the class of object by appending the class name of each class that

implements a secondary method to the name of this specialized operation. If necessary, pass the

original receiver as an argument to these specialized operations as well.

Consequences: Double Dispatch eliminates case or switch statements based on the class of a

parameter. This makes the code that implements the design more maintainable. It doesn't completely

solve the maintenance problem, but it supports extension by adding methods and not by modifying

them. Double dispatching does have its drawbacks. Adding a new class of parameter means adding a

secondary method to it, unless you are able to add a single method to a superclass and have it inherited

by its subclasses. It also may mean adding a class-specific method to the original object (or deciding to

invoke an existing operation). A case statement, however, is usually a worse solution.

The Real Benefits of Using Patterns

Imagine that during a design review, one of the team members mentions that a group of objects uses Double

Dispatch. The discussion then centers on an analysis of the problem to see whether the pattern fits, the motives for

choosing to use it, and a consideration of the trade-offs involved. The use of the pattern shifts the focus to a

higher-level design concern. Little time is spent describing the mechanics of the object collaborations because they

are condensed into two little words: double dispatch.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Frameworks, Inc.

The business equivalent of a framework is a franchise. Having proven that there is a market for its services, a

company incorporates and sells a generic design for its business: a franchise. A franchise provides a general design

for providing its products or services and dictates that franchise owners follow the franchising company's rules.

Franchise owners tailor their businesses to their specific markets, within the limits of the franchise contract. With a

franchise, services become better defined and widely known and used. Because of their familiarity with the business

processes, owners often buy multiple franchises, reusing the business design in different locations. A franchise pools

business owners' resources to advertise, train employees, and provide just-in-time services beyond those that a

single company could offer.

Similarly, a framework is a general design for solving a software problem (see Figure 1-10). Unlike a pattern, which is

an idea of how to solve a familiar problem, a framework provides a library of classes that developers can tailor or

extend to fit a particular situation. The success of a framework depends on how useful it is to these developers and

how easily they can tailor its services to their needs.

Figure 1-10. A framework codifies the rules of how things should be done.

Here are some of the problems that frameworks have been applied to:

GUI: The Java Swing framework offers a set of features useful for building an interactive user interface.

Simulation: The early Smalltalk-80 language included a framework for building discrete event simulations.

Programming environments: The Eclipse IDE (integrated development environment) has a plug-in

architecture that lets tool providers supply different compilers, refactoring tools, and debuggers.

Web applications: Microsoft's .NET framework is a unified set of tools for building distributed applications. It

includes frameworks for building user interfaces, performing transactions and concurrency, interoperating

between platforms, and building Web services.

Frameworks offer a number of advantages to the developer:

Efficiency: A framework means less design and coding.

Richness: Domain expertise is captured in the framework.

Consistency: Developers become familiar with the approach imposed by the framework.

Predictability: A framework has undergone several iterations of development and testing.

But they don't come without costs:

Complexity: Frameworks often have a steep learning curve.

If you only have a hammer, everything looks like a nail: Frameworks require a specific approach to solving

the problem.

Performance: A framework often trades flexibility and reusability for performance.

Frameworks are sometimes used as is. In this case, they provide default behaviors that their designers deemed to be

useful across many potential applications. But most frameworks are meant to be extended to completion. They

provide generic solutions but lack specific behaviors that vary by application. The behaviors that are left incomplete

are hooks: implementations that are deferred to the developers for specific applications. When coding these hot

spots, a programmer must accept an inversion of control. This takes some getting used to. Typically, our code calls

other objects and asks them to do work on our behalf. To use some functionality in a library, for example, you

typically instantiate a library object and then call on it to provide a service.

In the case of a framework, you must implement the hooks using code that fits into the framework. The hooks are

those areas of the framework that the framework code will call. Instead of being in control, our objects are plugged in

and must correctly implement hooks that are called by framework code. To use the features of a framework, you

define classes that implement specific interfaces. To use a framework, you fill in the missing functionality, following

the constraints dictated by the framework designers.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Architecture

There is no single, defining architecture of an application. Often we see box-and-line drawings purporting to be the

architecture. Goof-juice! An architecture is a collection of behaviors and a set of descriptions about how they impact

one another. Box-and-line drawings describe only the structure. They completely ignore the behavior. A revealing

architecture demonstrates the assumptions that each subsystem or component in the application can make about its

neighbors, whether it be their responsibilities, error-handling abilities, shared resource usage, or performance

characteristics. Because there are many objects in an application, we need different ways of viewing its parts that

hide most of their details. The internal details of how a group of objects accomplishes a task should not be the issue

when you consider its architecture. At the architectural level, the interfaces must tell it all.

Any single architecture description tells only part of the software's story. For example, the organization of system

functions implies little about how the modules are divided among team members for development. The process

synchronization characteristics are conspicuously missing from the descriptions of how components are distributed

across machines and networks. Because there are many requirements of our software, we often require many views

of our "architecture" to convince us that it meets them.

Which views shed the most light on our applications' characteristics, of course, depends on the application. But

several of these views are prominent: conceptual views, control flow, and, for object-oriented applications, views of

components and subsystems as well as objects and interactions. It is important to identify and document patterns of

collaboration. Simply documenting the interfaces of the objects or components would not show how they collaborate.

Writing the client-server contracts as part of the architectural descriptions clarifies the roles of each and provides a

better understanding of the complexity of the design. Each development project should determine what subset of

these architectures is appropriate. In fact, choosing which architectural views to represent and study is a key element

of early design.

I l@ve RuBoard

I l@ve RuBoard

Architectural Styles

Just as design patterns offer ways to distribute responsibilities among collaborators to solve generic design problems, there are

styles for organizing software objects. There are a number of aspects to consider when you think about architectural style. Two

of the most common viewpoints are component interaction styles and control styles. Both need to be considered. Component

interactions are concerned with issues that we commonly see addressed with block structure diagrams. These typically show

components or layers of the system and generally describe how they are allowed to interact. Typical examples of these styles

are layered, pipes-and-filters, and blackboard. Figure 1-11 shows a layered architecture.

Figure 1-11. A layered architecture separates objects according to their roles in the application.

Control style dictates the approaches to distributing responsibilities for decision making and coordination within or between

layers or components. We can construct a solution along a continuum of control from highly centralized to overly distributed.

Each combination of architectural styles supports one or more characteristics that we may value in a project:

Usability

Availability

Security

Performance

Maintainability

Flexibility

Portability

To support these and other qualities before any analysis, design, or coding takes place, we can start by choosing architectural

styles that support them. Using a particular mix of styles will not guarantee that desired qualities will prevail, but we have the

window of opportunity left open in which to build them.

Architectural styles have well-known liabilities. For example, pipes-and-filters is computationally expensive due

to the need to cast all data into a common form, usually text.

Selecting architectural styles is largely dependent on an assessment of the desired attributes of the application. Most

applications require a mix of these qualities and a combination of architectural styles. Choosing the right architectural styles can

have a big impact.

So before examining a popular component interaction style—the layered style—let's examine the continuum of control styles we

can employ.

Centralized Control Style

A procedural program makes a clear distinction between data and algorithms. Algorithms, whether they are called procedures

or functions, use and operate on data. We can simulate a procedural style by creating a single smart object, filled with

algorithms, and surround it with numerous, data-structure-like objects that hold only information: pure information holders (see

Figure 1-12). When the smart object needs to compute, it asks the information holders for the information it needs, processes it,

and either puts it back or puts it in some other information holder. The procedures operate on data. The procedures tend to be

redundant because other objects need to operate on the data, too. Many objects use the information holders, and many

messages flow around the system.

Figure 1-12. Centralized control concentrates logic into a single object.

But despite being procedural, a centralized style does have some advantages. The application logic is centered in only a few

objects: the smart ones. Code may be more difficult to read because it is embedded in a lot of the other logic, but you have only

a few places to look.

Now try to describe who uses which objects. Any one of the information holders has many clients. The processing of their

information is outside of them and is spread across many classes. What if you wanted to shift the responsibility for knowing a

piece of information from one to another? Many other objects would break because of the many dependencies.

Dispersed Control: No Centers

In the other extreme, we spread the logic across the entire population of objects, keeping each object small and building in as

few dependencies among them as possible. As Figure 1-13 shows, there are no centers to the design.

Figure 1-13. Dispersed control spreads the logic across many kinds of objects.

When you want to find out how something works, you must trace the sequence of requests for services across many objects.

And they are not very reusable because no single object contributes much.

Delegated Control

A delegated control style strikes a compromise or balance between these two extremes. As Figure 1-14 shows, each object

encapsulates most of what it needs to perform its responsibilities, but, on occasion, it needs help from other, capable objects.

Every object has a substantial piece of the pie. It isn't hard to trace through the few objects involved to see how something

works. On the other hand, because each object is largely capable of fulfilling its own responsibilities, it is more reusable.

Reusing even the larger responsibilities means including only a few collaborators. System functions are organized into pools of

responsibility that can be used in relative isolation.

Figure 1-14. Delegated control creates pools of application logic.

Examining Interactions: A Layered Architecture Example

Let's take a closer look at the layered architectural style. We use it to illustrate how it guides our design of system responsibility.

We maximize simplicity and reusability by using a layered style. This architectural style groups responsibilities into layers. Each

layer has a well-defined number of neighboring layers, typically one or two. Objects living in each layer communicate mostly with

other objects within the same layer. But there are times when the services that an object needs are not to be found within its

layer, and it will reach out to an adjacent layer for the selected services. Here is a typical organization of responsibilities in the

layers: One layer is devoted to interfacing with the outside world. An adjacent layer coordinates responses to outside events. A

third layer provides information and services that span the entire domain, and another layer provides technical services for

connecting to external devices and programs. The layered style can contribute to simplicity, maintainability, and reusability.

Information systems, which often fit into this component interaction style, typically have a long life span, requiring that they be

easy to maintain, scale, and port to new platforms.

Using this style gives us flexibility in deciding at run time which objects will collaborate. It also lets us develop objects in each

layer without concern for which objects in adjacent layers we will collaborate with. Figure 1-15 shows a sample of collaborating

objects, layers, and loose coupling.

Figure 1-15. Interactive information systems often use layered architectures.

This architecture of a Web-based information system application separates areas of functionality into layers of functionality

(layered style), defines groups of objects within each layer, and broadcasts events across network connections.

Locating Objects in Layers

We can combine the features just discussed with our notion of object stereotypes to demonstrate a very general layout of

objects in an object-oriented information system application. As we discussed earlier, we use these stereotypes to characterize

objects' roles: information holder, structurer, service provider, coordinator, controller, and interfacer. How might we build a

layered style application from them? Where would objects of each stereotype live? The architecture of a layered system of

objects looks something like the diagram in Figure 1-16.

Figure 1-16. Each layer contains characteristic object roles.

Communication between objects tends to follow these rules:

Objects collaborate mostly within their layer.

When they do reside in different layers, client objects are usually above server objects. The messages (requests) flow

mostly down.

Information (results) flows mostly up.

When messages flow up, client objects are in lower layers, and they are loosely coupled to their server objects. This

usually uses an event mechanism.

Only the topmost and bottommost layers are exposed to the "outside" world. They hold platform-specific objects:

widgets in the top layer, and network, device, and external system interfacers in the bottom layer.

I l@ve RuBoard

I l@ve RuBoard

Design Description

As part of a design process, it is essential to communicate your ideas. During development there are many ways to

think about your design, and many ways to informally describe it. Descriptions can range from design stories to

roughly drawn sketches, to conceptual "art" that serves as a focal point for discussions, to handwritten CRC cards

describing candidates. Design is an inherently messy process, and along the way many descriptions are discarded

after serving their purpose.

CRC cards were invented by Ward Cunningham and Kent Beck in 1988 as a means of describing

early design ideas about classes, their responsibilities, and collaborations. Instead of classes, we use

them to describe candidate objects, which eventually are realized by one or more interfaces and

classes.

But there is a time and a place for creating more precise descriptions. The Unified Modeling Language (UML) is a

good way to describe your design using a standard graphical modeling language. It provides a vocabulary for

describing classes, objects, roles, interfaces, collaborations, and other design elements. It is a large language that

includes many more elements than we use in this book. But the UML is more than a graphical notation. Behind each

symbol are well-defined semantics. This means that you can specify a UML model using one design tool, and another

tool can interpret that model unambiguously.

Any design model or modeling language has limits to what it can express. No one view of a design tells all. That is

why in this book we use a rich toolkit that includes both low-tech and more precise ways to describe our designs.

I l@ve RuBoard

I l@ve RuBoard

Summary

Object-oriented applications are composed of objects that come and go, assuming their roles and fulfilling their

responsibilities. Typically, the initial set of objects that we find represents domain concepts that designers as well as

users are comfortable talking about. Other objects are invented with specific responsibilities for controlling and

coordinating the user interface, managing the connections to the outside world, and governing the flow of control in

the application. The software itself has properties that emerge. These systemic behaviors are accounted for by the

software patterns, frameworks, and architectures. They contribute to system-level properties. Together, they form a

collection of perspectives on the system under development.

The "products" of development—the objects, responsibilities, collaborations, contracts, patterns, frameworks, and

architectures—are the focus of a systematic development process, a method. With many levels and abstractions to

account for, we must be opportunistic in the way we approach the tasks. We shift perspective to reveal a new

problem or another facet of an old one; we look for new solutions and explore half-formed ideas. Above all, we keep

the focus on what is important right now. This process is the topic of the next chapter.

I l@ve RuBoard

I l@ve RuBoard

Further Reading

Timothy Budd's wonderful book, An Introduction to Object-Oriented Programming (Addison-Wesley, 2001), includes a

thorough discussion of object-oriented concepts and programming principles. Although a college text, it is handy for

professional developers, too. Programming languages come on the scene with great rapidity (they don't disappear so

quickly, but new ones constantly appear). This book is in its third edition. One of the best things about it is the

presentation of the same applications implemented in various object-oriented languages ranging from Smalltalk to

Java, C#, C++, Object Pascal, and Oberon.

In addition to inventing the Model-View-Controller concept, Trygve Reenskaug wrote a definitive book on thinking

about objects in terms of roles. Working With Objects (Manning, 1995), written with Per Wold and Odd Arid Lehne,

explores how patterns of interacting objects can be abstracted into patterns of interacting roles. We have been

inspired by Trygve's work over the years and believe that modeling roles is essential to creating well-factored, flexible

designs.

The classic Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995), by Erich

Gamma, Richard Helm, Ralph Johnson, and John Vlissides, launched the software pattern movement. This book

contains twenty-some patterns organized into behavioral, creational, and structural patterns. If you want to learn more

about the original design patterns that launched the pattern movement, pick up Gamma's book. If you are a Java

programmer, you'll learn even more by reading Design Patterns Java™ Workbook (Addison-Wesley, 2002). In this

book, Steve Metsker clearly explains each and every pattern in the Design Patterns book from a Java programmer's

perspective.

The best source for learning about the UML is The UML Language User Guide, (Addison-Wesley, 1999) written by

Grady Booch, James Rumbaugh, and Ivar Jacobson. Others have tried to boil down this rich language to its

fundamentals, but they lose something in the process.

I l@ve RuBoard

I l@ve RuBoard

Chapter 2. Responsibility-Driven Design

Betty Edwards, author of Drawing on the Artist Within, argues that many so-called creative talents can be taught. She

poses this delightful thought experiment:

What does it take to teach a child to read? What if we believed that only those fortunately endowed with inborn

creative ability could learn to read? What if teachers believed the best way to instruct was to expose children to lots of

materials, then wait to see who possessed innate reading talent? Fear of stifling the creative reading process would

dampen any attempts to guide new readers. If a child asked how to read something, a teacher might respond, "Try

whatever you think works. Enjoy it, explore, reading is fun!" Perhaps one or two in any class would possess that rare

talent and spontaneously learn to read. But of course, this is an absurd belief! Reading can be taught. So too, can

drawing.

Her book challenges our assumptions that drawing requires rare and special "artistic" talent and that formal teaching

of basic drawing skills stifles creativity. Basic drawing techniques, like reading techniques, can be taught. No wonder

many of us can't draw! Learning to draw is a matter of learning basic perceptual skills—the special ways of seeing

required for accurate drawing.

This chapter presents the basic activities of Responsibility-Driven Design and introduces examples of

design work. Because object design is a highly creative process, designers should pick and choose

when to apply various tools that help them conceptualize the problem and invent solutions.

Object design does not require rare and special "design" talent. Although design is a highly creative activity, the

fundamentals can be easily learned. You can become adept at object design with enough practice and experience

seeing the nature of the design problem and learning fundamental strategies for producing an acceptable solution.

This chapter presents basic steps for developing object applications following an approach called

Responsibility-Driven Design. We first describe the actions and activities for which our software should be

"responsible." We describe our software's responsibilities in terms that application users as well as developers

understand. Then we turn our attention to designing software objects that appropriately implement these

responsibilities.

I l@ve RuBoard

I l@ve RuBoard

A Process for Seeing, Describing, and Designing

We wish to be very clear on one point: Although this book presents object-oriented development activities in a linear

fashion, this is rarely how design proceeds in practice. Software design processes are highly fluid and opportunistic,

even though the final results are firmly fixed in code. Our presentation of this flurry of activity is limited by the

constraints of the printed page.

Possessing object design talent means that, through experience or ability, you "intuit" solutions that

others need to learn how to see more clearly. You quickly come to see the essence of a problem and

ways to design an acceptable solution.

Responsibility-Driven Design is an informal method. It offers many techniques for honing your thinking about how to

divvy an application's responsibilities into objects and coordinating their performance. Our primary tool is the power of

abstraction—forming objects that represent the essence of a working application.

The name of our method emphasizes the thread that runs through every activity: our focus on software

responsibilities. Responsibilities describe what our software must do to accomplish its purpose. Our work progresses

from requirements gathering through roughly sketched ideas and then on to more detailed descriptions and software

models. Surprisingly, at the beginning of our process, we don't focus on objects. Instead, we focus on describing our

system by capturing the viewpoints of many different stakeholders. We need to consider multiple perspectives in our

solutions. Responsibility-Driven Design is a clarification process. We move from initial requirements to initial

descriptions and models; from initial descriptions to more detailed descriptions and models of objects; from candidate

object models to detailed models of their responsibilities and patterns of collaboration.

We do not follow a straight design path as shown in Figure 2-1. As shown in Figure 2-2, our design journey is filled

with curves, switchbacks, and side excursions. When tracking down design solutions, we often switch among

different design activities as we discover different aspects of the problem. We are opportunistic. We use a variety of

tools that help us gain perspective, discover information, and craft solutions. Our work is fluid and malleable.

Figure 2-1. Rigid, tightly planned development often leads to failure.

Figure 2-2. The Responsibility-Driven Design path is a flexible one.

Our ordering of activities and our focus will, of necessity, change (see Figure 2-3). Planning, adding new features,

setting goals, characterizing the application via a prototype, creating an object model, identifying the hard

problems—these are only some of our tasks. These tasks vary in their purpose, rigor, scope, emphasis, context, and

applicable tools.

Figure 2-3. We continually move our focus from one problem area to another, recasting relationships and

finding new details.

Our linear presentation of design activities is due to constraints imposed by printed, numbered pages.

As you read this book, ask yourself, Where can I bring this technique to bear on my problem? What

thinking tool would be most effective to use right now? Be opportunistic!

With all but the simplest software, we can't fathom what lies ahead. With so much complexity, we won't always make

optimal decisions. Progress isn't always steady. Along the way we discover new information and constraints. We

must take time to breathe and smooth out these recurring wrinkles.

To address our lack of 20-20 foresight, we plan pauses to reexamine, adjust, and align our work to a changing set of

conditions. This allows us to incorporate our growing understanding into what we build. As shown in Figure 2-4, our

process is iterative and incremental. We are simply shifting emphasis along our development timeline from

requirements gathering and specification to analysis, design, testing and coding. We can always retreat to earlier

activities and rediscover more of the features of our problem.

Figure 2-4. Discovery involves stating an idea, reflecting it back to stakeholders for feedback, and then

incorporating changes and new insights in the revised model.

Marvin Minsky says our intelligence comes from our ability to negotiate solutions and resolve conflicts

among competing goals. If part of your mind proposes solutions that another part finds unacceptable,

you can usually find another way. When one viewpoint fails to solve a problem, you can adopt other

perspectives.

As designers, we naturally think that software objects are the center of the software universe. However

object-oriented we may be, though, many other participants and perspectives go into the conception, design, and

construction of a successful application. Just like a theater production, software development involves much more

than meets the eye during a performance. And although objects may take center stage for our work, it is important to

recognize the impact that different perspectives and activities have on our design.

Launching the Production: Project Definition and Planning

We adopt a conventional approach to describing our object development process. First things first. It's desirable to

define project goals, construct a plan for achieving them, and receive buy-in before jumping into a big effort.

In long or complex productions, we need to survey and document the users' requirements and demonstrate how our

software system will serve those who have some "skin in the game"—the stakeholders who will be impacted by our

success or failure. Even in quick projects, a little planning goes a long way. This leads us to form a concise statement

of the project, which includes a statement of purpose, an overview, and a definition of the scope and benefits.

Project planning sets the stage for our design ideas. It is our plan for action. Keeping in mind that our main goal is to

please our users and project sponsors, a project plan describes the following:

How the software will be developed

The values that are important to the project and the people involved

The people and their roles, the processes, and the expected outcomes

The expected deliverables

"It is very much a matter of artistry. The developer, like ancient bards whose epic poems were not

written down but recited from memory, must choose structures that will be readily remembered,

that will help the audience not to lose the thread of the story."

—Michael Jackson

Although not the focus of this book, project planning and definition are fundamental. Once we have a plan of action,

we consider structures and processes. Our goal is to understand what our software should do and how it will support

its users.

Setting the Stage: Early Description

Initially, we narrow our scope and our descriptions. We begin with rough sketches, fudging in those areas that

demand detail that we can't yet provide. We iterate through cycles of discovery, reflection, and description. Bit by bit

we add details, pin down the ambiguous, and resolve conflicting requirements. Initially our descriptions aren't

object-oriented; we add an object perspective after we've described our system more generally. Object concepts will

form the kernel of a model of our system's inner workings. But our recipe for analysis looks something like Table 2-1.

Table 2-1. Analysis includes system definition, system description, and object analysis activities.

Responsibility-Driven Analysis

Phase Activity Results

System

Definition

Develop high-level system

architecture.

Diagram of system boundaries.

High-level diagrams of technical architecture

System concepts discussion and diagrams

Identify initial system

concepts.

Glossary of terms

Identify system

responsibilities.

System perspective and functions

Usage characteristics

General constraints, assumptions, and

dependencies

Detailed

Description

Specify development

environment.

Documentation of existing development

frameworks, external programs, APIs, and

computer-based tools.

Write text descriptions of

the ways users expect to

perform their tasks.

A list of the different types of users and

external systems that interact with our

system: actors

Free-form text descriptions of the users'

tasks: use case narratives

Text descriptions of concrete usage

examples: scenarios and conversations

Analyze special

requirements for impact on

design.

Strategies for increasing performance, maps

to legacy data, plans for handling distributed

data and computing, fault tolerance, and

reliability

Document system

dynamics.

Activity diagrams showing constraints

between use cases

Show screens and

interactions from users'

perspective.

Screen specifications

Navigation model

Object

Analysis

Identify domain-familiar

objects with intuitive sets of

responsibilities.

CRC cards that describe object roles and

responsibilities

A candidate object model

Document additional

concepts and terms.

Glossaries defining concepts, descriptions of

behavior, and business rules

Of course, results vary from project to project. Depending on application specifics, certain descriptions may not add

value. If your application doesn't interact with users, screen specifications aren't appropriate. To design responsibly,

we develop only those descriptions that give us a meaningful perspective. Certain requirements unfold during

discussions with stakeholders. They correspond roughly to the users' requirements but include a number of customer

or administrator requirements:

Usage

Performance

Configuration

Authentication

Concurrency

Scalability

Security

Reliability

We may also uncover these requirements during development and during initial use of early software versions by

developers, testers, and beta users. Many requirements and concerns overlap, and different stakeholders often

articulate them in various ways. Security may be of utmost concern to users who "don't want credit card information

pilfered over the Web," but this is a far less detailed requirement than those of the Web site administrator who speaks

as a Web security expert.

In addition to the more obvious requirements that have an appreciable and direct impact on design, other

requirements for flexibility, maintainability, extensibility, or reusability can constrain acceptable design solutions, even

though they aren't readily glimpsed by considering how our users interact with our software. In many cases, it is these

"ilities" that, when ignored, cause a project to fail. As designers, we must absorb requirements and present a design

that conforms to their constraints. Of course, no matter how hard you try, you won't identify all the requirements.

Staging the Production: Design

In design, we construct a model of how our system works. We break the object design process into two major

phases: creating an initial design (exploratory work shown in Table 2-2) and then crafting more comprehensive

solutions (refinement shown in Table 2-3).

Table 2-2. Exploratory design is focused on producing an initial object model of a system.

Exploratory Design

Activity Results

Associate domain objects with A CRC model of objects, roles, responsibilities, and

collaborators

execution-oriented ones. Sequence or collaboration diagrams

 Descriptions of subsystem responsibilities and

collaborations

Assign responsibilities to

objects.

Preliminary class definitions

Develop initial collaboration

model.

Working prototypes

Table 2-3. Design refinement includes activities that make a design more predictable, consistent, flexible, and

understandable.

Design Refinement

Activity Results

Justify trade-offs. Documentation of design decisions

Distribute application control. Control styles identified

Easy-to-understand patterns of decision making and

delegation in the object model

Decide static and dynamic

visibility relationships between

objects.

Refined class definitions and diagrams

Revise model to make it more

maintainable, flexible, and

consistent.

Creation of new object abstractions

Revision of object roles, including stereotype blends

Simplified, consistent interfaces and patterns of

collaboration

Specification of classes that realize roles

Application of design patterns

Document the design clearly. UML diagrams describing packages, components,

subsystem, classes, interaction sequences,

collaborations, interfaces

Code

Formalize the design. Contracts between system components and key classes

The time spent exploring and refining a design, and the amount of design documentation you

produce, can vary widely. Our advice: Work on those design activities and results that add value to

your project. You don't need to do each and every activity or produce lots of design documents to be

successful. Use these activities and results as general guidelines, and tune them to your specific

needs.

At some point after you've developed an initial exploratory design, you want to break away from designing and start

coding. This could occur after a relatively short while, especially if your design is straightforward and you know what

needs to be done. Perhaps you want to prove part of your design by implementing a prototype before investing

energy designing other parts that rely on that proof of concept being solid. Or you may want to refine your design a bit

before starting implementation. Whether you take the time to polish your design a bit more before coding or you

adjust your design during implementation, your initial design ideas will change. Most applications are too complex to

"design right" the first time. So creating a workable design means revisiting initial assumptions to make sure that your

design lives up to stakeholders' expectations. It may also mean spending extra time to design a flexible solution or to

enable your design to respond to exceptional conditions.

Design activities—from early explorations to detailed refinements—are the focus of this book. But before we dive into

design, let's explore what we need to "see clearly" in order to create an appropriate design.

"Seeing" from Multiple Perspectives

Each stakeholder in our design process has differing needs and values. Each person will view our work in progress

and the emerging application from a unique perspective. Because many of the stakeholders do not speak our native

object-oriented tongue, we object designers face two challenges:

Correctly interpreting stakeholders' concerns and requirements

Presenting our design work in terms understood by a wide audience

"Facts are the air of scientists. Without them you can never fly."

—Ivan Pavlov

Each participant in our software production has differing criteria for evaluating our software. Their primary concerns

and the aspects they value vary with their points of view.

For example, users want to see that they can easily do their jobs using the application. They'll want application

controls and processing to be consistent and "feel" natural. A business analyst will want to know that policies, rules,

and processes are understood by the design team and clearly supported by our design. A tester wants to see that the

actual application matches expected performance and usability objectives. Some stakeholders will care about our

design's details, but many will not. All will want assurance that our design addresses their concerns and needs. Let's

now take a brief tour through the process and see how we develop a design that meets each stakeholder's specific

concerns.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Writing the Script: Analysis Descriptions

"There's no sense being precise about something when you don't even know what you're talking

about."

—John von Neumann

Early in the process, our goal is to understand and reflect important requirements. We turn vague, formative ideas

into specifications of what we are to build. Errors in product specification are the most costly because they ripple

through all of the downstream activities. So it's important to communicate our software's characteristics in simple,

unambiguous language to those who will use it and to others who will keep it running. To understand how our

software fits into the immediate environment that it runs on and the extended environment of devices, databases, and

external programs that it communicates with, we view our software from several perspectives as shown in Figure 2-5.

Figure 2-5. Stakeholders' descriptions of a system reflect their unique perspectives.

"Descriptions are the externally visible medium of thought."

—Michael Jackson

What language should we use to describe our system? No one language is common to users, customers, data

analysts, developers, and managers that describes our software adequately. We collect a variety of descriptions

using appropriate language and notations. One of our goals is to make clear what is ambiguous, to collect and

describe with one voice what our software should be responsible for. We gather various descriptions and reflect these

different perspectives in our specifications. We strive to understand where our software "ends," where its external

environment "begins," and what functions it should perform. Once we draw these boundaries, we focus on our

software's internal workings and the ways it responds to its environment. We develop and use a consistent, common

vocabulary for describing the things our software affects, the processes it supports, and its responsibilities to its

stakeholders.

Use cases and a user orientation are important, but they don't tell the whole story. A model is a

collection of related descriptions. There are various types of models—usage, data, object, state, and

process, to name a few.

Usage Descriptions

Because many of an application's obligations are to its users, we must clarify their understanding. From a user's

vantage, there is a boundary around our system that distinguishes the software from the external world. Users'

understanding of our software is based on how it supports their tasks. This task-oriented view can be described by a

collection of descriptions, or use cases. Use cases are part of a UML model. We break up a large application's

specification into use cases, which concisely describe discrete "chunks" of system functionality from this external

perspective.

Actors and Their View of Our System

The Unified Modeling Language defines an actor as some one or some thing outside the system that interacts with it.

These actors tend to be grouped into three different camps:

Users

Administrators

External programs and devices

Actors have two characteristics in common:

They are external to the application.

They take initiative, stimulate, and interact with our software.

Objects best describe concepts, or things, their characteristic responsibilities, and interactions.

By organizing our usage descriptions around these actors, we orient the software's responsibilities to each actor's

point of view. We eventually will use these descriptions and be guided by the "ilities" that we wish to preserve. But to

develop a single object-oriented model, at this stage of development we need different, higher-level descriptions than

an object model can provide—descriptions rich with detail, rich with intention, rich with implication and purpose. An

object model prescribes only a solution to a problem. This solution leaves unspoken the needs, intentions, and

day-to-day concerns of our system's stakeholders.

Any expected properties of our software must be apparent from some description. They won't emerge

on their own.

These rich and detailed descriptions depict usage, points of variability and configuration, and essential system

architecture. We identify the groups of people and the external programs and devices that our software interacts with,

and we describe how they interact. We note areas where flexibility is needed and variations our software should

accommodate. To the best of our ability, we create descriptions that can be understood by those who need to know.

If we build object models or code prototypes at this point, it is only to clarify our own understanding of this multitude of

requirements. These prototypes can be disposable.

Use Cases

Use cases, introduced by Ivar Jacobson in 1992, are part of UML. Many people use them as a means to describe

how a system is to be used. Others quite happily use hierarchical lists of features, simple user stories, or lengthy

specifications documents. Use cases are especially valuable for describing an application from an external usage

perspective. We use three forms of use case descriptions: simple text narratives, scenarios consisting of numbered

steps, and conversations that emphasize the dialog between user and system. Each form of use case description has

its particular emphasis.

A use case is "a behaviorally related sequence of transactions in a dialogue with the system."

—Ivar Jacobson

Use cases can be written at differing levels of detail, depending on their intended audience. We can write high-level

overviews and then add detail and describe the sequences of actions and interactions between the user and the

program. The forms we choose depends on what we are trying to express.

We may write one or more forms for each use case, depending on the needs of our audience. Typically, we start by

writing narratives that present a high-level overview. Then, if appropriate, we can write one or more scenarios or

conversations that elaborate this high-level description.

A Word Processor Example

Consider the use cases we exercised to write this chapter. Our word processor doesn't specifically support book

writing; it is a generic document preparation tool. So when we use our word processor, we map our activities onto

those tasks supported by our word processor: entering text and revising it. Other tasks are not supported by our word

processor: researching, brainstorming, and outlining. Tasks that do map to our application's chunks of functionality

include opening a document and creating and editing text.

Our goal is to state the users' tasks at the most meaningful level. Even the simplest high-level tasks

become a series of decisions and actions on the part of the user.

Writing is a fairly free-form activity. We mix and match writing tasks in an unpredictable order. Because a word

processor is meant to support a wide variety of writing styles, writing is best described with smaller use cases that can

be exercised in any order. But meaningful tasks for writing a book are larger; they are composed of various subtasks.

Formatting a page is a series of changes to the margins, indentations, headers and footers, and so on. Reorganizing

a sequence of paragraphs is a series of cut-and-paste operations. We name use cases and write them from the

user's point of view—for example, "Edit Text," "Save a Document to a File," or "Look up Online Help." In these

examples, the use case name takes the form "Perform an Action on Some Thing." Here is a use case, written in

narrative form, that describes saving a document.

Documents can be saved in different file formats. When you save a new document, the default file

format is used unless another is specified. When a Save Document operation has completed saving an

existing document, the file represents accurately the document as displayed to the user upon saving.

Alternatively, we could name and describe use cases from our word processor's perspective. "Open a Document"

might be recast as "Open a File and Read It into a Text Buffer." We don't recommend taking the system's point of

view. If we do, it gives us an eerie sense of our system peering out at the user, detailing what it is doing.

Although a system-level perspective is important, it isn't particularly relevant to our user. Keep the

point of view of the user.

Our word processor's use cases describe rather small functional chunks. Our rule of thumb is to write use cases that

the user finds meaningful. The level of detail also varies. Users might want to see general statements, or excruciating

detail, depending on how familiar they are with the task and how complex it is. Despite the variations in the level of

abstraction and detail, use case narratives share one common feature: They describe general facilities in a paragraph

or two of natural language.

Scenarios

Whereas use case narratives describe general capabilities, scenarios describe specific paths that a user will take to

perform a task. A single use case might be performed a number of different ways. This "Save Document to an HTML

File" scenario explains how it varies from its "parent," the "Save Document to a File" use case narrative:

Scenario: Save a Document to an HTML File

The user commands the software to save a file.1.

The software presents a File Save dialog box, where the directory, filename, and document

type can be viewed and modified.

2.

If the file is being saved for the first time and it has not been given a filename by the user, a

filename is constructed based on the first line of text in the document and a default file

extension.

3.

The user selects HTML document type from the File dialog's options, which replaces the

default file extension to ".htm" if needed.

4.

The user adjusts the filename and the directory location as desired.5.

The user commands the software to complete the Save Document command.6.

The software warns the user that formatting information may be lost if the file is saved in HTML

format. The user is presented with the option of canceling or continuing the save operation.

7.

The user chooses to save the document in HTML format.8.

The software saves the document and redisplays the newly reformatted contents. Certain

formatting information, such as bullets, indentations, and font choices, may have been altered

from their original.

9.

If we need to be more concrete to clarify how a task is to be performed, we write scenarios that describe the actions

and information relevant to specific situations. If more detail will be helpful and we want to emphasize the interactions

between user and system, we expand narratives into conversations.

Conversations

Conversations describe the interactions between the user and the software as a dialog. Their purpose is to clarify the

responsibilities of each: The user, who initiates the dialog, and the software that monitors and responds to the user's

actions. The more detailed conversation form allows us to clearly show the application's responses to the actions of

the user.

Each conversation has two distinct parts: a column of actions and inputs, and a parallel column of the related

software responses. These responses are a first-order listing of the software responses and actions. We designers

will use these statements as we design our system and assign responsibilities and actions to a population of software

objects.

We develop conversations and scenarios around a course of action, sometimes choosing a single

path among many alternatives.

Conversations record rounds of interaction between the user and the system. Each round pairs a sequence of user

actions with a sequence of software responsibilities. Rounds can be highly interactive or batch-oriented, depending

on the application. For example, a highly interactive round in our word processor might capture and validate every key

press, correcting often-mistyped words or signaling the user immediately about an invalid entry. In contrast, the

batch-oriented style of Web-based input has you fill out many entry fields and then submit them all at once.

Figure 2-6 shows a conversation for "Save a Document to a File."

Figure 2-6. A conversation for saving a file lists the user actions and corresponding system responsibilities.

This conversation shows details not found in either our use case narrative or our scenario. For example, it shows that

our system is working to keep the user informed about all files sharing the same extension as the to-be-saved

document. Presumably this is to help the user choose a unique filename.

Adding Detail

Designers, like users, need to understand exactly how the software responds to its external environment. The

descriptions in conversations and scenarios shape our design work. System responsibilities will be assigned to

neighborhoods of objects working in concert to perform various system responsibilities.

Conversations can be written sparsely or can pack more prose, mimicking talk between old friends.

Conversation and scenario descriptions need even more detail before most designers can build a working system

and most testers can write test cases. What are the conventions for handling errors? What defaults should be

assumed? We can describe the following:

Information supplied by the user and defaults, if any, for missing information

Constraints that must be checked before critical system actions are performed

Decision points where the user may change course

Details of key algorithms

Timing and content of any significant feedback

References to related specifications

Descriptions are easier to understand if they are written at a consistent level of detail. We can include

details outside the main body of a usage description.

Rather than cram these details into the main body of a use case narrative, scenario, or conversation, we append or

reference additional facts, constraints, information, and concerns. By annotating our descriptions with these details,

we tie usage descriptions to design constraints and ideas as well as other requirements specifications.

Alternatives, Annotations, and Other Specifications

Conversations and scenarios benefit from their simplicity and sparseness. However, we may want to capture

nit-picky details about how our software carries out its responsibilities. Our software may vary its behavior in

response to information supplied by the user or other extenuating conditions. To keep things simple, we separate

these details from the body of the conversation or scenario.

Exceptional Actions

To round out our description, we record deviations from the normal course of events in the "Exceptions" section:

Exceptions

Attempt to save over an existing file—inform the user and ask him or her to confirm a choice to replace

the existing file.

Exceptions describe both an atypical condition and its resolution. A resolution can be a short sentence or two if the

response is simple. Or it can refer to another conversation or scenario that describes a more complex response.

Exceptions describe how our software should react to anticipated conditions. Sometimes our software can react and

recover. In this case the user continues the task but on an altered path. At other times, the only response may be to

give up and stop forward progress on the user's task.

Business and Application Policies

Our system's responses often depend on explicit application and business rules. Our software's behavior must reflect

policies such as "documents should be storable in different formats." We make pertinent policies explicit by listing

them separately:

Policies

Do not allow a user to save work to a file that another user has open.

If the document is being saved for the first time, construct and suggest a filename based on contents of

the first line of text in a document.

An idea is an opportunity. Don't lose it!

Our growing understanding of our application often gives us ideas about how the system might be designed. Our

guiding principle is "Be opportunistic!" Rather than rigidly compartmentalize our activities and documents into

"analysis" or "design," we gather and document information as we encounter it.

Design Notes

We note conditions and conventions that are of interest to the designer in a "Design Notes" section of a use case:

Design Notes

Document format is indicated by the file's extension. Some formats share the same extension, but

information about the actual file format is in the file format descriptor:

.doc—standard format files of all versions

.rtf—rich text format

.txt—plain text files with or without line breaks

.html—Hypertext Markup Language format

Other Specifications

Screen layouts, window specifications, documentation of existing regulations, constraints on system performance,

and references to policy manuals provide even more context. We get even more insights into our software's behavior

if we tie these to our usage descriptions. This type of information, although invaluable to designers, also gives other

stakeholders an opportunity to see that their concerns are being considered.

Glossaries

As we write use cases and other descriptions, we try to use consistent terms. By compiling project-specific definitions

for frequently used words, phrases, and jargon into a glossary, we clarify and make our specification more

consistent:

Document—A document contains text organized into paragraphs and other bitmap or graphic objects. It

is created with the editing tool. Its contents can be modified using various editing commands.

Graphic Object—A graphic object can be visually displayed in a document. A graphic object can be

created within the text editor or be imported from other applications and inserted into a document.

Depending on its properties the user may be able to resize, scale, or adjust its physical properties.

So far, our descriptions have had little object orientation. Only after we gather descriptions from many perspectives

can we make a stab at representing them in a unified form—a candidate object model.

Conceptual Objects

We want our design to readily translate to an object-oriented programming language. As a first step toward object

design, we describe key concepts—a collection of candidate objects. We have crossed into object thinking. Our

stakeholders understand these high-level concepts because they directly reflect the core concepts of the domain. But

as we progress into even more detailed design activities, our objects will take on more computer-related

characteristics and appear even more alien to others.

Concentrating on the Core

What you consider to be "core" will depend on the emphasis in your application and what your stake

is in its success.

Our goal is to build well-designed software that works according to specifications and can accommodate modest

changes. It needs a solid core. This "core" can mean many things:

Key domain objects, concepts and processes

Objects implementing complex algorithms

Technical infrastructure

Objects managing application tasks

Custom user interface objects

Candidate objects may or may not survive intact to become part of the application object model.

In our word processing application, those objects that represent parts of a document—objects such as Document,

Page, Paragraph, and SpellChecker—form a core. They appeared during initial concept formation.

Document

A document contains text and other visual objects that represent the contents of other applications. Documents are

organized as a sequence of document elements, including paragraphs, graphic objects, tables, and other document

elements that the user formats and visually arranges on pages.

Page

A page corresponds to what is visually present on a printed document page. It is composed of paragraphs and other

document elements and, optionally, headers and footers consisting of text organized on the top and bottom of each

page.

Paragraph

A paragraph is a document element that consists of text or other graphic objects. A paragraph is created when the

user signifies a paragraph break by pressing Enter. Paragraphs have an associated paragraph style that is used to

display its contents and control spacing between lines of text in the paragraph.

Spell Checker

The spell checker verifies that words within the document or a highlighted portion of text are contained in the

dictionary that comes with the word processing application or have been added by the user to the user dictionary. The

spell checker informs the user about each misspelled word and presents the user with the opportunity to correct,

ignore, or add the word to the user dictionary.

If these objects survive candidacy and join the ranks of other newly coined design objects, it means that they

represent the application responsibilities in a fashion that supports our design goals.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Casting the Characters: Exploratory Design

If analysis is about our application's behaviors, design is about the underlying objects that we derive from them. In

design we are laying out and paving the streets that our application does business in. Like a good city planner, a

good designer will consider how software will grow and change and what elements are most likely to be the focal

points for change.

Chapter 3, Finding Objects, presents strategies for identifying and characterizing design objects.

There is a significant distance between conceptual objects and design objects. Both describe things. However,

high-level descriptions ignore details that add heft and definition. This gap rightfully exists. Concepts and system

responsibilities form a bridge to the work that remains to be done. In design we create a model of objects that work

together to achieve our system's responsibilities.

"While most of our mental models are intuitive and largely subconscious, the essence of both

science and business is the creation of explicit models, called manifest models, which we can

share and discuss."

—Trygve Reenskaug

Designers examine conceptual objects for merit. These conceptual objects are only candidates that may be

discarded if they are rejected as unworthy of further consideration. Or they may be incorporated into the design and

become important elements of it. In our word processing application, Document proves a worthy design object. It is

responsible for knowing and structuring its contents, a collection of Paragraphs organized on Pages. Similarly, a

Paragraph is composed of Text, which is formed into Words.

On further examination, Paragraph proves a design gold mine! We can envision Paragraphs to be composed of Text

objects and various kinds of nontextual objects representing graphics, drawings, figures, or even elements from

external sources. Paragraphs are separated by ParagraphBreak objects. Text is composed of characters that form

Word objects that compose Sentence objects.

We glean responsibilities from various descriptions and recast them into well-formed design objects.

We add our own inventions to form a more complete, detailed model.

As text is entered, a Parser object forms Text into Words. Words have a document location—a beginning and an

ending position—and character contents. Words are composed of characters delimited either by punctuation marks or

other nontextual elements. As each Word is formed, it is passed to the SpellChecker object, which checks for

correctness.

Often, conceptual objects and early candidates are rich design fodder—being transformed into several objects as

design progresses. Less commonly, candidates pass directly from analysis to design, with responsibilities remaining

relatively intact. Each object, if it continues in design, will need a clearly stated role and an appropriate set of

responsibilities. Most likely, these responsibilities aren't clearly articulated by any earlier description.

Experienced designers, as soon as they hear "requirements," immediately start thinking about objects and their

responsibilities. They often quickly conceive of additional responsibilities that round out candidates' behaviors,

seemingly taking a leap from rough concept to well-formed candidate. And they invent new concepts and software

machinery on-the-fly to fill in the gaps in their object model. Sometimes this leap can appear startling to someone

relatively new to object thinking.

For example, as we look further at the SpellChecker, we see that to actually perform its responsibility for knowing

correct spellings, we might design it to keep base parts of known words in a SpellingDictionary object and to know

rules for pluralization and forming tenses. It is unlikely that the candidate object SpellChecker will survive as a single

object. More likely, as design progresses, it will become a community of collaborating objects, perhaps a subsystem.

Although CRC cards were originally intended to describe classes, their responsibilities, and

collaborators, we recommend you look for candidates first. Decide on how they are realized as

classes later—once you have an idea they'll stick around.

CRC Cards

We record preliminary ideas about candidates, whether they are candidate objects or candidate roles, on CRC cards.

CRC stands for Candidates, Responsibilities, Collaborators. These index cards are handy, low-tech tools for

exploring early design ideas. On the unlined side of the CRC card, we write an informal description of each

candidate's purpose and role stereotypes (see Figure 2-7).

Figure 2-7. The unlined side of a CRC card characterizes the candidate.

Getting more specific, we flip over the CRC card to record its responsibilities for knowing and doing (see Figure 2-8).

Responsibilities spell out the information that an object must know and the actions that it must perform. Collaborators

are those objects whose responsibilities our object calls upon in the course of fulfilling its own.

Figure 2-8. The lined side of a CRC card describes responsibilities and collaborators.

Chapter 4, Responsibilities, discusses how to identify and assign responsibilities to appropriate

candidates.

Cards work well because they are compact, low-tech, and easy. You move them around and modify or discard them.

Because you don't invest a lot of time in them, you can toss a card aside with few regrets if you change your mind.

They are places to record your initial ideas and not permanent design artifacts.

Because cards are small and not in a computer, you can easily arrange them on a table and view many (perhaps all)

of them at the same time. You can pick them up, reorganize them, and lay them out in a new arrangement to amplify

a fresh insight. You can leave blank spots to represent gaps in your design.

If you insist on using a computer, don't be lulled into thinking your candidates are well formed

because typed responsibilities look neater. At this stage, exploring options should be fun, easy, and

low-cost.

It is pointless to insist on cards, however. If you work best with sheets of blank paper or yellow legal pads, use them.

Use a white board to see the big picture. Describe candidates on Post-it notes, which you can rearrange in an instant

(see Figure 2-9).

Figure 2-9. Post-it notes are easy, compared to CRC "cards."

The obvious conceptual objects that we identify first on CRC cards are only one piece of the puzzle. It is the

unintuitive inventions that challenge our creativity. They are the hallmark of a flexible and well-factored program.

They are what we look for during design.

Good designers short-circuit the difficult work of invention by adapting proven solutions. They study

other designs and reuse their own and others' experience.

Inventions: Using Patterns

You gain a measurable advantage by knowing where to look for adaptable solutions. One powerful way to increase

design skill is to seek out good patterns and learn where and when to apply them.

Using solutions that have proven themselves useful in a variety of contexts can help us fill in the gaps in our thinking.

These little "whacks on the side of the head" jar us into thinking about solving new problems in proven ways.

There is a key aspect of our word processor that we should study: how it responds to the myriad user actions. The

word processor is, quite literally, "responsible" for interpreting requests for editing, inserting, finding, formatting,

saving, opening, cutting, copying, pasting, printing, viewing, checking spelling and grammar, and so on.

How should we perform these actions?

Each item selected from a menu represents a request for our word processor to take action. How can they

be undone?

Many actions affect a specific portion of the document. How do we keep track of which section to operate

on?

For example, a cut action removes highlighted text into a cut buffer, whereas a bold action sets bold emphasis on

either the currently highlighted text or, if no text is highlighted, the word containing the current cursor position. Saving

a document means writing the document to a specific file.

The problem of how to exercise control is central to most applications.

The Command pattern, described in Design Patterns: Elements of Reusable Object-Oriented Software, turns an

action into an object. Each specific action can be represented by a distinct object that plays the role of a Command.

Using inheritance, these objects can be implemented by classes in an inheritance hierarchy. As described, the

Command pattern is very general and must be tailored to fit our word processor application. To use it, we must

structure all of our thinking about responsibilities for performing and undoing our many word processing actions into

various command objects. What exactly does this mean? How can we fit all actions into the command pattern form?

An experienced designer might recognize the need for the Command pattern almost immediately. A

new designer might prototype different ways to solve the problem of providing different types of

"command" behavior, before discovering that the Command pattern offers a consistent solution.

When you discover that a design patterns is a good fit to your problem, you are leveraging others'

design experiences.

We start by declaring that any object playing a Command role has a responsibility for performing a specific action

(see Figure 2-10). Undoubtedly, our design will need to have many different kinds of Command objects, and classes

that implement them, to model each of the myriad actions our word processor takes. To support "undoing" of each

action, each different kind of Command object will be responsible for reversing its action. We will define the

responsibilities for each different kind of command. To implement our design, we will construct a superclass

Command that declares that all Commands can "execute an action" and can "undo" its effects. Additionally, any

Command knows the target of the action. In the word processor, a Command's target is the portion of the document

that it affects.

Figure 2-10. The Command object responsibilities are stated very generally.

Each different kind of command object will support all the responsibilities of the Command role—but they will do so in

specific ways. For example, executing a SaveCommand means saving the document's contents to a file. Save is not

reversible and will never be asked to undo. A SaveCommand object knows that the target of the action is the entire

document, and, because it collaborates with the document to fulfill this responsibility, we show Document as a

collaborator (see Figure 2-11).

Figure 2-11. The SaveCommand object responsibilities are more specific statements.

We create a CRC card that shows the responsibilities of each different kind of command object. A PasteCommand

fulfills the role of a Command by placing text into a document at the current cursor location, knowing paste is

reversible, and cutting it out if asked to undo (see Figure 2-12).

Figure 2-12. The PasteCommand object responsibilities fulfill the Command responsibilities, too.

As we specify how each command's responsibilities are delegated, we add responsibilities to the Document CRC

card (see Figure 2-13).

Figure 2-13. Working out more details, we add responsibilities and collaborations.

Although we applied the Command pattern in this case to illustrate the power of applying a proven solution to our

particular design problem, sometimes design is much harder. We must think and rethink our design ideas, bouncing

from one card to another, clarifying object roles, allocating responsibilities, and developing collaborations.

Sometimes, as we press forward, solutions aren't readily apparent. Worse yet, when we know more about our

design, our earlier solutions may—on further reflection—seem brittle or inappropriate.

In early design, ideas are fluid. It is easy and desirable to make radical changes. We can relocate responsibilities,

rearrange collaborations, adjust object roles, and introduce new players without much effort. We gain certainty and

conviction by considering options.

Pursuing a Solution

Our primary tool for design is abstraction. It allows us to effectively use encapsulation, inheritance,

collaboration, and other object-oriented techniques.

How should you choose among acceptable design alternatives? Consider this simple strategy:

If you don't have any predefined notions, create a solution that seems to work.1.

Explore the limits and strengths of that solution. To hedge your bets, measure at least one alternative

against the first solution.

2.

Favor a solution that contributes to design consistency.3.

Don't overwork a solution.4.

Fit your solution into known design patterns.5.

Borrow and adapt proven design ideas and archetypes.6.

Be willing to revise earlier decisions when things get ugly.7.

If you don't have the time, don't search for insights. Abstraction or cleverness can't be forced.8.

Bouncing Between Ideas and Details

One way to make sure we don't get off track is to constantly test our design with detail. A solution that sounds great in

principle can crumble under the weight of detail. We use nitty-gritty descriptions in conversations and scenarios. We

challenge our design with extra conditions that occur to us as we dig into details. After modeling at a high level, we

spend time working with details. There is a shift in our design work between modeling and abstraction, elaboration

and detailing.

We can also use "detail" to help spot abstractions. By looking at all the various commands that one

needs in a word processor, you may gain insight into what they have in common and spot the need

for some way to unify them.

We can turn to our descriptions for these details. Revisiting the "Save a Document to a File" conversation, we find

many responsibilities that must be assigned to objects (see Figure 2-14). System responsibilities stated in

conversations are a great source for finding object responsibilities. When we concentrated on the core design, we

purposely ignored these details. To complete our design, we need to sort through system responsibilities and many

other details, inventing many design objects and collaborations. To give you a hint at how we assign initial

responsibilities, we've noted in parentheses how we made initial assignments of system responsibilities to one or

more potential candidates.

Figure 2-14. System responsibilities are assigned to objects.

Once we've made an initial stab at gleaning responsibilities from conversations and assigning them to objects, we

need to construct a more complete solution and weigh its merit against alternatives. We'll answer in detail how any

objects supports responsibilities stated at a high level:

What does it do? How does it contribute to a high-level statement of responsibility?

How does it collaborate with others that also play a part in supporting this high-level responsibility?

What does it need to remember?

What messages does it send to others? In what sequence?

What are their arguments? What is returned from each request?

We'll design object interactions and further divide their responsibilities. We will create additional design

documentation and drawings. We will draw and preserve a few diagrams that depict typical collaborations and show

the classes that implement our design. Ultimately, our design will be expressed in code.

Chapter 7, Describing Collaborations, presents options and advice for documenting key collaborations

using both informal techniques and UML diagrams.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Tuning the Production: Design Refinement

As designers, we play a significant part in realizing a smoothly run production. Exploratory design is only the start.

After we mull over initial ideas and explore enough to know where we are headed, we systematically give our design

a more thorough consideration. We ask many questions and then make many decisions and adjustments that will

have a broad impact:

What styles of collaborations should predominate?

How can our design accommodate users' varying needs?

Where should we build in capability for future extension and modification?

Can we make our design more consistent, predictable, and easy to comprehend?

How robust does our software need to be?

A lot of work remains! Strategies for working on and evaluating these details form the heart of this book. Let's briefly

touch on some of these activities.

Determining Collaboration and Control Styles

Chapter 5, Collaborations, discusses how to design objects to work together. Chapter 6, Control Style,

presents options for developing consistent patterns of collaboration and application "control centers."

One important decision is how best to allocate control and decision-making responsibilities among collaborators.

Control questions crop up in several areas:

How do we control and coordinate use cases and user-initiated actions?

What are the architectural constraints on collaboration and control styles?

Where do we place responsibilities for making decisions?

How should exception detection and recovery be managed?

Answers to these questions have a huge influence on how responsibilities are distributed across the rest of the

model. Our goal is to design consistent, predictable patterns of interactions. Command objects are the locus of

control for user actions. With this design choice, a clear pattern for controlling user-directed actions emerges. The

Command pattern abstracts what it means to respond to a user action and gives us a recipe for adding new kinds of

user-directed action controllers. It should be fairly straightforward to fit new user actions into our existing design by

creating new kinds of Command objects.

But there are other places where we will need to ponder what control style is appropriate. Consider spell checking.

We must make decisions about how to represent spelling rules and how to detect and report spelling errors. The

control of how documents are saved and recovered needs careful design. Developing a style of collaboration and

control involves deciding how to distribute control among collaborators as well as deciding on what patterns of

collaboration should be repeated. Our options for distributing these command and control responsibilities range from

more centralized to more distributed solutions.

Designing to Support User Variations

A typical word processor supports many different user styles, preferences, and modes of interaction. Numerous

features are under the user's direct control, ranging from how a document is displayed to details of how often the

document is saved to what spellings are considered "legal." In an application of this sort, how best to support each of

the myriad variations will be a predominant design consideration. Our word processor needs to make many tactical

decisions as it executes based on current settings and preferences.

Chapter 9, Flexibility, discusses how to design an application so that it "flexes" and supports planned

variations. Patterns and implementing designated "hooks" are key to adding flexibility.

Designing for Flexibility and Extension

Flexibility isn't intrinsic to any design. To gain flexibility, we add appropriate bends and folds to our objects' behaviors

that allow for extension and reconfiguration. We start by characterizing the ways our software needs to flex. We

briefly describe how a behavior varies, note when this variation should occur, and present enough examples to

illustrate the essence of the variation. We write brief descriptions of variations on hot spot cards (see Figure 2-15). As

with CRC cards, the real estate on a hot spot card is limited. So we record only the essentials.

Figure 2-15. The hot spot card describes and demonstrates a variation.

Once we've characterized how and when our software should flex, we then can employ one or a combination of

design techniques: abstraction, classification, composition, inheritance, and parameterization.

Our word processor must accommodate many user-specified variations. In addition, we expect to support new

features and abilities—new graphics, new document formats, new and more sophisticated grammar checking, and

document templates. Our software must be flexible from the start.

There are many techniques we designers use to accommodate planned variations. They range from simple checks

on values to much more elaborate schemes. We can configure an object's behavior by passing method parameters.

We can design an object to remember information that it can query to decide how it should perform an operation. We

can configure an object to vary how it supports a responsibility by having it delegate to a configurable set of service

providers. For example, we can add support for a new document format, plug in the appropriate service provider to

generate that format when the document is saved, and plug in another to read and interpret it when it is opened.

There isn't one best strategy to accommodate variation. We favor simple solutions that build on each other. We can

always add complexity if we need a more accommodating solution. Redesign is big part of sustaining a long-lived

production.

Designing for Reliability

Much complexity in a software design is the result of situations that, although expected, aren't "normal." In the word

processing application, there are many opportunities for our user to supply us with incomplete information or to ask

the software to do something that isn't exactly in the script.

Chapter 8, Reliable Collaborations, explores strategies for increasing an application's ability to react

to and handle exceptional conditions.

What happens when we try to save our document over an existing file? How should our software respond to requests

to save a document in an exchange format that would lose formatting information? These are the easy ones to

handle, and there are many more. What happens when our application doesn't have enough room to execute, or

when it discovers a place in a document with uninterpretable data? These are a bit harder to accommodate. Our

users expect our application to gracefully recover from those situations if it can, and to politely inform them when it

cannot.

We need to design our objects to responsibly and consistently (and to the best of their abilities) react to these

exceptions. Designing consistent exception-handling policies and locating them systematically in controllers, service

providers, and other "responsible" objects makes the way our software reacts to exceptions more predictable.

Making Our Design Predictable, Consistent, and Comprehensible

The essence of a good design is predictability and consistency. We handle our application's complexity by designing

consistent solutions. We don't want our design to be startling. So, if we solve one design problem in a particular way,

we look for places where the solution might be repeated. Given a complex application, there are an infinite number of

designs that will solve it. Many factors contribute to a consistent, comprehensible design:

Objects are grouped in neighborhoods.

There are few lines of communication between neighborhoods.

No one object knows, does, or controls too much.

Objects perform according to their designated role.

When one solution is designed, variants will be applied to other parts that are similar.

There are few patterns of collaboration that repeat throughout the design.

We need to balance a number of forces when we work on developing a consistent, predictable design. There is no

recipe. We weigh various design trade-offs and make concerted efforts to be consistent across our design.

Sometimes a system architecture or application framework will impose a collaboration and control style on the

design. Sometimes using a standard design pattern will help. At other times, we need to discover and adopt a

consistent style as we move along.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Summary

Just as a good cook alters a recipe's ingredients or the order of the instructions, a good designer treats a design

method as a guide. Once you are comfortable with the basics, you should feel more comfortable adjusting the dials

on the design process—producing what's needed when it is needed, cutting to the essence, and working on the hard

problems. With experience you'll learn how to see and describe the problem and then readily design and build objects

that model a solution.

Chapter 10, On Design, explores three different design problems—core, revealing, and the rest—and

discusses how best to approach them. If you know the nature of the design problem you are working

on, you can be prepared and adjust how you work.

Responsibility-Driven Design is suitable for a wide variety of projects because the emphasis is on thinking and

creativity. First, guided by the various stakeholders' requirements, we determine how our application should behave.

Second, we explore what we know so that we will find out what we don't know. Knowing that designs emerge over

time, we create initial design ideas using low-tech tools such as CRC cards that easily let us change our minds or

consider different options.

Finally, we turn the lights on the shadowy areas. We pin down what we have fudged. We look for solutions that have

proven themselves elsewhere. Our success is directly related to how much opportunity we have seized, how much

time for discovery, reflection, and revision we have created, and how satisfied the project's stakeholders are.

I l@ve RuBoard

I l@ve RuBoard

Further Reading

Responsibility-Driven Design was first described in a paper by Rebecca Wirfs-Brock and Brian Wilkerson,

"Object-Oriented Design: A Responsibility-Driven Approach," presented at the OOPSLA '89 Conference. A year later,

the book Designing Object-Oriented Software, (Prentice Hall, 1990) authored by Rebecca Wirfs-Brock, Brian

Wilkerson, and Lauren Wiener, expanded upon ideas presented in the paper. Since then, the notion of object

responsibilities has become commonplace.

Responsibility-driven thinking fits into and complements most development processes and practices. For example,

Rational has defined a process called the Rational Unified Process, or RUP. It defines four phases of an

iterative/incremental development process: inception, elaboration, construction, and transition. Responsibility-Driven

Design principles can be applied during inception and elaboration (what others may consider object design) and

certainly should not be forgotten during construction. A good book on RUP is The Rational Unified Process: An

Introduction (Addison-Wesley, 2000) by Philippe Kruchten.

Agile, adaptable development processes are a popular topic—and Responsibility-Driven Design techniques fit here,

too. If you are interested in reading about what makes a development process agile, pick up Jim Highsmith's Agile

Software Development Ecosystems (Addison-Wesley, 2002). There are several different processes whose authors

and proponents classify as being agile. The most written about is Extreme Programming, or XP, which includes just

12 development practices. Extreme Programming Applied: Playing to Win (Addison-Wesley, 2001), by Ken Auer and

Roy Miller, summarizes Extreme Programming practice and then presents many nuggets of wisdom.

If you are interested in the art and practice of writing good use cases, there are several books we recommend. Ivar

Jacobson introduced use cases in his classic book, Object-Oriented Software Engineering: A Use Case Driven

Approach (Addison-Wesley, 1994). Several authors have put their unique spin on use cases and have made several

refinements to Ivar Jacobson's original ideas. The best of the bunch are Alistair Cockburn's Writing Effective Use

Cases (Addison-Wesley, 2002) and Larry Constantine and Lucy Lockwood's Software for Use: A Practical Guide to the

Models and Methods of Usage-Centered Design (Addison-Wesley, 1999). Alistair Cockburn's book, an easy read, is

packed full of examples and advice on how to fix common use case problems. Larry Constantine and Lucy

Lockwood's book isn't strictly just about use cases, although it goes to some length in describing different styles of

usage descriptions and their strengths and weaknesses. Their book presents a systematic and thorough approach to

developing usable systems and user interfaces, through the development of role models, task models, and content

models. Anyone who wants to focus on system usability will find much of value in this book. It is packed with wisdom,

great stories, and many practical tools and techniques.

Larry Constantine and Lucy Lockwood introduce the notion of an essential use case. It is a structured

narrative expressed in the language of the application domain and its users. It describes a user task in

a simplified, technology-free and implementation-independent fashion. Because it specifically omits

details, it leaves more options for the user interface design.

I l@ve RuBoard

I l@ve RuBoard

Chapter 3. Finding Objects

Joseph Albers could make colors dance or retreat: "I see color as motion ... To put two colors together side by side

really excites me. They breathe together. It's like a pulse beat ... I like to take a very weak color and make it rich and

beautiful by working on its neighbors. I can kill the most brilliant red by putting it with violet. I can make the dullest

grey in the world dance by setting it against black." Albers, one of the great graphics artists of the twentieth century,

was a master at making visual imagery emerge from form and color. By careful juxtaposition of colors, textures, and

shapes, the artist can make images leap off the page. Albers calls this the "1 + 1 = 3" effect. A good design is more

than the sum of its parts. A bad design muddles what should be emphasized. Chartjunk—misuse of bold lines and

color or addition of pretty stuff that adds no value—shifts attention away from vital information. In graphic design,

composition, form, and focus are everything! An object design poses similar challenges. It is strengthened by vivid

abstractions and well-formed objects that fit into an overall structure. It can be weakened by glaring inconsistencies or

muddled concepts.

The abstractions you choose greatly affect your overall design. At the beginning, you have more options. As you look

for candidate objects, you create and invent. Each invention colors and constrains your following choices. Initially, it's

good to seek important, vivid abstractions—those that represent domain concepts, algorithms, and software

mechanisms. Highlight what's important. If you invent too many abstractions, your design can get overly complex. Not

enough abstraction, and you'll end up with a sea of flat, lifeless objects.

Your goal is to invent and arrange objects in a pleasing fashion. Your application will be divided into neighborhoods

where clusters of objects work toward a common goal. Your design will be shaped by the number and quality of

abstractions and by how well they complement one another. Composition, form, and focus are everything.

A graphics designer enhances important information by layering and separating it, giving focus to the

data rather than its container, and by using multiple signals to remove ambiguity.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

A Discovery Strategy

So let's get to it! Conceiving objects is a highly creative activity, but it isn't very mysterious. Finding good candidate

objects isn't a topic that has received a lot of attention. Early object design books, including Designing

Object-Oriented Software, speak of finding objects by identifying things (noun phrases) written about in a design

specification. In hindsight, this approach seems naïve. Today, we don't advocate underlining nouns and simplistically

modeling things in the real world. It's much more complicated than that. Finding good objects means identifying

abstractions that are part of your application's domain and its execution machinery. Their correspondence to

real-world things may be tenuous, at best. Even when modeling domain concepts, you need to look carefully at how

those objects fit into your overall application design.

Well-formed abstractions and careful attention to how they complement one another have a direct

effect on the quality of an object design. This chapter discusses how to find and arrange software

objects in an initial object design. The ultimate goal is to develop a practical solution that solves the

problem. However, we find that such designs typically are also esthetically pleasing ones.

Although software objects aren't just waiting for you to find them, you can identify them somewhat systematically.

Although many different factors may be driving your design, there are standard places to search for objects, and you'll

find many sources of inspiration. You can use your knowledge of your application domain, your notions about needed

application machinery, lessons learned from others, and your past design experience.

Our recipe for finding and assessing candidates has a number of steps:

Write a brief design story. In it, describe what is important about your application.

Using this story, identify several major themes that define some central concerns of your application.

Search for candidate objects that surround and support each theme. Draw on existing resources for

inspiration: descriptions of your system's behavior, architecture, performance, and structure.

Check that these candidates represent key concepts or things that represent your software's view of the

world outside its borders.

Look for candidates that represent additional mechanisms and machinery.

Name, describe, and characterize each candidate.

Organize your candidates. Look for natural ways to divide your application into neighborhoods—clusters of

objects that are working on a common problem.

Check for their appropriateness. Test whether they represent reasonable abstractions.

Defend each candidate's reasons for inclusion.

When discovery slows, move on to modeling responsibilities and collaborations.

This chapter will cover each of these steps in greater detail. But be aware that you don't always complete each step

before moving on to the next. The process of discovery and invention is more fluid than that. Sometimes you perform

several steps at the same time. You may discard some candidates and start over if they don't seem to fit in to your

emerging design. But if you start by characterizing what is vital to your application's success in a design story, you

can then proceed with an organized search for objects that support this core.

At the end of your initial exploration, you will have several handfuls of carefully chosen, justified candidates. Many

more will be invented as you proceed. These initial candidates are intentionally chosen to support some key aspect

of your system. They will seed the rest of your design. Finding and inventing this first batch of candidates takes

careful thought.

Initially, we recommend you look for candidate roles and objects. Once you have an idea that they'll

stick around, make decisions on how they are realized as interfaces and classes.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Looking for Objects and Roles, and Then Classes

The first candidates to look for should represent important things: concepts, machinery, and mechanisms. Typically

these kinds of candidates are smart—they do things. They may know things, too, but they perform actions based on

what they know. Initially, think very concretely. Abstraction will come later, after you see more concrete objects and

understand their relationships to others. To start, identify distinct objects that have clear roles. Next, decide what

candidates should know and do (their responsibilities) and whom they work with (their collaborators).

Then, thinking more abstractly, you can turn to identifying aspects that are common to a number of candidates. Shift

your focus from thinking about objects and their individual roles to deciding what objects have in common. Only after

you've made decisions about common responsibilities that are shared by different candidates can you define

common roles. We deem our objects and roles candidates until their value has been proven. Only then do we decide

how they will be realized as classes and interfaces.

When you transition from candidates to classes and interfaces, you have options. You can employ inheritance,

abstraction, interfaces, and collaborations to construct a well-factored, flexible design. You will specify abstract and

concrete classes as well as interfaces. An abstract class provides a partial implementation of responsibilities. It

leaves subclasses with the obligation to implement specific responsibilities. A concrete class provides a complete

implementation. An interface specifies responsibilities more precisely as method signatures but leaves their

implementation open. Any class can implement an interface, regardless of its position in any class inheritance

hierarchy.

Abstract and concrete classes are the building blocks we use to specify an implementation. Declaring

interfaces is one means to make it more flexible and extensible. A reusable role is best specified as

an interface that can be implemented by one or more classes.

I l@ve RuBoard

I l@ve RuBoard

Why Tell a Design Story?

We suggest you create a framework for searching for potential candidates by writing a story about your application.

After you've done this, the candidates you identify should fall into place and support various aspects of your story.

When you state things in your own words, you get to decide what's important. Everybody may have been talking

about what your design should do and what will make it great, but you should make a few bold statements of your

own. In this design story, identify the things about your application that you know with certainty, as well as things you

don't yet know. Rather than being driven by one particular view of your software—whether it be use cases,

requirements, architecture, users, or sponsors—pull together all these factors and craft your own description.

Write a rough story—two paragraphs or less is ideal. Don't take a lot of time revising and polishing it. Be quick and to

the point. What is notable about your application? What is it supposed to do? How will it support its users? Is it

connected to a real-world example that you can study? Have you done something similar? What will make your

design a success? What are the most challenging things to work out? What seems clear? What seems ill defined?

You need not answer all these questions. Simply write about the critical aspects of your application. If it helps you

make your point, draw a rough sketch or two. Focus on the main ideas.

If you are a member of a larger design team, write your own story first and then share it with your

team. See how your concerns differ from others'. The team can draft a single, unified story, but this

isn't necessary. More importantly, identify the important themes in these design stories. Then look for

candidates that support these themes.

Here are two design stories that were written quickly. The first one rambles. It tells of an online banking application:

This application provides Internet access to banking services. It should be easily configured to work for

different banks. It should support fast access to banking services for potentially thousands of users at a

time. There is a limited number of software resources, such as database connections and connections

to backend banking software, that are available. A critical element in the design is the declaration of a

common way to call in to different backend banking systems and a reliable means of sharing scarce

resources. We will define a common set of banking transactions and a framework that will call into

banking-specific code that "plugs into" the standard layer implementing the details. The rest of our

software will only interface with the bank-independent service layer.

We've developed a prototype implementation of this layer and have configured it to work for two different

banks. Although it is still a prototype, we understand how to write a common banking service layer.

Lately, our bank has been busy acquiring other banks and integrating their software. We've been

through three system conversions in the past year. We want to focus on making this service layer easy

to implement and test. At the heart of our system is the ability to rapidly configure our application to work

for different backends and to put a different pretty face on each. This includes customizing screen

layouts, messages, and banner text. The online banking functions are fairly simple: Customers register

to use the online banking services and then log in and access their accounts to make payments, view

account balances and transaction histories, and transfer funds. This is straightforward, easy to

implement. There is added complexity. Customers record information and notes about each online

transaction. This extra information will be maintained by our application in its own database because

preexisting bank software has no way to store it. We want a customer to view human-readable

information, not ancient bank software detailed transaction records. When a customer asks to view an

account's transaction history we'll have to merge this data with records supplied from the backend

software. Multiple users can access a customer's accounts, each with potentially different access rights.

Certain users might have no access to sensitive accounts. A company executive might view only

account balances, whereas a clerk in the accounts payable department could make payments and a

comptroller might be able to transfer funds between accounts.

This next, more focused, story is about a Web-based game. It describes new design challenges as well as, to us,

familiar territory:

This game playing application supports an Internet variant of chess called Kriegspiel. Kriegspiel is a

chess version of the popular game Battleship. The novelty is that players make moves not knowing

where their opponent's pieces are located. Our immediate concern is how to distribute responsibilities

among major software components. In this distributed application, we need to consider time lags and

limited communication bandwidth between architectural components. We also need to consider the

unpredictability of Internet communications. Each player interacts with our application via a Web

browser. Hundreds of games can be played simultaneously. A user logs in and requests to play a game

with another. If no one is available, the user can elect to play a game with the computer. We will need to

design our software to play a credible game of Kriegspiel as well as referee games played by humans. A

game can be suspended and resumed. From our computer gaming experience, we know that

computerized games generally have player input directives, rules about legal actions, some

representation of the current state of the game, and animations. In this application, our animations are

simple and not a major concern. It is worth stating how Kriegspiel is played, although our application

won't mimic the real-world game. We will draw design ideas from this description.

In the game of Kriegspiel, three boards and sets of chessmen are used. There is a referee, whose chess

set is in the center, with two players seated back-to-back, each at his own board. Each player moves his

own chessmen, and the referee duplicates each move on his own board. The referee tells a player when

his attempted move is impossible. Each player tries to guess what move his opponent is making. When

a player completes a legal move, the referee announces, "Black (or White) has moved." When a player

tries an illegal move, the referee waves his hand to prevent it but does not let the opponent know. When

a move results in a capture, the referee announces, "Black (or White) captures on (the rank, file, long or

short diagonal)" and removes the captured piece from the board of the player who lost it. A player may

ask, "Any?" and be told by the referee if he has a possible capture with a pawn. That's the only question

he is permitted. Having asked the question he must try at least one pawn capture before making a

different move. To summarize, players make moves, ask "Any?," suspend or resume a game, claim a

draw, or concede.

Let's contrast what we can glean from each story and then sketch out our candidate search strategies. The

underlying requirement for the online banking system is flexibility. Functionality, implementation, and information

need to be configurable. The application will maintain additional user-supplied information and construct account

history from online and other banking transactions.

Our strategy for identifying candidates for this application will be to focus initially on modeling concepts that represent

online banking services, the common interface to backend banking systems, and accounts. We should have objects

that are responsible for performing banking functions and storing application-specific information about online

transactions. Because we are building a multiuser online system, we also need objects that are responsible for

managing access to limited resources such as the database and backend banking system connections. The key

themes in the banking story are

Modeling online banking services

Flexibly configuring behavior

Sharing scarce software resources among thousands of users

Supporting different views of accounts and access privileges

The Kriegspiel application, even though it too is an Internet application, has fundamentally different drivers. As with

any gaming application, we need to take a step back from our vivid real-world reference of the physical board game

and ponder what mechanisms and inventions are needed by a computerized game. This is always a major design

challenge with gaming applications. It is one we are familiar with from past experience. Our goal in designing Internet

Kriegspiel isn't to simulate the real world but instead to construct a model that represents what is needed to run a

computerized game. Choosing the right abstractions to represent the game and moves will be critical. We also need

to consider how running over the Internet will impact our design. This will affect how we divide the work between

application components. Finally, we'll need to implement a semi-intelligent computerized game player—something

that is smart enough to play a decent game against a human opponent. Our central concerns for Internet Kriegspiel:

Game modeling

Computer playing a game

Partitioning responsibilities across distributed components

I l@ve RuBoard

I l@ve RuBoard

Search Strategies

Once you have identified major themes, you can use them as sources of inspiration. Make educated guesses about

the kinds of inventions that you will need based on the nature of your application and the things that are critical to it.

Candidates generally represent the following:

The work your system performs

Things directly affected by or connected to the application (other software, physical machinery, hardware

devices)

Information that flows through your software

Decision making, control, and coordination activities

Structures and groups of objects

Representations of real-world things the application needs to know something about

We guide our search from these perspectives. The kinds of inventions we seek are closely related to the role

stereotypes.

If an application's central mission boils down to computation, look to populate it with objects playing the role of service

providers that calculate, compute, transform, and figure. You will likely invent objects that represent algorithms or

operations along with objects that control work processes. If your application's major activity is to assemble and move

information from one place to another, identify candidates that model this information as objects along with others to

coordinate their movement. If your application connects with other systems, invent external interfacers that form

these connections. Most designs need objects that control or coordinate the work of others. Depending on the

complexity of the control, this design decision may or may not be a prominent one. If your application needs to sort

through, organize, and make connections between related objects, structurers need to be identified. There are

relatively direct links between the kinds of objects you look for and the nature of the work your software carries out.

The best way to evaluate potential candidates that represent external things is to shift perspective.

Climb into your software and look out at the world. Take your application's viewpoint. Ask what you

need to know about your users, the systems you connect to, and things out there that you affect.

As you look for candidates one question to ask is, "How much does our software need to know about things in the

external and virtual worlds it is connected to?" At the borders, model connections to other systems as interfacer

objects. You may include in your design objects that represent these other software systems. These service

providers will be called upon by other parts of the application. But when should you model things that are outside a

computer, such as your software's users? If it is only their actions that matter and not whom they are, leave them out

of the design. Users' actions can be conveyed via user interface objects (objects charged with translating user

requests and information to other parts of the system). There is no need to know who is pushing your application's

buttons! On the other hand, if whom users are makes your software behave differently, include some representation

of them as a candidate. Some knowledge of its users (and objects to represent that knowledge) is needed if your

software bases any decisions on whom it interacts with. For example, if different users have different access rights to

accounts or if the ability to resume a game requires knowledge of whom the players are, then some representation of

these users should be part of the design.

Tables 3-1 and 3-2 outline our search strategies for our two applications. Although we consider each perspective,

typically only one or two are relevant to any particular theme. If we find that a particular perspective does not yield

any insights, we move on. For each theme, we briefly summarize the perspectives that yielded insights and the kinds

of candidates we are looking for.

Table 3-1. The initial search for online banking application candidates is based on exploring four themes.

Theme Perspective Candidates That Specifically Support...

Online banking

functions

The work our system

performs

Performing financial transactions,

querying accounts

 Things our software

affects

Accounts, backend banking system

transactions

 Information that flows

through our software

Information about transactions, account

balances, transaction amounts, account

history, payments

 Representations of

real-world things

Customers, users, and the accounts they

access

Flexibly configuring

behavior

Things our software

affects

A common interface to backend systems

 Information that flows

through our software

Configurable display of Web page

banners, text, messages, and account

formats

Sharing scarce

resources

Structures and groups of

objects

Managing limited connections to backend

systems and our online banking

application database

Different views of

and access to

accounts

The work our system

performs

Restricting users' views of and ability to

perform banking transactions that modify

account balances

 Decision making,

coordination, and control

Prohibiting access to accounts unless

user has specific privileges

Table 3-2. The initial search for Kriegspiel application candidates is based on the themes of game modeling,

intelligent computerized game playing, and distributed games.

Theme Perspective Candidates That Specifically Support...

Game modeling The work our

system performs

Assigning players to games, refereeing,

storing and resuming suspended games,

playing a game, determining the legality of a

move, determining the outcome of a move,

displaying the state of each player's board

 Information that

flows through our

software

Information about moves and player requests

 Representations of

real-world things

Players and their actions

 Structures and

groups of objects

Managing saved games, the various games,

game pieces, and their locations on a game

board

Computer playing a

game

The work our

system performs

Playing a game with a user

 Decision making,

control, and

coordination

Determining a reasonable move to make

based on the current view of the game (which

should be just as limited as any human

player's view)

Partitioning

responsibilities

across distributed

components

Decision making,

control, and

coordination

Communicating a player request to the

referee and game state between players,

detecting whether a player is still connected

 Information that

flows through our

software

Player moves, updated boards, and game

state

We will identify candidates that support the relevant perspectives. Sometimes candidates leap right out of the page

from our brief descriptions; are Player and PlayerAction good candidates based on the fact that we need to have

candidates that support our game's real-world view of "players and their actions"? Highly likely. At other times, we

must speculate about exactly how our software might work in order to come up with candidates; perhaps there should

be a BankingServicesConnectionManager that manages BankingServicesConnections or a

DatabaseConnectionManager to manage DatabaseConnections that are scarce resources? Often, different themes

and perspectives reiterate and reinforce the need for certain kinds of candidates. This is good. It builds confidence in

the relevance a particular candidate has to our application. At other times, ideas do not come so quickly, and we must

think more deeply to come up with potential candidates.

We won't find all the key candidates in this first pass; nor will our initial ideas about our candidates remain fixed. Our

notions change as we give candidates further definition. The initial candidates that we come up with will seed our

design. So it is particularly important to give each candidate a strong name that suggests its role and purpose. So

before we continue searching for candidates, let's explore what it takes to find useful names.

I l@ve RuBoard

I l@ve RuBoard

What's in a Name?

Good names increase design energy and momentum. You can build on a good name. When the name of a software

object is spoken, designers infer something about an object's role and responsibilities. That's why grizzled object

designers say, "Choose names carefully." A well-formed name creates a link to past experience and common

practice. Meaning comes along with any name, whether we like it or not. Our brains are wired to find connections to

things we already know. So the key to giving an object a good name is to make its name fit with what you already

know while giving a spin on what it should be doing. Most names fit into a system of names. Different naming

schemes coexist, even within a single application. There isn't one universal naming system.

"... the relation of thought to word is not a thing but a process ... Thought is not merely expressed

in words; it comes into existence through them. Every thought tends to connect something with

something else, to establish a relationship between things. Every thought moves, grows and

develops, fulfills a function, solves a problem."

—Lev Vygotsky

Qualify generic names. One scheme for naming things that are special cases of a more generic concept is to tack

on to the generic name a description of that special case.

A Calendar represents a system of dates and time at a particular location. GregorianCalendar extends

the Calendar class. Following convention, we could invent JulianCalendar or ChineseCalendar classes.

Others familiar with this scheme could make educated guesses about how their implementations would

differ from GregorianCalendar.

Include only the most revealing and salient facts in a name. The downside of any descriptive scheme is that

names can become lengthy. Don't name every distinguishing characteristic of an object; hide details that might

change or should not be known by other objects.

Should people really have to care that they are using a

MillisecondTimerAccurateWithinPlusOrMinusTwoMilliseconds, or will Timer suffice? Detailed design

decisions should not be revealed unless they are unlikely to change and they have a known impact on

the object's users. Exposing implementation details makes them hard to change.

Consider the Singleton pattern described in the Design Patterns book. This pattern ensures that a class has only one

instance with a global point of access. We could name every concept that applies this pattern a

MumbleMumbleSingleton. Following our guideline, we recommend against this. Singleton is a distinction that is more

important to a class implementer than to a client who uses a singleton. Give names that will be meaningful to those

who will be using the candidate, not those who will be implementing it. If someone using your candidate must know

the details of its implementation, you have likely missed an opportunity to do a better job of abstraction. One possible

exception to this rule is to append Singleton to a class name when it is crucial for its users to know this.

Give service providers "worker" names. Another English language naming convention is to end job titles with "er."

Service provider objects are "workers," "doers," "movers," and "shakers." If you can find a "worker name," it can be a

powerful clue to the object's role.

Many Java service providers follow this "worker" naming scheme. Some examples are StringTokenizer,

SystemClassLoader, and Applet-Viewer.

If a worker-type name doesn't sound right, another convention is to append Service to a name. In the CORBA

framework, this is a common convention—for example, TransactionService, NamingService, and so on.

Look for additional objects to complement an object whose name implies broad responsibilities. Sometimes a

candidate represents a broad concern; sometimes its focus is more narrow. If you come across a name that implies a

large set of responsibilities, check whether you've misnamed a candidate. It could be that your candidate should have

a narrower focus. Or it might mean that you have uncovered a broad concept that needs to be expanded. Looking for

objects that round out or complement a broad name can lead to a family of related concepts—and a family of related

candidates. Many times we need both specific and general concepts in our design. The more generic named thing

will define responsibilities that each specific candidate has in common.

An object named AccountingService likely performs some accounting function. The name

AccountingService isn't specific. We cannot infer information about the kinds of accounting services it

performs by looking only at its name. Either AccountingService is responsible for performing every type

of accounting function in our application, or it represents an abstraction that other concrete accounting

service objects will expand upon. If this is so, we'd expect additional candidates, each with a more

specific name such as BalanceInquiryService, PaymentService, or FundsTransferService. These more

specifically named candidates would support specific accounting activities.

Highlight a general concept with more specific candidates. If you can think of at least three different special cases,

keep both the general concept and specific ones. If later on, you find that these more specific candidates don't share

any responsibilities in common, the more abstract concept can always be discarded. However, if you have simply

assigned a candidate a name that is too generic, by all means rename it.

If your candidate could represent historical records of many other things, better to leave it with a more

generic name, History, instead. If you intend to model transaction history, rename your candidate

TransactionHistory. You decide how specific you want to be.

Forming an abstraction by looking at two specific cases might work, but comparing and contrasting

three or four cases is even better. The more closely related concepts you can compare and contrast

in order to identify what they have in common, the better.

Therein lies the art of naming: choosing names that convey enough meaning while not being overly restrictive. Leave

open possibilities for giving a candidate as much responsibility as it can handle, and for using it in different situations

with minor tweaks. It certainly is a more powerful design when a candidate can fit into several different situations. The

alternative—having a different kind of object for each different case—is workable, but not nearly so elegant.

Choose a name that does not limit behavior. Don't limit a candidate's potential by choosing a name that implies

too narrow a range of actions. Given the choice, pick a name that lets an object take on more responsibility.

Our thoughts shape our words, and our words influence our thoughts. Names subtly shape our ideas

about our candidate's expected behaviors.

Consider two alternatives for a candidate: Account or AccountRecord. Each could name an object that

maintains customer information. From common knowledge we know one meaning of record is

"information or facts set down in writing." An AccountRecord isn't likely to have more than information

holding responsibilities if we fit its role to conventional usage of this name. The name Account, however,

leaves open the possibility for more responsibilities. An Account object could make informed decisions

on the information it represents. It sounds livelier and more active than AccountRecord.

Choose a name that lasts for a candidate's lifetime. Just as it seems funny to hear a 90-year old called "Junior,"

it's a mistake to name a candidate for its earliest responsibilities, ignoring what else it may do later on. And don't be

content to stay with the first name you give a candidate if its work changes.

An object that defines responsibilities for initializing an application and then monitoring for external

events signaling shutdown or re-initialization, is better named ApplicationCoordinator than

ApplicationInitializer. ApplicationInitializer doesn't imply having ongoing responsibilities after the

application is up and running. ApplicationCoordinator is a better name because its more general

meaning encompasses more responsibilities.

Choose a name that fits your current design context. When you choose names, select ones that fit your current

design surroundings. Otherwise, your candidates' names may sound strange. What sounds reasonable in an

accounting application may seem jarring in an engineering application.

A seasoned Smalltalker tried hard to set aside his biases when he started working with Java. Although

he expected Java classes to have totally different responsibilities, he was surprised to find the Java

Dictionary class to be abstract. In Smalltalk, Dictionary objects are created and used frequently.

Shed your past biases when they don't fit your current situation.

Do not overload names. Unlike spoken language, where words often have multiple meanings, object names should

have only one meaning. It isn't good form to have two different types of Account objects with radically different roles

that coexist in the same application. Some object-oriented programming languages let you assign the same name to

different classes but then force you to uniquely qualify a name when you reference a particular class in code. In Java,

for example, classes from different packages can have the same name. In order to uniquely designate a specific one,

its name must be qualified by the name of the package where it is defined.

A Java designer can define classes with the same name, each residing in a different package. You

should do so only if one package is designed as a replacement for another.

Names of things that can simultaneously coexist within a single application should be given different names. Don't

overload a name. Programmers have only one context—the running application—in which to interpret names. They

already have enough to think about without adding yet another source of confusion. Compilers are good at

automatically applying the correct qualification to a name. Humans aren't!

Eliminate name conflicts by adding an adjective. Sometimes the best names are already chosen. Still, you need

to name your candidate. By adding a descriptive phrase to a name, you can come up with a unique name.

The candidate TransactionProperties might be a reasonable name for a candidate whose preferred

name conflicts with the preexisting Java class named Properties.

A word of caution: If your candidate has a radically different meaning, don't co-opt a familiar name. Follow

convention. Designers familiar with existing names will expect your candidate to fit in and work similarly.

Eliminate conflicts by choosing a name with a similar meaning. Sometimes, your best bet is to look for a

synonym. Each synonym has a slightly different shade of meaning, so finding a satisfactory name may be hard.

The synonyms for Property, a class defined in the Java libraries, include these words: characteristic,

attribute, quality, feature, and trait. Although "attribute" or "feature" might work, "characteristic" seems

stuffy, and "quality" seems strained.

Choose names that are readily understood. A name shouldn't be too terse. Don't encode meaning or cut corners

to save keystrokes. If you want others to get a sense of an object's role without having to dig into how it works, give it

a descriptive name. A name can be descriptive without being overly long.

"Acct" is too cryptic. "Account" is better.

If your problem domain has well-known and understood abbreviations—such as USD in banking, or

Mhz or Gbyte in technology—it is reasonable to include these in a candidate's name.

I l@ve RuBoard

I l@ve RuBoard

Describing Candidates

We judge an object by how well its name suits its role and how well its role suits its situation. Stereotyping a

candidate's role provides a handy means for quickly creating an image about an object's intended use. When you find

a candidate, name it and then characterize it as fitting one or more stereotypes. Each candidate could be a service

provider, controller, coordinator, structurer, information holder, or interfacer. To be even more specific, you may want

to distinguish between three different types of interfacers: user interfacers (objects that interface with users), external

interfacers (objects that interface between your application and others) or intersystem interfacers (objects that bridge

different parts of an application).

To be more explicit with your intentions, you can distinguish whether an object is designed to be passive and just

hold on to related information (an information holder), or whether you expect it take a more active role in managing

and maintaining that information (an information provider). If these finer distinctions seem too subtle, don't fret about

them. Don't worry about giving an object the "right" stereotype. If your application is populated with objects that don't

seem to fit these predefined stereotypes, come up with your own stereotypes. Stereotyping is intended to help get

you started thinking about your candidates, not to bog you down.

If you aren't sure about the role your candidate will play, make an educated guess. Use its stereotype as a guide to

build a simple definition. In that definition, explain what your candidate might do and list any traits that distinguish it

from others. Write this brief definition on the unlined side of a CRC card (see Figure 3-1).

Figure 3-1. The unlined side of a CRC card is used to describe an object's purpose and stereotypes. In this

case, a RazzmaFrazzer has only one stereotype.

More generally, a pattern to follow when describing an object is as follows:

An object is a type of thing that does and knows certain things. Briefly, say what those things are. Then

mention one or more interesting facts about the object, perhaps a detail about what it does or knows or

who it works with, just to provide more context.

Service providers, controllers, and coordinators are distinguished by what they do. Here's a simple way to describe

these stereotypes:

A service provider (or controller or coordinator) is some kind of thing that does some kind of work.

Briefly, describe this work. Then mention something about what is important or interesting about the

work it performs or whom it interacts with.

If you are working on your own, you may feel less of an urge to write down these thoughts. After all, you know what

you mean! Even so, it still can be helpful to jot down an abbreviated thought. You don't want to forget what was so

important about that darned RazzmaFrazzer by next Friday. Similarly, if you are working in a team, others likely won't

know what's important about a candidate unless you tell them. Any description you can write about a candidate's

purpose and what you expect it to do will help.

Consider this definition:

A compiler is "a program that translates source code into machine language."

Contrast it with this slightly abbreviated definition:

"A compiler translates source code into machine language."

The two definitions are nearly identical. The first adds that a compiler is a software program. This seems

nit-picky—as software designers, we all know that compilers are programs. But the first definition provides just

enough context so that someone not on our same wavelength can relate a compiler to other computer programs.

Whenever you can relate something to a widely understood concept (such as a computer program), its meaning will

be clearer to all.

If you and your fellow designers eat, sleep, and breathe design 24 hours a day, a lot may remain unspoken and

unwritten. You understand one another because you think alike. However, if there's ever a question or disagreement

about what a candidate is, it could be that you are making different assumptions. To make intentions clear, add

enough detail to remove any doubt; then expect to have a discussion about whose ideas are better. Describe both

what a candidate is and what it is not. Relate it to what's familiar.

We provide even more context by giving examples of how a candidate will be used and a general discussion of its

duties. This is particularly important when you are describing a role that can be assumed and extended by several

different objects.

A FinancialTransaction represents a single accounting transaction performed by our online banking

application. Successful transactions result in updates to a customer's accounts. Specific

FinancialTransactions communicate with the banking systems to perform the actual work. Examples are

FundsTransferTransaction and MakePaymentTransaction.

If a common meaning suits a candidate, use it to form a basic definition. Don't invent jargon for invention's sake.

In the case of alternative definitions, choose one that most closely matches your application's themes. Start with a

standard meaning, if it fits. Then describe what makes that object unique within your application.

The American Heritage Dictionary has six definitions for account:

A narrative or record of events1.

A reason given for a particular action2.

A formal banking, brokerage, or business relationship established to provide for regular services, dealings,

and other financial transactions

3.

A precise list or enumeration of financial transactions4.

Money deposited for checking, savings, or brokerage use5.

A customer having a business or credit relationship with a firm6.

It isn't too much of a stretch to conceive of different candidates that reflect each of these definitions. In our online

banking application, accounts most likely represent money (definition 5). Rules that govern access to and use of

funds are important. Different types of accounts have different rules. Although it is conceivable that an account could

also be "a precise list of financial transactions" (definition 4), we reject that usage as being too far off the mark.

People in the banking business think about accounts as money, assets, or liabilities and not as a list of transactions.

In the same fashion, we reject definition 6. It doesn't specifically mention assets. We easily reject definitions 1 and 2

as describing something very different from our notion of accounts in banking. In banking, accounts represent money.

We choose definition 5 because it is the most central concept to the world of banking:

An account is a record of money deposited at the bank for checking, savings, or other purposes.

Add application-specific facts to generic definitions. The preceding definition is OK, but it is too general for online

banking. In the online banking application, users can perform certain transactions and view their balances and

transaction histories. We add these application specifics to our original description:

An account is a record of money deposited at the bank for checking, savings, or other purposes. In the

online banking system customers can access accounts to transfer funds, view account balances and

transaction historical data, or make payments. A customer may have several bank accounts.

The more focused a candidate is, the better. Of course, a candidate may be suited to more than one use. Objects

can be designed to fit into more than one application. A framework operates in many different contexts. A utilitarian

object can be used in many cases. If you want your candidate to have a broader use, make this intent clear by writing

the expected usage on the CRC card.

Distinguish candidates by how they behave in your application. If distinctions seem blurry in the world outside

your software, it is especially important to clarify your software objects' roles. Even if you can distinguish between a

customer and an account, you still need to decide whether it is worth having two candidates or to have one merged

idea. (Don't expect the business experts to help make this decision. It is a purely "technical" modeling one.) A

candidate that reflects something meaningful in the world outside your application's borders may not be valuable to

your design.

Let's look at the sixth definition of account:

"An account is a customer having a business or credit relationship with a firm."

What is the difference between a customer and an account? Are they the same? If we had chosen this definition,

would we need both customer and account objects in our banking application?

When you discover overlapping candidates, refine their roles and make distinctions. Discard a candidate or merge it

with another when its purpose seems too narrow (and could easily be subsumed by another candidate). When in

doubt, keep both.

For both Customer and Account to survive candidacy and stick in a design, their roles must be distinct

and add value to the application. We could conceive of a Customer as a structurer that manages one or

more Account objects. And, in the online banking application, one or more users can be associated with

a Customer. For example, the customer "Joe's Trucking" might have four authorized users, each with

different privileges and access rights to different accounts. Another option would be to give an Account

responsibility for knowing the customer and users. We could then eliminate Customer. We decide to

include both Customer and Account in our design because giving those responsibilities to Account

objects doesn't seem appropriate—we can envision customers and users sticking around even when

their accounts are closed (and perhaps new accounts are opened). So customers are somewhat

independent of accounts.

During exploratory design, expect a certain degree of ambiguity. You can always weed out undistinguished

candidates when you find they don't add any value. Put question marks by candidates that need more definition. A

candidate is just that—a potential contributor.

I l@ve RuBoard

I l@ve RuBoard

Characterizing Candidates

Before eliminating any possibility, consider how a candidate might work and how it relates to others. It is best to

consider a candidate in a larger context. We can characterize candidates according to their

Work habits

Relationships with others

Common obligations

Location within an application architecture

Abstraction level

To explore a candidate's work habits, ask, "What does it do, and how does it fit in?" Take one point of view—from the

outside looking in. This is the same view a peer or client would take. Speculate about what services it might offer or

how it might affect others. Think about these things, but don't assign responsibilities just yet. Ask whether the object

is self-contained, working on its own initiative, or directed by others. Will it be constantly busy? Or will it need to be

prodded into action? Is it an important, central character, or is it somewhere on the periphery? Ask what each

candidate might do and be. If you haven't any idea, dig in and look for its potential value. If you are undecided, spend

a few minutes speculating how it might fit into its neighborhood and about the nature of its role:

We think of an Account as an information holder. So we do not think of it adjusting its balance on its

own—it is probably changed by outside requests (both online banking transactions and other account

activity). An Account knows its balance and transaction history. An account doesn't manage its

customer, so it doesn't have much of a structuring role, but it is associated with its customers (does it

need to know its customer, or does its customer know about it?). It isn't obvious how backend banking

transactions that affect an account's status will be controlled (will an Account be involved in delegating

this work or not?) —so we are uncertain how much work it will actually do. We'll defer thinking through

these issues until we develop a more detailed blueprint for our application's control architecture.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Connecting Candidates

Given its limited space, what you can say on a CRC card will be brief. But CRC cards are much more than a compact

space to record design ideas. They are real and tangible. You can pick up a card and talk about it as if it were the

object itself, forgetting that the card "stands in" for a "real" object. You can use CRC cards to explore what

candidates are and how they relate to others. You can move a card closer to any collaborators. You can poke at

them, making as many connections and distinctions as you can. You can pick them up and lay out a new

arrangement that amplifies a fresh insight, looking for patterns and similarities and differences. Which objects do

similar things? Put them in a pile. Which objects are part of a neighborhood working on part of the problem? Move

them closer. Get a sense of how your candidates fit and relate. Some useful ways to cluster candidates are as

follows:

By application layer

By use case

By stereotype role

By neighborhood

By abstraction level

By application theme

CRC cards, as invented by Ward Cunningham and Kent Beck, were originally used to teach

object-oriented concepts. They have far broader applicability than as teaching aids. They can help

you think about and link candidates.

There is no standard way to fill out or use CRC cards. Several books have been written on the "art" and "practice" of

CRC card modeling. David Bellin and Susan Suchman Simone's The CRC Card Book (Addison-Wesley, 1997) talks

much about the process and people aspects of CRC cards. In Nancy Wilkinson's Using CRC Cards: An Informal

Approach to Object-Oriented Development (SIGS, 1995), a CRC model for a library application is worked out and its

translation to a C++ implementation is described.

Figure out what works best for you. Use CRC cards to express your ideas. Jot down initial ideas on the unlined side:

At the very minimum, record a candidate's name, a brief description, and its role stereotypes (see Figure 3-2). That's

mainly what you're initially looking for. Later you'll get more specific.

Figure 3-2. The purpose of a candidate is recorded on the unlined side of a CRC card.

But you can also note things of interest: Does a candidate play a role in a well-known design pattern? Name that

pattern and the candidate's role in it. Is it intended to fit into a narrow context, or, if carefully designed, might it be

used in different applications? Note anything unusual and worth remembering. Is it an important abstraction? Put a

big star by its name. As shown in Figure 3-3, use CRC cards to express what you think is important to know about a

candidate.

Figure 3-3. You can add scribbles, questions, and comments to a CRC card to help you remember key points.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Looking for Common Ground

Earlier, we suggested that you make sharp distinctions between candidates. If you couldn't find enough differences,

we recommended that you merge candidates that have overlapping roles. Now we suggest that you take another,

closer look at your candidates. This time you want to see what your candidates have in common. You should always

be on the lookout for common roles and responsibilities that candidates share. If you can identify what candidates

have in common, you can consciously make your design more consistent by recognizing these common aspects and

making them evident. You can identify a common category that objects fit into. You can define a common role that all

objects in a category play. Shared responsibilities can be defined and unified in interfaces. Objects that collaborate

with them can ignore any differences and treat them alike. Furthermore, a class can be defined to implement shared

responsibilities that make up a shared role, guaranteeing that the implementation of classes that inherit these

implemented responsibilities works consistently.

You are likely to find several ways to organize your candidates. Some will be more meaningful than others. Each one

that seems useful will likely contribute to your design's clarity. The more you can identify what objects have in

common, the more opportunities you have to make things consistent. Eventually you may define several new roles

that describe commonly shared responsibilities. Your initial cut at this won't be your last. Keep looking for what

objects have in common and for ways to exploit commonalities to simplify your design.

Common behavior could also imply the need for another candidate that is the supplier of that shared

behavior.

Look for powerful abstractions and common roles. Things in the real world do not directly translate to good

software objects! Form candidates with an eye toward gaining some economy of expression. Carefully consider

which abstractions belong in your object design.

In our Kriegspiel game, there are various actions that a player can perform: "propose a move," "ask

whether a pawn can capture in a move," "suspend a game," and so on. It's a pretty safe bet that we

have a different candidate for each action: ProposeAMove, SuspendAGame, and so on. Proposing a

move seems quite distinct from suspending a game. A harder question is whether we should define

PlayerAction as a common role shared by each of these action-oriented candidates. If we can write a

good definition for PlayerAction, we should do so and define a role that is shared by all player action

candidates. There seem to be several things common to all actions (such as who is making the request

and how long it is active). Eventually, if we find enough common behavior for PlayerAction, it will be

realized in our detailed design as a common interface supported by different kinds of PlayerAction

objects. We may define a superclass that defines responsibilities common to specific player action

subclasses. Or common behavior might imply the need for another candidate that is the supplier of that

shared behavior.

Look for the right level of abstraction to include in your design. Finding the right level of abstraction for

candidates takes practice and experimentation. You may have made too many distinctions and created too many

candidates—a dull design that works but is tedious. At the end of the day, discard candidates that add no value,

whether they are too abstract or too concrete. Having too many candidates with only very minor variations doesn't

make a good design. Identify candidates that potentially can be used in multiple scenarios.

Certain actions affect the position of pieces on a board. Should we have different candidates for each

piece's potential types of moves? Not likely. This solution is tedious and offers no design economy. If

you can cover more ground with a more abstract representation of something, do so. A single candidate

can always be configured to behave differently under different situations. Objects encapsulate

information that they can use to decide how to behave. The Propose-AMove candidate can easily

represent all moves suggested by any chess piece. This single candidate will know what piece is being

moved and its proposed position.

Discard candidates if they can be replaced by a shared role. To find common ground, you need to let go of the

little details that make objects different in order to find more powerful concepts that can simplify your design.

What do books, CDs, and calendars have in common? If you are a business selling these items over the

Internet, they have a lot in common. Sure, they are different, too. Books likely belong to their own

category of items that can be searched and browsed. But all these kind of things share much in

common. They all have a description (both visual and text), a set of classifications or search categories

they belong to, an author, an availability, a price, and a discounted price. It sounds as if their common

aspects are more important, from the Web application's perspective, than their differences. This

suggests that all these different kinds of things could be represented by a single candidate,

InventoryItem, that knows what kind of thing it is and the categories it belongs to.

Purely and simply, you gloss over minor differences. You don't need to include different candidates for each category

of thing. In fact, those distinctions may not be as important to your software as they are to those who buy and use the

items.

When you are shopping for items, you may be thinking of how they are used—books are read,

calendars hung on a wall, and CDs played—but those distinctions are not important if you are designing

software to sell them. Sure, you want to allow for your software to recognize what category something

belongs to. You want to list all books together. But you probably want to categorize things in the same

subcategory, whether or not they are the same kind of thing. Books about jazz and jazz CDs are in the

"jazz items" category.

Only if objects in different categories behave differently in your software do you need to keep different categories as

distinct candidates. The real test of whether a category adds value to a design is whether it can define common

responsibilities for things that belong to it.

Blur distinctions. There are times when both concrete candidates and their shared role add value to a design. There

are times when they do not. If you clearly see that candidates that share a common role have significantly different

behavior, then keep them. Test whether the distinctions you have made are really necessary.

What value is there in including different kinds of bank accounts, such as checking or savings accounts

in our online banking application? Checking accounts, savings accounts, and money market accounts

have different rates of interest, account numbering schemes, and daily account draw limits. But these

distinctions aren't important to our online banking application. We pass transactions to the banking

software to handle and let them adjust account balances. In fact, because our application is designed to

support different banks, each with its own account numbering scheme, a distinction made on account

type (checking or savings) isn't meaningful. Our application doesn't calculate interest. So we choose to

include only BankAccount as a candidate. If we were designing backend banking software that

calculated interest, our decision would be different.

I l@ve RuBoard

I l@ve RuBoard

Defend Candidates and Look for Others

For a candidate to stay in the running, you should be able to state why it is worth keeping, along with any ideas you

want to explore:

"A user accesses accounts to transfer funds, make payments, or view transaction history." In the next

breath you can add, "Accounts contain information that enables a customer to perform financial

transactions. Accounts know how to describe themselves; they know and adjust their balance; they are

affected by different financial transactions; they know their transaction history. Are there any other

candidates we should be identifying to support accounts in their role?"

By taking short side excursions to look for more candidates, you will come back with a better sense of whether you

are on target. You can find more candidates by looking for ways to support and complement the ones you've already

found:

Marvin Minsky theorizes about the many agents working at different levels during problem solving.

Most people don't forget that they are packing a suitcase to go on a trip when they stop to fill a toiletry

bag. Side excursions are a normal part of problem solving.

Potential candidates that complement and support Account:

AccountHistory—A record of transactions against an account

FinancialTransaction—An operation applied to one or more accounts. A service provider could represent

each type of transaction that affects an account. There are multiple types of transactions that we support

with our online banking application. What's the difference between a transaction that affects an

account's balance, and an inquiry into some aspect of an account such as its balance, history, or

activation status? How should we model each inquiry?

You are always free to decide all your candidates stink, toss them, and start over. At the beginning

this is cheap and relatively painless. Defend candidates on their merits, and don't protect them from

close scrutiny.

Searching can go on for quite a while if you are full of ideas. Stop when you feel you are looking too far afield. You

need enough candidates so that you can compare and contrast them and to seed your further design work. There

isn't any magic number. The more you know about a problem, the more candidates you are likely to invent in a first

pass. Fifty candidates may seem like a lot, but it's not an unreasonable number. Twenty is OK, too. You find

candidates in bursts as you consider your design's themes. It's pretty common for candidates to support more than

one theme. All this means is that your objects fit into and support more than one central concern.

Stop brainstorming candidates when you run out of energy. Then review how these candidates might collectively

support the responsibilities implied by a theme. When you think you have enough candidates, review them once

more for their merit.

Keep any candidate and put it on the "A" list, for acceptable, when you can

Give it a good name

Define it

Stereotype it

See that it might be used in support of a particular use case

See that it is an important architectural element

Assign it one or two initial responsibilities

Understand how other objects view it

See that it is important

Differentiate it from similar candidates

Discard a candidate when it

Has responsibilities that overlap with those of other candidates that you like better

Seems vague

Appears to be outside your system's boundaries

Doesn't add value

Seems insignificant or too clever or too much for what you need to accomplish

You may still be uncertain about some candidates. Put these on the "D," or deferred, list to revisit later. For now, keep

them in the running. The best way to make more progress is to design how these objects will work together. The very

next step we'll take is to assign each candidate specific responsibilities. And during that activity, we will come up with

more candidates and reshape those we've already found.

I l@ve RuBoard

I l@ve RuBoard

SUMMARY

You can approach the finding of objects somewhat systematically. Establish a framework for searching for candidates

by writing a story about your application. In this story, write about the important aspects of your application. The

candidates you identify should support various aspects of your story. You can use CRC cards to record your

preliminary ideas about these candidates. CRC stands for candidates, responsibilities, collaborators.

Candidates generally represent work performed by your software, things your software affects, information, control

and decision making, ways to structure and arrange groups of objects, and representations of things in the world that

your software needs to know something about.

Good names for candidates are important. Choose them with care. Choose names that fit within a consistent naming

scheme and aren't too limiting or overly specific. Once you've named and described each candidate's purpose, you

can compare and contrast the candidates. For a candidate to stay in the running, you should be able to defend why it

is worth keeping.

But your initial ideas are just educated guesses about the kinds of objects that you will need based on the nature of

our application and the things that are critical to it. The real test of each candidate's worth will be when you can

assign it specific responsibilities and design it to collaborate with others.

I l@ve RuBoard

I l@ve RuBoard

FURTHER READING

Timothy Budd, in An Introduction to Object-Oriented Programming (Addison-Wesley, 2002), presents a thoughtful

discussion of abstraction and object-oriented design. Another source of inspiration is Martin Fowler's Analysis

Patterns: Reusable Object Models (Addison-Wesley, 1996). This book reveals how a good modeler and analyst

thinks through issues and comes up with useful abstractions.

I l@ve RuBoard

I l@ve RuBoard

Chapter 4. Responsibilities

Christopher Alexander states, "Form is part of the world over which we have control, and which we decide to shape

while leaving the rest of the world as it is." The measure of a design's goodness is how well the form fits into its

context. When we shape an object's responsibilities, we are inventing a form that should fit smoothly into its

environment. We have the luxury of shaping both form and context when we distribute responsibilities among

collaborators.

The rightness of a form, according to Alexander, depends on how effortlessly it contacts with its environment. To

make informed decisions about an object's responsibilities, we should divide form and context across several

dimensions and consider several aspects of the problem. Looking at several possible divisions of form (that which we

can shape and make whole) and context (that which we cannot control) sheds light on the problem. You should

consider what the real problem is before you design a solution.

But how many dimensions of a design problem should you consider? Too much digression, and you never finish. Not

enough exploration, and you hack out a solution while potentially missing a significant opportunity. You need to strike

a proper balance. There's a lot to be gained by taking quick side excursions from time to time. It is easier to reshuffle

responsibilities on cards than it is to rewrite thousands of lines of code. Consider some alternatives before you spend

a lot of time building the wrong solution.

A careful designer considers several divisions, identifies those that provide fruitful distinctions, and

then designs the form.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

What Are Responsibilities?

Responsibilities are general statements about software objects. They include three major items:

The actions an object performs

The knowledge an object maintains

Major decisions an object makes that affect others

Physical objects, unlike our intelligent software objects, typically do work or hold on to things or information. A phone

book is a physical object but it takes no action. A thermostat exists, and it makes decisions and sends control signals.

A teakettle exists, but it does little more than act as a reservoir (and occasionally whistles to send a signal). Physical

objects usually don't make informed decisions. However, a dog is man's best friend and companion and does many

different things on its own behalf. Our software objects lie somewhere between these extremes: They aren't sentient

beings, but they can be more or less lively, depending on what responsibilities we give them.

Let's consider the design of a simple physical object. Alexander, in Notes on Synthesis and Form, asks what the right

form is for a kettle. A teakettle holds water that can be heated until boiling. People safely pick it up when it is filled with

boiling water and pour a cup of tea. And, if we follow convention, a teakettle signals us by whistling when the water

boils. We can rephrase these characteristics as general responsibilities:

Pour contents without spilling or splashing

Hold water that can be heated until boiling

Notify when water boils

Offers a convenient means for carrying in a safe manner

How do we know whether we've got these right? Sure, some designers shamelessly redraw boundaries between the

form they are working on and the context within which it exists. Overzealous framework designers we've known come

to mind. If you think "outside the box," you can always change the boundary between a form and its context. You can

claim that it is not the kettle that needs to be designed, but the method of heating water. Then the kettle becomes

part of the context, and the stove or heating appliance becomes the form under consideration. In this case, lateral

thinking might lead to innovation—an "instant hot" unit that heats tap water as it flows through it. We walk a fine line

when we invent design solutions. If we are clever in redrawing the boundaries of the problem, we may come up with a

novel solution. But we also risk creating unnecessary complexity instead of following a more straightforward path.

"Do not try to design objects to have all the conceivable behavior shown in the real world. Rather,

make software objects only as smart as the application needs them to be and no smarter."

—Jon Kern

The key is to know when to push on redefining the problem and when to push on defining a solution. In this chapter

we explore the art of finding, defining, and assigning object responsibilities ... and striking a balance between thinking

through alternatives and making reasonable responsibility assignments.

Responsibilities aren't just there waiting for us. Ouch, I've bumped into a responsibility, better assign it

to one of my candidates! How to optimally distribute individual responsibilities between objects is

often the most difficult problem in object design.

I l@ve RuBoard

I l@ve RuBoard

Where Do Responsibilities Come From?

Our strategy for assigning responsibilities to objects is very simple: Cover areas that have big impacts. Look for

actions to be performed and information that needs to be maintained or created. You can glean information from

several sources: Perhaps you have a specification of your software's usage; you may have written some use cases;

or you may know of additional requirements or desired characteristics of your software. Responsibilities emerge from

these sources and from ideas about how your software machinery should work.

You will need to reformulate demands and characteristics and software descriptions into responsibility statements. If

statements seem too broad to be assigned to individual objects, create smaller duties that can be. These smaller

subresponsibilities collectively add up to larger ones. Formulating and assigning responsibilities to objects involves

inspiration, invention, and translation of constraints and general descriptions into specific responsibilities. Assigning

responsibilities to objects gives them shape and form. Once you make initial responsibility assignments, you should

test whether they are well formed. Let's consider several activities for forming responsibilities. We do the following:

Identify system responsibilities stated or implied in use cases

Plug inherent gaps in use cases and other system descriptions with additional lower-level responsibilities

Tease out additional system behavior from themes and software stories

Follow "what if... then... and how?" chains of reasoning

Identify stereotypical responsibilities to match stereotypical roles

Search each candidate's deeper nature

Identify responsibilities to support relationships and dependencies between candidates

Identify responsibilities associated with objects' major "life events"

Identify technical responsibilities that need to be assumed by objects to fit into a specific software

environment

Activities for identifying responsibilities fall into one of three categories: finding them from external

descriptions, inventing, and adding details.

Responsibilities come from statements or implications of system behavior found in use cases. There is a gap

between use case descriptions and object responsibilities. Responsibilities are general statements about what an

object knows, does, or decides. Use case descriptions are statements about our system's behavior and how actors

interact with it. Use cases describe our software from the perspective of an outside observer. They don't tell how

something is accomplished. Use cases provide a rough idea of how our system will work and the tasks involved. As

designers we bridge this gap by transforming descriptions found in use cases into explicit statements about actions,

information, or decision-making responsibilities. This is a three-step process:

Identify things the system does and information it manages.

Restate these as responsibilities.

Break them down into smaller parts if necessary, and assign them to appropriate objects.

Consider this narrative that describes how a university student registers for courses. It leaves out a lot of details (such

as how the user interface is laid out and the specific rules that affect registration), which we presume are found

elsewhere:

Use Case: Register Online For Classes

A student can register online for classes by filling out and submitting an online registration form for

approval. While filling out the registration form, a student can browse the course schedules and

cross-listed courses, audit degree requirements, and update personal and financial aid information. The

student can also access the Wait-list Class and Drop Class functions.

Each course on a student's schedule has the following information: grading option, term, course title,

section number, and class number. Although not prohibited from adding courses with time conflicts, a

student should be made aware of any potential problems when building a schedule. When a proposed

schedule is submitted for approval, it will be checked for conformance to all of the rules that the

university specifies for course load, prerequisites, and required approvals. The system should notify the

students of full classes and allow students to add themselves to the wait list for a particular class. In

some cases, exceptions to the rules can be requested (such as time conflicts or overload of credit), but

these actions are performed separately. Once students have received confirmation of an approved

course schedule, they are considered registered for the term.

Depending on how much detail is included in a use case, it can be more or less difficult to find statements about our

software's behavior. Use cases aren't packed with actions or behaviors that are readily ascribed to individual objects.

However, even from this high-level narrative we can glean these responsibilities and in parentheses suggest some

ideas about how they might be dealt with:

Generate and display an online registration form. (Something needs to know the structure of a

registration form and the details of how it is displayed.)

Provide feedback as the student enters course selections about conflicts or problems. (Something

needs to check that the student can sign up for a course, given the student's academic standing, and

then there is a UI component that displays feedback.)

Provide capabilities for browsing, auditing degree requirements, updating personal and financial

information. (Browsing sounds like a large responsibility involving several objects. Auditing degree

requirements seems complex. We don't know how much work is involved in comparing a student's

transcript and major against required courses. This needs further investigation. Updating personal and

financial information seems specific. It will involve objects with responsibilities for displaying and editing

this information.)

Provide capabilities for wait listing and dropping classes. (These two functions will likely involve several

objects: Something needs to coordinate both tasks, update the waiting list, and adjust the student's

schedule.)

Validate that each course in a schedule meets constraints such as pre-requisites, approvals, etc.

(Sounds like a specific task that could be assigned to a StudentSchedule object.)

Notify the student of approved course selections (Notification seems like a subresponsibility that could

be assigned to the same object who has responsibility for coordinating the work of schedule validation

and reports the results to the user. The means of notification will likely involve instantiating and using

objects from pre-existing UI components)

Notify the student of conflicts and allow him to resolve them (Again, notification seems like a

responsibility of an object responsible for coordinating the registration task; other objects will likely be

involved in the resolution of conflicts.)

By intent, use cases leave out design details. They are descriptive, not prescriptive. They tell a story. Use cases are

descriptions that we use as general guides as we build our design. Use case scenarios describe step-by-step

sequences. Supposedly they include more detail than an overview. Let's see what additional responsibilities we can

glean from this scenario:

Use Case Scenario: Register Online For Classes

Student pulls up the registration form and identifies self.1.

System verifies that student is allowed to register at this time.2.

Student enters the following for each course: course number, section number, and grading

option.

3.

Student submits course schedule for approval.4.

System verifies that the student meets credit load policies and course prerequisites and that
5.

none of the requested courses are full.

System returns approved courses in proposed schedule for confirmation.6.

Student confirms schedule.7.

System adds student to each class roster and returns confirmation of successful registration.8.

We find a few additional responsibilities that are more specific:

Check that the student is eligible to register. (From step 2. Probably can be assigned to an object that

coordinates the registration activity.)

Add student to course rosters. (From step 8. Seems pretty specific. Some object will undoubtedly

coordinate registration and ask the course roster to be updated.)

Display confirmation of registration. (From step 8. Again, UI elements are involved, and something that

coordinates the work.)

Validate that each course in a schedule meets constraints such as prerequisites, approvals, etc.

(Sounds like a specific task that could be assigned to a StudentSchedule object.)

Notify the student of approved course selections. (Notification seems like a subresponsibility that could

be assigned to the same object that responsibility for coordinating the work of schedule validation and

reports the results to the user. This will likely involve instantiating and using preexisting UI components.)

Notify the student of conflicts and allow him or her to resolve them. (Again, notification seems like a

responsibility of an object responsible for coordinating the registration task; other objects will likely be

involved in the resolution of conflicts.)

Most of these statements only hint at part of the work that needs to be done. They tell that confirmations are

displayed, but not that they should be constructed by formatting specific registration information. They don't define

acceptable responses to errors. They don't tell which system responsibilities interact. They don't tell what actions will

be complex, nor do they specify timing constraints. Use cases describe the general nature of our work. We must

shape all the details.

Additional responsibilities come from plugging inherent gaps in use case and other system descriptions. To

gain confidence in your design, you must dig deeper into the nature of the problem and ask questions. Just by

looking at our list of responsibilities we can come up with questions leading to more responsibilities. Here are a few:

How are course prerequisites specified? They may be part of a course description that our system can

check, or they may be a relationship between courses, or a course may be responsible for knowing its

prerequisites.

What states does a student's schedule go through? A student can build a schedule, submit it for

validation, and confirm it. But what happens when things go wrong or problems are detected? When is a

student really finished with his or her schedule? What different responsibilities does a student schedule

have depending on what state it is in?

What happens when a student submits a schedule to be validated? Are the slots in the class reserved

after each course is validated? How long does it take or should it take for prerequisites to be validated?

What happens in exceptional cases?

Does registering happen in "real time," or does the student receive notification after work is carried out

behind the scenes?

How much help should the system give to a student when things go wrong? Is notification of problems

enough, or should the system provide support for remedying problems?

The sooner you ask and get answers to specific questions that will shape your system's behavior, the better. The

answers will guide your thinking as you discover more detailed software responsibilities.

Use cases rarely describe aspects of control, coordination, error detection, visual display, timing, or synchronization.

Designers must figure out these details. You can push forward with assigning responsibilities, even with many

questions left answered. Tag those questions that will have the biggest impact. If you envision a range of possible

answers and guess at those that are most likely to have the most impact, you can know where to push for answers.

Take two approaches: Identify responsibilities as well as unresolved questions. Continue to work on what you do

know. Identify questions that are most likely to significantly impact your design. Once you get answers, you

undoubtedly will refine your design. You won't know how comprehensive your solution needs to be until you get some

answers.

Defer the specific design of control and coordination responsibilities until you make choices about how to distribute

decision making and control responsibilities. Test your collaboration model with both "happy path" and more

complicated scenarios. For now, collect and assign as many specific responsibilities as you can.

Design, and the assignment of responsibilities, is iterative. You make an initial pass at pinning down responsibilities,

and then you rework your ideas as you come to know more about your objects and their interactions.

Responsibilities come from themes and design stories. Earlier, we recommended that you write a brief story that

describes the key ideas behind your software. This design story kept you focused on what's important and stimulated

your thinking about appropriate candidates. You can return to this story to extract some responsibilities. Let's

reconsider the Internet banking story. Phrases that require system action are bold:

This application provides Internet access to banking services. It should be easily configured to work

for different banks. A critical element in the design is the declaration of a common way to call in to

different backend banking systems. We will define a common set of banking transactions and a

framework that will call into banking-specific code that "plugs into" the standard layer implementing the

details. The rest of our software will interface only with the bank-independent service layer.

We've developed a prototype implementation of this layer and have configured it to work for two different

banks. Although it is still a prototype, we understand how to write a common banking service layer.

Lately, our bank has been busy acquiring other banks and integrating their software. We've been

through three system conversions in the past year. We want to focus on making this service layer easy

to implement and test. At the heart of our system is the ability to rapidly configure our application to work

for different backends and to put a different pretty face on each. This includes customizing screen

layouts, messages, and banner text. The online banking functions are fairly simple: Customers

register to use the online banking services and then log in and access their accounts to make

payments, view account balances and transaction histories, and transfer funds. This is

straightforward and easy to implement. There is added complexity. Customers record information and

notes about each online transaction. This extra information will be maintained by our application in

its own database, because preexisting bank software has no way to store it. We want a customer to

view human-readable information, not ancient bank software detailed transaction records. When a

customer asks to view an account's transaction history we'll have to merge this data with records

supplied from the backend software. Multiple users can access a customer's accounts, each with

potentially different access rights. Certain users might have no access to sensitive accounts. A

company executive might only view account balances, whereas a clerk in the accounts payable

department could make payments and a comptroller might be able to transfer funds between accounts.

Because of the story's brevity, the responsibilities we find reflect only the highlights. This story mentions maintaining

transaction-specific information but doesn't describe anything about registering for online banking. We search for

responsibilities that support something the story emphasizes. We summarize these responsibilities and note where

they lead us:

The more specific the responsibility, the easier it is to assign. Broad statements need to be broken

down into smaller activities that can be assigned to one or more objects.

Know a specific bank's configuration of supported features, default languages, and so on (will

lead to designing objects with responsibilities for knowing a bank's configurable parameters

and options).

Translate common service requests to standard backend bank calls (will lead to designing

service providers that handle these requests).

Translate results from backend API calls into standard results (will lead to responsibilities

assigned to interfacers between the common service layer and backend bank systems).

Manage configurable banners, customized screen layouts, and user messages (will lead to the

design of customization responsibilities and design of external resources).

Perform financial transactions (will lead to designing objects that perform individual

transactions).

Record information and transaction notes in the database (will cause us to design transaction

records and a means for storing them in our database).

Merge notes with bank transaction records (will lead to specific responsibilities for assembling

transaction summaries from notes and merging them with backend bank data).

Display and format account histories and current balances (will lead to UI objects, objects that

represent account history, and responsibilities for coordinating their display).

Manage users and their access rights to accounts (will lead to responsibilities for knowing and

changing access rights—perhaps directly associated with customers and users).

Manage connections to the database and the backend banking services (leads to specific

responsibilities for various connection and connection managing objects).

We can assign responsibilities for managing connections to specific connection managers. Financial transactions will

be performed by the coordinated work of many objects, each with specific responsibilities. To assign responsibilities

for performing transactions, we need to consider the details of each transaction in turn. Each transaction will require a

different sequence of work steps, although some may be in common (for instance, all transactions are logged along

with user-specific notes in the system's database).

Responsibilities come from following "what if... and then... and how?" chains of reasoning. To gain even more

insight, you need to consider how various requirements may impact your design. This involves more heavy mental

lifting than our other responsibility sources. In this case, you don't start with a specific task such as "make a loan

payment" or specific action such as "verify credit load." Instead, you need to lay a path from a high-level goal, such as

"the software should be offline only during routine maintenance," to a series of actions or activities that achieve it.

Only then can you make statements about what the system needs to specifically do as a consequence. Once you've

come up with these specific conclusions, you can formulate specific responsibilities.

Coming up with a plan to solve a familiar problem is trivial. We're talking about something much

harder—reasoning about an unfamiliar problem and a solution at the same time. This involves making

an initial assessment and then following that to some logical conclusions.

We can think of many situations when we've chased design implications. Most involved short, solo excursions.

Individuals thought through the problem and followed their instincts. As a group we might have kicked around the

nature of the problem before the individuals went away and thought through the problem. Reasoning toward a

solution seems to be an individual activity or one taken on by a small team of like-minded souls.

Here is one example that shows how thinking about a design constraint led to a new understanding and additional

responsibilities. Our online banking application had a design constraint: it needed to recover from component failure.

If a component went down or became unavailable, our system had to keep working and bring up another copy of a

component. Our timeline for researching solutions was extremely short.

Len Lutomski, our distributed system expert, quickly assessed that the weakest link in our architecture was the name

server. As the registry for distributed components, if this server failed, the entire "memory" was lost of how

connections could be made to services. If this component failed, the entire system went down. This led Len to

conclude that the name servers needed additional responsibilities for publishing location information changes, and

that we needed additional shadow name servers standing in reserve, ready to be tapped into service if the leading

name server failed. In his own words, here is how Len came to a workable solution:

... [the solution] was dictated by the need to get something up fast, and by my desire to begin by

isolating the problems of fault-tolerance from the problems of developing support for service groups.

Early moves made on these grounds constrained the possible future developments, just as though it was

a game of chess.

My separation between the fault-tolerance part and the service groups part was developed prior to a

clean understanding of the problem space ... I was operating off the intuition that naming contexts

should be naming contexts and not something else, and the sense that the fault-tolerance would not be

trivial ... in a good design the notions of a service group, a naming service, and of fault-tolerance and

state-replication, would be both orthogonal and simply composed ... If I had had the time, I think I could

have put in another level of abstraction ...

Often your initial design will not be as simple or as elegant or as complete as you'd like. You don't have time to make

many wrong moves. On the online banking project, the designer followed these principles: Keep concerns separate,

and don't intermix responsibilities. Each object or component should do its job simply and well.

The key to solving design problems quickly and adequately is to stick to your principles while you

follow your hunches.

Following his initial line of reasoning led him to very specific responsibilities. His objects weren't up to his high

standards, but they did the job.

Responsibilities naturally arise from an object's stereotypical roles. Whether an object primarily "knows things,"

"does things," or "controls and decides" is based on its role stereotype. Exploring an object's character will lead to an

initial set of responsibilities.

Up to this point, we have been looking outwardly at descriptions of our system's behavior, its main

themes, and its challenging requirements. The following activities shift our focus from external

descriptions to stereotypical views of objects within their software environment.

Information holders answer questions. They are responsible for maintaining facts that support these questions. When

assigning responsibilities to an information holder, ask, "What do other objects or parts of the system want to ask?"

Restate these queries as responsibilities for "knowing." Look for specific information that fits each candidate's role.

Each information holder should support a coherent, related set of responsibilities. Secondarily, ask, "What else does

this information holder need to know or do in order to carry out its public obligations?" These will be private

responsibilities it undertakes to carry out its public duties.

When designing a service provider, ask, "What requests should it handle?" Then turn around and state these as

responsibilities for "doing" or "performing" specific services. Similarly, structurers should have responsibilities for

maintaining relationships between other objects and for answering questions about them. Interfacers will have

specific duties for translating information and requests from one part of the system to another (and translating

between different levels of abstraction). Coordinators have specific duties for managing cooperative work. Controllers

should be responsible for fielding important events and also directing the work of others.

Look for private responsibilities that are necessary to support public responsibilities. Even as you make

general statements of responsibilities, you may think about how your objects might accomplish them. When should

you focus on these details? As a matter of principle, concentrate first on what an object does for others. Once you've

arranged these core, publicly visible responsibilities, reach for additional private responsibilities that support them.

Our early attempts at characterizing our candidates naturally leads to ascribing to them certain

responsibilities. We can find more if we dig deeper.

Consider a BankAccount object designed for the online banking application. It is a simple information

holder. It has these public responsibilities:

Maintaining its current balance

Knowing recent transaction history

Knowing a displayable representation of itself (an abbreviated account number)

The fact that it needs to know a unique account identifier (used when using the backend bank

transaction services) and a currency (for representing balances and transactions) is incidental to clients

that use its public responsibilities. These responsibilities contribute to fulfilling its public duties but aren't

directly visible to clients.

Record responsibilities as you think of them. Make sure you are comfortable with your object's role in its community

before you work out many details. If you know these details, you can record them. What's the best way to do this?

Should you get more specific with your responsibility statements, or are there other options?

Nailing these supporting responsibilities means the difference between a workable design and failure.

We live and die by these details! Although they are as important to our design as any publicly visible

responsibilities, don't get bogged down in them too soon.

Consider another example from the online bank: the design of an ErrorMessage object. This object

holds onto specific error information and can translate errors into text in multiple languages. It is a pretty

smart information holder. The request "Please translate this error into a human-readable message!"

becomes a responsibility to "construct an error message." This high-level statement doesn't reveal how

messages are formatted into different languages.

We could refine our initial responsibility "construct an error message" to read, "construct error message

in a specified language." Adding "format messages with specific error parameters" is even more

specific. However, we can also revise our object's purpose to be, "An ErrorMessage represents a

specific error condition in the system that can be displayed in a form readily understood by end users.

User-readable messages are constructed from language-specific templates and include details about

the specific error." If we do this, the general statement "construct an error message" doesn't need to be

overloaded with these details. We choose this option, leaving the responsibility stated simply and

expanding the purpose instead.

Earlier, we mentioned that responsibilities are recorded on CRC cards along with a statement of purpose and a list of

collaborators. Given the limited space on the CRC cards, you should use this real estate wisely. Make responsibility

statements as brief as possible. Convey necessary information by reworking and revising all parts of your object's

description. Don't pack everything into responsibilities. Record details in ways that let you remember them without

creating clutter.

Responsibilities come from examining relationships between candidates. Examining relationships between

candidates can identify additional responsibilities. Objects can be related in complex ways: "composed of," "uses,"

"owns," "knows about," and "has" have very imprecise meanings in the English language. However, objects we tag as

"structurers" nearly always have responsibilities for "maintaining" or "managing" objects they organize, whether we

think of them as being "composed of," "owning," "knowing," or "aggregating" those objects.

UML has two very precise ways of modeling complex object structures: as composition or

aggregation relations. Elements of a composite are stable, existing together over time; aggregates

have somewhat looser ties. These are very precise distinctions that don't give us a clue as to

responsibilities! What we want to determine is what related object is responsible for knowing and

doing on behalf of that relation.

We say an object "has" another when it needs to exhibit some property related to having that object.

Does a meeting have attendees? Yes. If so, what do we know about the meeting? Answer: the number

of attendees. This begs the question, should we give a meeting responsibility for knowing the attendees,

or the attendees responsibility for knowing their meetings, or both? Viewing a meeting as "representing

a gathering of attendees at a location for a specific agenda" (a structuring role), we assign a Meeting

object responsibility for knowing all these things. Attendees don't seem to have much responsibility on

behalf of their relationship to a meeting, and they shouldn't! Attendees may keep a calendar (another

relationship between the attendee and a calendar object) that notes meetings to which they have been

invited. We speak of "having a meeting" to go to, but that isn't fundamental to our behavior.

When an object plays the role of a structurer, it organizes groups of objects. Because of this role, it likely has

responsibilities for answering questions about the things it knows of. To make specific responsibility assessments, we

need to understand why a structurer exists and how its responsibilities change as its composition changes.

Responsibilities may be associated with important events during an object's lifetime. Some objects'

responsibilities are largely shaped by how they react. These objects are spurred to action by specific events.

Controllers and coordinators fit this profile: most of the work they do is in response to stimulus they interpret.

In the online banking application, a UserSession object was responsible for coordinating user requests.

It waited for requests it could delegate to others. Most of its responsibilities were tied to these requests

and the passage of time:

Know the users and their accounts

Time user session activity

Handle user requests by delegating them to appropriate service providers

Report results back to the users

Maintain a session summary

Like clockwork, whenever a user request was received, the UserSession object would spring to action. It

would instantiate the appropriate service provider, ask it to do its work, report its results, and then idle,

waiting to be spurred by another request or the passage of time. If too much time elapsed before a

request was received, it would drop the user session.

Not all objects are so externally driven. Some react to internal changes. When an object is created and when it is no

longer used are common places to find responsibilities for gracefully entering and leaving the scene. In most

object-oriented languages, objects are notified of their impending exit with a "finalize" notice, allowing them to release

resources before leaving.

A mark of skilled designers who use a specific software environment is that they know about all the

responsibilities that can be customized.

Responsibilities may be assumed when an object fits into its technical environment. The responsibilities we

have identified up to this point have been in support of required system behavior. We mention this source last

because it yields responsibilities of a different nature: those required for an object to fit into its software context. As a

designer, you don't invent these responsibilities but you must understand their implications. Quite simply, your objects

won't function properly unless they take on these implementation-specific responsibilities.

Inheritance provides a mechanism for letting a form be customized in specified ways to fit with its

environment: Superclasses can provide default implementations of responsibilities that can be freely

overridden or extended by subclasses.

Let's look at a Java class library example. Object is the name of the root class in the inheritance hierarchy. All classes

are subclasses of Object, and thus all objects "get for free" implementations of responsibilities defined by Object. The

Object class provides reasonable default implementations of these responsibilities. Some are expected to be

overridden.

To be compared to others of its kind or stored in a structurer, classes must support two responsibilities: answer

whether one object is equal to another, and produce a value that can be used as an index into a structure that will

store the object. Many more responsibilities could be redefined.

Implementation-specific responsibilities shouldn't be your first concern. But if you know where your objects are

headed, plan for them.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Strategies for Assigning Responsibilities

We've presented you ways to search for responsibilities. Although all responsibilities are necessary, they are not of

equal significance. It's best to spend time and energy assigning responsibilities to those candidates who will have the

most dramatic effects.

Although some objects may be central, they may not have interesting responsibilities. They may be important to

begin with, but their importance quickly fades. Consider objects that are responsible for handing out work

assignments to others. Although they are important, after they make work assignments they don't have much to do.

Others may have intricate responsibilities that, although called on infrequently, are of critical importance. These

objects need to be well designed for our application to be credible.

As you think through your design, what seems important may shift. Take a broad pass over the key

aspects of your design and those important objects before assigning more detailed responsibilities.

Several points determine an object's stature and relevance:

What position does it play in the application architecture? (Objects that bridge between layers or coordinate

others' work have important responsibilities that knit our system together.)

How visible is it to its surrounding neighbors? How visible is it to others outside its immediate

neighborhood? (Visible objects may be important.)

Is it a central concept in the domain? (Objects that model the real world or that represent the work of our

system can be important.)

Are its services complex? (Complex responsibilities take time to pin down and may impact others.)

Does it make many decisions that affect others in its community? (If so, understanding these

decision-making responsibilities is key to understanding how others will be affected.)

How many steps away from key decision makers is it? (The farther away, the less likely it is to be a central

player.)

Does it structure and manage relationships between others? (This is important to know when you follow

paths that lead to information and other objects' services.)

How many others use and are aware of its services? (This is an indicator of relevancy but not importance.)

Look for high-impact objects, and assign them responsibilities that make them fit with their context. While you assign

responsibilities to individuals, these assignments will impact close neighbors. A responsibility given to one object

lessens the work of others. One division of labor may mean additional collaborations; another, fewer. No object is

ever designed in isolation. When deciding what an object's primary obligations are, ask the following:

What does each object offer as services to others? What information does it provide to others? (These are

its public responsibilities.)

What actions does it take in support of these public responsibilities? (These are its private responsibilities.)

Recording Responsibilities

As we stated earlier, we create a CRC card for each candidate (see Figure 4-1). When you do this, write the name of

each candidate on the cards, one per card. On the unlined side of the card, state the candidate's purpose and

stereotypes. Note anything else you think may be important to remember about that candidate: questions, concerns,

or ideas.

Figure 4-1. The unlined side of a CRC card is for listing the candidate's name, purpose, stereotypes, and

other important notes.

Keep a working list of unassigned responsibilities. Periodically work at assigning them to existing or

new candidates. Keep a running list of unassigned responsibilities so that they don't have to stop and

figure out everything at once.

On the lined side, again write the name of the candidate (see Figure 4-2). Draw a horizontal line that divides the card

into two uneven parts: responsibilities on the left, and collaborators on the right.

Figure 4-2. The lined side of a CRC card is divided roughly two-thirds for responsibilities and one-third for

collaborators.

Although you can write responsibilities directly on cards, sometimes you don't know where a responsibility should be

located. If that's the case, try to capture the responsibility first and then assign it to the appropriate candidate later.

Individual responsibilities can be written on Post-it notes that can be allocated to a candidate in one quick motion

(see Figure 4-3). Unassigned responsibilities can be piled in a cluster, waiting assignment.

Figure 4-3. Write unassigned responsibilities on Post-it notes that can be "assigned" when you identify the

appropriate candidate.

If you insist on using a computer, don't be lulled into thinking your candidates are well formed

because typed responsibilities look neater. At this stage, exploring options should be fun, easy, and

low-cost.

Making Initial Assignments

Choose those objects you deem central players and concentrate on them first. Expect to work on more than one

object at a time. Here are some ways to select a cluster of candidates to work on. We expect that you'll march

through your candidates several times, tackling one group at a time:

Candidates that represent domain concepts

Candidates that participate in a certain use case

Candidates that support an application theme

Candidates that interface to the outside world

Look for responsibilities that fit each candidate's primary role. A well-formed responsibility is a high-level statement of

what an object knows or does.

Make broad, encompassing general statements of responsibilities. Don't express responsibilities as

individual attributes or operations.

To start, state responsibilities generally. Responsibilities are best stated at a level above individual attributes or

operations. Don't get overly specific in your statements. A statement of responsibility, if worded generally, can

encompass many specific requests. There may be 10 ways to ask for tax calculations that are covered by the

statement "Calculate all taxes based on locale." There isn't enough room on a CRC card to record very many details.

These lower-level details belong in an information model or some other, more precise description. Use CRC cards for

high-level descriptions.

For example, say a Customer object has a name. That name may comprise a first name, surname,

middle name, and maiden name; there may be aliases or nicknames. Don't state each of these as

individual responsibilities. Write one general statement that covers all cases: Say that a Customer

"knows its name and preferred ways of being addressed." Don't say that a Customer "knows first name,"

"knows last name," "knows nickname," "knows title," and so on. Besides overflowing the card, this is far

too much detail.

If you are worried you'll forget details, jot down hints on the card that will help you remember them as you work:

"knows its name and preferred ways of being addressed (e.g., title, nicknames, etc.)". Space on cards is limited, so

use it wisely.

Find the right level of description. How many responsibilities do you need to shape an object's character?

Responsibilities can be tersely worded or slightly more descriptive. It's a matter of personal and team style. You can

be more or less brief, just as long as you and your teammates understand one another.

The more broadly you state responsibilities, the fewer statements you need.

Your statements of responsibilities should be understandable with only a small amount of context setting. Let's look at

the responsibilities for the Model-View-Controller roles as presented in the book Pattern-Oriented Software

Architecture (John Wiley, 1996), or POSA to see how they are worded.

The Model-View-Controller framework was first introduced in the Smalltalk-80 programming

environment. MVC divides an application into three areas: the Model, which represents something in the

domain; a View that displays information to the user; and a Controller, which receives input, usually as

events. Events are translated to service requests to either the model or view. An application can be

constructed with many different objects playing model, view or controller roles. To be displayed in a

View and manipulated via a Controller, an application-specific object needs to assume the

responsibilities of a Model object. One Model object can be displayed in multiple views.

Let's now look at statements of responsibilities for each of these roles:

Model

Represents an application-specific object that can be changed or viewed

Registers dependent views and controllers

Notifies dependent components about changes in state

View

Creates and initializes its associated controller

Displays information to the user

Implements the update procedure

Retrieves displayable information from the model

Controller

Accepts user input as events

Translates events to service requests for the model or to display requests for the view

Implements the update procedure, if required

These responsibility statements are fairly broad. They don't state the details of update notification, how or what kind

of information is displayed, or the patterns of collaboration between these roles. Responsibility statements in POSA

are chattier than those found in Designing Object-Oriented Software (DOOS) (Rebecca, Wirfs-Brock, Prentice Hall,

1990), the earliest book in which responsibilities were extensively used. Here is an example from it:

Here are how the responsibilities of a Document (a kind of model that holds onto the contents of an

editable document) and a Display Frame (a view on a portion of a document) were stated:

Document

Access and modify elements

Change the attributes of the elements

Copy portions of itself

Maintain the style of the first page

Knows its views

Knows its target

Knows its name

Inform views of changes

DisplayFrame

Displays itself

Composes itself

Knows its contents

Knows its bounding box

The POSA descriptions are complete statements; the DOOS responsibilities are terse, and more specific.

Model-View-Controller responsibilities are more broadly stated because they describe roles that can be taken on and

adapted by application-specific objects. The responsibilities of a Model are general; in contrast, the responsibilities of

a Document (which assumes the role of a Model) are specific to its distinct purpose. We expect objects, such as

Document and DisplayFrame, to be explained more concretely than generalized roles. This brings up an important

consideration. The more concretely you've been thinking about your design, the more likely you are to make specific

responsibility statements.

When describing a general role that can be assumed by many different kinds of objects, you can't get

very specific. The more general a concept, the more general its responsibilities. The more specific a

concept, the more specific its duties.

Use strong descriptions. An object can seem ill defined if its responsibilities seem hazy. Behind a wall of vagueness

can lie details that should not be ignored. Avoid weakly stated responsibilities if you can find stronger, more explicit

descriptions.

Daryl Kulak and Eamonn Guiney, in their book Use Cases: Requirements in Context (Addison-Wesley, 2000), caution

against giving use cases weak names. They suggest that more concrete verbs make for less vague use case names.

If you use weak verbs, it may be because you are unsure of exactly what your use case should accomplish. The

same principle applies to naming responsibilities for actions. The more strongly you can state a responsibility, the less

you are fudging. In Table 4-1, contrast the stronger verbs with the weaker ones.

Table 4-1. Use strong verbs to state responsibilities.

Strong Verbs Weak Verbs

remove, merge, calculate, credit, register,

debit, activate

organize, record, find, process, maintain,

list, accept

Of course, there are always exceptions to the rule. A weak-sounding phrase may have specific meaning in a certain

context. In this case, don't look for a stronger term. Listing a property has a very specific meaning in the real estate

business: It means to put a property on the market for sale.

Be opportunistic. Thinking about one object leads to thinking about others. When considering an object's public

responsibilities, you think about why its clients need to call on these services and what they are ultimately responsible

for accomplishing. When you look at a single responsibility, you think about how it might be accomplished. This shift

of focus is good (as well as hard to avoid). You test the fit of an object to its context by looking at both its use and its

effects on others. If you hop around too much, however, you might leave an object before you have a firm grasp of its

responsibilities. To avoid this, take a first pass at an object's major responsibilities before moving too far away from it.

Decide how an object will divide or share the work of a large or complex responsibility. An object has three

options for fulfilling any responsibility. It can either

Do all the work itself

Ask others for help doing portions of the work (collaborate with others)

Delegate the entire request to a helper object

When you're faced with a complex job, ask whether an object is up to this responsibility or whether it is taking on too

much. A responsibility that is too complex to be implemented by a single object essentially introduces a new sub

design problem. You need to design a set of objects that will collaborate to implement this complex responsibility.

These objects will have roles and responsibilities that contribute to the implementation of the larger responsibility.

At this point we're not asking you to make detailed decisions about how to design specific collaborations between

these objects, only that you think through your options for assigning subresponsibilities. If a responsibility seems too

big for one object, speculate on how you might break that responsibility into smaller logical chunks. These can be

given as work assignments to other objects. Pursuing this line of thinking may lead you to new candidates with

smaller, more tightly focused roles.

Make sure an object isn't doing too much. If you find an object with a long laundry list of responsibilities, this could

indicate one of two problems: Either you are stating its responsibilities in too much detail, or it is taking on too much. It

is easy to rewrite responsibilities at a higher level.

An extreme example of a "big object doing too much" would be a design in which a single object

implemented all responsibilities of an application. This is obviously a poorly factored design!

However, if your object is too busy, consider splitting it into several smaller ones that will work together on the

problem. Expect these objects to collaborate with one another. Although it may require more study before you obtain

an overall understanding of this new system of objects, distributing the work among a number of objects allows each

object to know about relatively fewer things. It results in a system that is more flexible and easier to modify.

Keep behavior with related information. If an object is responsible for maintaining certain information, it is logical to

assign it responsibilities for performing any operations on that information. This makes the object smarter; not only

does it know things, but also it can do things with what it knows. Conversely, if an object requires certain information

to do its job, it is logical (other things being equal) to assign it the responsibility for maintaining that information. In this

way, if the information changes, no update messages need to be sent between objects.

In banking, Account objects can have more or less behavior. By giving them responsibilities for knowing

the rules of adjusting their balances, we turn them from simple information holders to hybrid information

holder/service providers. If these resposibilities were assigned to some controller object, such as a

FundsTransferTransaction object, it would mean separating the rules for changing account balances

from the Accounts themselves.

Distribute system intelligence. A system can be thought of as having a certain amount of intelligence. The sum of a

system's intelligence is what it knows, the actions it can perform, and the impact it has on other systems and its

users. Given their roles within a system, some objects can be viewed as being relatively "smart," whereas others

seem less so. An object incorporates more or less intelligence according to how much it knows or can do and how

many other objects it affects. For example, structuring objects such as sets or arrays are usually not viewed as

particularly intelligent: They store and retrieve objects but have relatively little impact on the objects they store or any

other parts of the system. Other structurers can be more intelligent. They have responsibilities not only for

maintaining their contents but also for answering questions about them collectively.

Objects with responsibilities for controlling activity can be more or less intelligent, depending on how much work they

delegate and how much they know about the work of those they manage. Guard against the tendency to make

controllers too intelligent. We prefer to give the collaborating objects as much responsibility as they can handle. The

more intelligent controllers are, the less intelligent are those that surround them. If you place too much responsibility

in a controller, you lose design flexibility. Our goal isn't to evenly distribute intelligence but to give objects those

responsibilities they can handle.

Our decision to make Account objects know the rules for adjusting their balances lets us design a

FundsTransferTransaction control object that is concerned only with coordinating the transfer, handling

errors, and reporting results.

Keep information about one thing in one place. In general, meeting the responsibility for maintaining specific

information is easier if that information isn't shared. Sharing implies a duplication that can lead to inconsistency. Part

of making software easier to maintain is eliminating potential discrepancies. If more than one object must know the

same information to perform an action, three possible solutions exist:

A new object could be created with the responsibility for being the sole repository of this information. This

information holder would be shared among those who have a "need to know."

It may be that the information "fits" with the existing responsibilities of one of the existing objects. In that

case, it could assume the added responsibility of maintaining the information. Others could request this

information when they need it.

It may be appropriate to collapse various objects that require the same information into a single object. This

means encapsulating the behavior that requires the information into a single object and obliterating the

distinction between the collapsed objects. Sometimes we go overboard, factoring out responsibilities into

roles that are too small. In that case it is better to pull them back into a single, more responsible object.

Just because a customer's name appears on an invoice doesn't mean that the Invoice should "know the

customer name." When it comes time to print, it can "know the customer" and collaborate with it by

asking for the name.

Make an object's responsibilities coherent. They should all relate in some way to the overall role of the object. An

object as a whole should be the sum of its responsibilities. These responsibilities should complement one another.

Everything an object knows or does should contribute to its purpose or fit into your design model.

If certain responsibilities seem unrelated, they need to be reassigned. Especially insidious are

responsibilities that seem slightly tangential to an object's purpose.

Restrict an object's responsibilities to a single domain. Meilir Page-Jones in Fundamentals of Object-Oriented

Design in UML (Addison-Wesley, 1999) introduces a way of dividing a software system (and the objects that live

within it) into domains. Domains are Page-Jones's way of dividing the machinery of an application into different

contexts. According to Page-Jones, objects that live in lower domains shouldn't have responsibilities that tie them to

objects in a higher domain. The more you tie objects in a lower domain to a higher one, the harder it is to reuse them

in different contexts.

Page-Jones's divisions (from higher to lower level domains) are as follows:

Application: objects valuable for one application

Business: objects valuable for one industry or company

Architectural: objects valuable for one implementation architecture

Foundation: objects valuable across all business and architectures

Foundation objects are further divided into three categories or subdomains:

Fundamental: objects so basic that many programming languages include them as primitive data types,

such as integers or reals

Structural: objects that organize others, such as sets, collections, hashtables, or queues

Semantic objects: objects that represent basic concepts with specific meaning, such as date, time, or

money

To test whether two different objects are in the same domain, ask, "Can one object be built without any knowledge of

the other?" If so, these two objects aren't likely to be in the same domain. But there are still places where you could

tangle domains if you aren't careful—for example, when you need to convert from one type of object to another.

Typically you are not free to add responsibilities to foundation libraries. They come from the vendor

with all kinds of warnings and prohibitions. You are prevented from tinkering with them. But you may

be able to extend these classes by creating new subclasses.

Where should you place responsibilities for converting a temperature reading into a measurement or

from one geometric shape to another? Measurements are readings (of temperatures, among other

things) recorded at a particular time and for a particular instrument and location. A Temperature

represents a degree of heat or cold on a definite scale. We can envision Temperatures existing without

Measurements, so Temperatures are in a lower domain. It is OK for Measurements to have the

responsibility for "knowing their temperature." But don't give Temperatures the ability to convert to higher

life forms. This doesn't overburden Temperatures with higher-level duties. If you follow this advice,

Temperatures can readily be used in other contexts. If they did know about Measurements, you'd have

to drag along Measurements to any new context.

Avoid taking on nonessential responsibilities. Avoid diluting an object's purpose by having it take on

responsibilities that aren't central to its main purpose. Taking on responsibilities is easy to do, especially when you're

deciding who should be responsible for maintaining a relationship. The obvious first answer is to make one or the

other, or both, related objects be responsible.

Reuse isn't our only concern. For maintenance reasons, clear intent is paramount: Objects shouldn't

take on responsibilities that go above and beyond their specific purpose. When an object does

"favors" for others, its role becomes obscured.

Consider adding the responsibility to a Person object to know how many dogs it owns. If we're building

an application that handles dog show registrations, this might be reasonable. But if our Person could

own cats, birds, gerbils, treasury bills, automobiles, life insurance policies, and so on, we could quickly

pile on responsibilities for "knowing" all these things. This multiowner Person isn't useful in any other

context because it is encumbered with a variety of responsibilities and links to all those other objects.

The Person object becomes the pathway to these other objects and tends to pile on responsibility after

responsibility after responsibility. In one design we reviewed, a Person object had more than 500

methods (and way too many responsibilities)! A better solution is to factor those responsibilities that

aren't intrinsic to a Person into distinct objects.

The easy first answer isn't always the best. Each new responsibility needs to be considered carefully. It is easy to

"slip one in" as an easy solution and avoid thinking through the consequences. An object that has a lot of links to

others will be harder to maintain and move to a new context.

Even if you are building only one application, avoid big, fat objects. There are always reasonable

alternatives. Instead of burdening either object in a relationship, consider creating a new object that is

responsible for structuring the relation.

Consider creating a new object that is responsible for structuring the relation between people and dogs, another for

people and valued property, and so on. Each of these new objects knows of a specific relationship. Instead of one big

object knowing many others, the net result is a few simpler objects, each knowing some specific relationship. This is

one way to "straddle" objects in separate domains. It results in a trimmer Person, unburdened with responsibilities

that aren't intrinsic to its nature. Of course, this, too, can be carried to extremes. Too many objects with

responsibilities to "glue" others together can also make a design brittle and hard to understand. Decide what relations

are intrinsic to an object in the context of your application and which are not. Assign responsibilities for maintaining

nonessential relations to new structurers.

Don't overlap responsibilities. Sometimes you aren't sure which object should check, guarantee, or ensure that

things are done the right way. Who should ultimately be responsible? If you want a robust system, you must make

your objects and neighborhoods resistant to careless mistakes and errors.

Should you make the client check before it calls on the services of another? Should you give service providers

responsibilities for checking that their requests are properly formed? If you're not sure whom the clients are or under

what situations a responsibility will be carried out, you might be inclined to put in safety checks everywhere.

If we followed this strategy in the design of physical objects and systems, we would design teakettles

with responsibilities for notifying when their contents boil, we'd give monitors responsibility for checking

water contents of the teakettle, we'd ask the person who filled the teakettle to determine whether the

kettle is boiling, and we'd put safeguards into a stove burner so that when it detects the kettle whistling

for a period of time, it'd reduce its temperature.

This line of reasoning leads to overly zealous objects, all of them fretting about the state of the system. It can be

extremely costly to maintain such a complex system of objects. You are better off developing a simple, consistent

strategy for checking and recovering, and sticking with that. Not everyone needs to be involved or "share in an

important responsibility."

If you want an object to be impervious to malicious requests, give it responsibilities for detecting and deflecting them.

Once you've given an object that responsibility, design its clients to be more cavalier; they need only react to

bounced requests, not prevent them. We will return to this topic when we design collaborations. But for now, consider

that when you give one object a responsibility, you are potentially relieving the workload of another. It isn't necessary

to build in overlapping responsibilities unless your system explicitly demands redundancy.

Getting Unstuck

Even with the best of intentions, you can spin your wheels, unable to come up with convincing responsibility

assignments. Relax and take a deep cleansing breath. Here are some common "sticky problems" and ways to move

beyond them.

Problem: You have a big responsibility that doesn't seem to belong to any candidate. Who should be

responsible for solving world peace or ending world hunger? There aren't simple answers because these are

extremely broad problems. If you really wanted to tackle world peace or hunger, you'd have to break these enormous

problems into smaller factors that, if solved, might contribute to lessening friction or reducing hunger. Divide a big

problem into smaller problems, and solve those.

Big software responsibilities can seem equally daunting to those tasked with solving them. What object should be

responsible for "interacting with the user" or "performing business functions" or "managing resources" or "doing the

work"? If a responsibility seems too big or too vague, break it into smaller, more specific ones that can be assigned to

individual objects. Treat the "big responsibility" as a problem statement and reiterate through identifying specific

objects with smaller responsibilities that add up to the larger responsibility.

Problem: You don't know what to do with a vague responsibility. If you can't get more concrete, perhaps you are

trying to add precision to a statement that is so general that you can't get any traction. You don't know enough to

break it down into subparts.

Before you can design a solution, you may need further definition from someone who knows more about the problem

than you do. It's always fair to ask, "Can you be more specific about what you mean by performing business

functions?" If you are lucky, your statement may not really be a problem at all. You may already have assigned

specific responsibilities that are subsumed by a broad unapproachable statement.

"Interacting with the user" may simply not be something you have to deal with if you know where

responsibilities for "redisplay up-to-date chart information on a periodic basis," "know chart viewing

parameters," and "perform request to ...," "calculate ...," "display archived charts ...," responsibilities are

covered. If so, relax. You've assigned specific responsibilities; your job is finished.

Problem: You can't decide between one of several likely candidates. Sometimes it isn't obvious which candidate

should be assigned a specific responsibility. When you're choosing which of several objects to assign a responsibility,

ask, "What are all my options for assignment? If I choose this possibility, what does that imply for its surrounding

neighbors?" If you have trouble assigning a particular responsibility, the solution is simple: Make an arbitrary

assignment and walk through the system to see how it feels. There isn't necessarily a single "right" answer. Don't get

in a jam thinking that you must optimally solve the problem or that there is only one optimal assignment. There may

be several, or none.

Assign a responsibility to one object, and then follow through with how this affects others. If it seems

reasonable, stick with it. Feel free to play out several options before making a final decision. You can

always change your mind. Assignments will be revised and adjusted as you get deeper into design.

Should a Session be responsible for timing itself, or should the SessionManager do so? There may be

reasons for both alternatives. The SessionManager could adjust the session times based on overall

system performance. Well, each Session could react to changing system performance characteristics by

querying the SessionManager before deciding to time out. Well, sure. Both seem workable. How can

you decide?

You can try several different approaches to distributing responsibilities. Look at how different responsibility

assignments impact objects in the neighborhood.

Problem: You have trouble assigning a specific responsibility. You may get stuck on a responsibility that seems

to be reasonably stated but has nowhere to go. This could mean that you are covering new territory and may need to

invent a new candidate. Great! This is progress. Or it could be that even though the responsibility is specific, your

existing candidates' responsibilities are stated at a higher level of detail. If so, remember that responsibilities are

general statements; what you think of as a specific responsibility you have trouble assigning may actually be an

implementation detail that doesn't really belong on a CRC card. If so, save it for later.

Problem: You are worried about how a responsibility is actually going to be accomplished. You've stated

responsibilities generally, but you have nagging doubts. How will each object carry out its duties? Are you concerned

because you suspect that something is missing? If so, follow your instincts and figure that out. Are you a stickler for

details? Until you see running code, you never believe a design will work. If so, relax. Your design isn't finished quite

yet. And it will change as you design collaborations, too. Once you are comfortable with how you've arranged

responsibilities among a set of collaborators, then you can pin down responsibilities to a specific implementation. A

responsibility for maintaining knowledge could mean that

The object holds on to the fact directly.

It could derive it from other information sources.

When asked, it turns around and collaborates with another that can compute (and is responsible for

reporting the results to others).

Responsibilities do not dictate any specific implementation. When we say that an object maintains

certain knowledge, we aren't stating that it stores it directly as data.

At this point, all your options are open. Stating that a Monetary-Transaction "knows its applicable taxes" could mean

that it stores its taxes directly in variables or that, when asked, it turns around and delegates this request to a tax

calculator object that does all the work. We don't have to decide these things just yet. In fact, until we know our

candidates and all the dimensions of the problem better, we don't know enough to make informed decisions about

how "knowing" responsibilities are best implemented.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Implementing Objects and Responsibilities

Sure, we're fudging a bit. We have written responsibilities on index cards, but we haven't yet decided on an

implementation—although we may have a pretty good idea. So far, we have identified candidate objects or roles (or

both). We have also characterized our objects and stereotyped their role. We have made no implementation

decisions. This shift between objects and their possible implementation in classes and interface specifications is an

important one. When you make this shift, you have options. There isn't necessarily a one-to-one correspondence

between a candidate and a class.

An Object Can Play Multiple Roles

Let's review how objects and roles are related. This will help us specify implementation classes and interfaces. An

object can take on one or more different roles. We distinguish roles as being one of the following:

Primary: comprising of responsibilities that clearly define an object's main purpose and its character

Secondary: comprising of responsibilities that are incidental to an object's purpose but necessary for it to fit

into its environment of technical libraries, frameworks, and application-specific conventions

When you make the transition from candidates to an implementation specification, you will create abstract and

concrete classes that implement your objects' responsibilities. An abstract class provides a partial implementation. It

leaves its subclasses with the obligation to implement specific responsibilities. A concrete class provides a complete

implementation. You are also likely to specify interfaces for responsibilities that can be implemented by different

classes. An interface specifies method signatures without specifying an implementation. It defines the vocabulary

clients use to invoke responsibilities, regardless of their implementation.

Abstract and concrete classes are the building blocks we use to specify an implementation. Declaring

interfaces is one means to make it more flexible and extensible.

Implicit in the declaration of an interface is the design idea that a single role can be carried out by several types of

objects, regardless of their implementation. When you suspect that a role might be played by different kinds of

objects, declare an interface. Do so even if you intend to implement a number of classes belonging to the same

inheritance hierarchy. This makes it clear that your abstract and concrete classes are just one possible

implementation and that others may be declared in the future without being constrained to a specific ancestry. It

makes clients who use objects that support this interface more flexible, too. They needn't know about specific classes

in order to use objects that share a common role declared in an interface.

Certain object-oriented languages, such as C++ or Smalltalk, do not support the construct of an

interface. For these languages, you are likely to declare the common methods in a class that can be

inherited from, in lieu of defining a common interface.

An object can have multiple roles. But if you've kept your candidates on the narrow path, each most likely represents

only one role. Each is what it is and does what it does. The mapping from candidate to implementation is

straightforward: You define a class to implement each candidate that supports a single primary role.

Following this guideline, we'd declare a BankAccount class to implement our BankAccount candidate,

with these responsibilities:

Maintain its balance

Know its customer

Know its unique ID

Know recent transaction history

Know a printable representation of its ID

The BankAccount class may pick up additional implementation responsibilities to fit into its software

context. If we implement a BankAccount class in the Enterprise Java Beans framework, our

BankAccount might take on the responsibilities required of EntityBeans:

Know its context

Initialize itself

Retrieve and store itself from a database

Activate/passivate itself when asked to by the container

These are declared in the EntityBean interface that our BankAccount class implements. We also might

alter our class's name from BankAccount to BankAccountBean, just to make it clear that it fits into the

J2EE framework.

The roles an object can play can be framework- and technology-based or domain-specific. Interfaces

can also be domain-specific or technology-based abstractions. For example, if we wanted to push a

bank account object in another, domain-specific direction, we might declare it to be a FinancialAsset. A

FinancialAsset is a role that represents something held by the bank that has a projected and current

valuation. CertificatesOfDeposit and MoneyMarket Accounts are other examples of FinancialAssets. We

could declare our BankAccount candidate to assume this secondary role and adjust its implementation

accordingly.

A class implements responsibilities that are intrinsic to the roles its objects play (see Figures 4-4 and 4-5). These can

be application-specific or technical. Consider technical roles after you're confidant about your application-specific

design and have decided on an implementation strategy.

Figure 4-4. A BankAccount candidate is the sum of its one primary and multiple secondary roles.

Figure 4-5. The BankAccountBean class represents three roles.

To sharpen your role modeling skills, go to your favorite class libraries and reverse-engineer some

interfaces and classes into one or more roles, each with clusters of responsibilities.

Designing Methods and Signatures That Support Responsibilities

Objects may know and do similar things, but because they do them differently, they require different interfaces and

implementations. When you look for what is in common, you need to look below the surface. You want to

discriminate among that which is in common and will be implemented identically, that which is common but requires a

different implementation, and that which appears to be in common but isn't.

Sharpen your focus and ask, "Are these really the same responsibility? Do they mean the same to clients?" Let's look

at a simple example to see how responsibilities that seem common might be implemented.

Consider these two candidates and their responsibilities:

Rectangle

Knows how to draw itself

Knows its dimensions

Circle

Knows how to draw itself

Knows its dimensions

We expect circles and rectangles and other graphic shapes to be asked to draw in the same way (their

clients can draw them interchangeably if this is the case, even though the way they draw themselves

differs). But what about their dimensions? A circle can be described by its radius; a rectangle, by its

width and height. Both kinds of objects know their dimensions. But they have different ways of defining

them. We expect clients to change and inquire about them differently. Circle and rectangle will have

distinct methods that implement this responsibility.

We could restate each responsibility to be explicit: A rectangle "knows its width and height," or a circle

"knows its radius." But we won't. As a natural consequence of getting more precise, you create different

interfaces and implementations. Instead of patching up cards with this new precision, leave this to

detailed design and to class and interface specifications. At one level of abstraction, circles and

rectangles do share a common responsibility to "know their dimensions." Because they do so differently,

different classes will implement them.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Testing Your Candidates' Quality

Responsibilities are general statements that describe software objects and the actions they take, the information they

manage, and the decisions they make. When you spread responsibilities around among object neighborhoods, make

sure that each object keeps to its task and doesn't demand too much or take on responsibilities better assigned to

others. The quality of a form can be tested by how well it fits into its context.

Here are some ways to test whether an object is well formed:

Does it stick to its purpose?

Are its responsibilities clearly stated?

Do its responsibilities match its role?

Is it of value to other objects in its neighborhood?

It is relatively easy to remedy one object's flaws and make it a better fit. If you have created an all-knowing, all-doing

object with too many responsibilities, carve it up into several cooperating ones. If an object is responsible for

maintaining information, reassign it the responsibility for performing any operations on that information. If you've

dispersed responsibilities, consider consolidating them.

It is somewhat more difficult to adjust the responsibilities of several objects. If you have scattered related information

across several objects, you may want to integrate this information in a single object. When you design a software

application, you are inventing systems of objects. Not only should each fit with its software context, but also objects

within natural partitions should work well together. You are bringing communities of objects into existence.

The quality of a design can be proved only by how well it stands up to its complex requirements over time. Some

designs are better than others. If every part is connected, then it is hard to limit the effects of change. So it is better to

isolate parts—to identify subsystems of objects—and establish patterns of communication between them. Each

subpart should have a coherent role; obligations shouldn't spill across different areas. This speaks to the heart of

encapsulation, which states that like things belong together.

Although each object has a distinct part to play, object neighborhoods collectively take on larger, related

responsibilities. They, too, have larger roles to play in the application. They, too, should be coherent wholes. You

need to consciously organize and design how objects in different parts of your system interact. In Chapter 5 we

discuss how to develop a model of objects and their collaborations.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Summary

Objects do things, know things, and make decisions. In this sense, they are responsible. Their responsibilities come

from your ideas about how your software machinery should work. Objects shouldn't do too much or too little. They

should stay in character. A good test of whether an object is well formed is that its responsibilities form a cohesive

unit. Does it stick to its purpose? Are its responsibilities clearly stated? Do they match its role?

Whether an object primarily knows things, does things, or controls and decides is based on its role stereotype.

Exploring an object's character will lead to an initial set of responsibilities. Information holders answer questions and

are responsible for maintaining specific information. Coordinators have specific duties for managing cooperative work.

Service providers field requests from others. Requests can be restated as responsibilities for performing specific

services.

To come up with responsibilities, you will need to reformulate software descriptions into responsibility statements.

This process can be more or less direct. Most of the time you will need to get more specific and concrete to identify

responsibilities that can be assigned to individual objects. When responsibility statements seem too broad, create

smaller duties that fit with an object's role. As you find and assign responsibilities, you will make choices about how

individual objects contribute to the overall working of your application. Although each object has a distinct part to play,

it fulfills its responsibilities by interacting with others. So your model won't be complete until you understand how

objects collaborate.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Further Reading

If you haven't read Christopher Alexander's Notes on the Synthesis of Form (Harvard University Press, 1970), you

are missing out on one of the early works of the architect who inspired the software pattern inventors. Alexander's

book has nuggets of wisdom for those who are consciously designing complex systems made out of things with

interdependent parts, whether they be software or physical structures.

Donald Norman's The Design of Everyday Things (Basic Books, 2002) contains many examples of poorly designed

physical objects—VCRs, doors, refrigerators—and discussions of how to improve them. It's a matter of paying careful

attention to the design of interfaces and appropriate feedback in response to users' actions. It doesn't matter how

many nifty features an object has if people can't figure out how to use them! This book is a great source of inspiration

for software designers, too, who also need to pay careful attention to their objects' interfaces, side effects, and

responses.

Meilir Page-Jones, in Fundamentals of Object-Oriented Design in UML (Addison-Wesley, 1999), talks about good

design using terminology we've never encountered anywhere else. His book contains lots of good advice. If you want

to know more about cohesion, encumbrances, and valuable design principles, read this book. Be prepared to

increase your vocabulary and to enjoy Meilir's unique wit and wisdom.

Craig Larman, in Applying UML and Patterns (Prentice Hall, 2001), devotes two chapters to the discussion of

principles to use when assigning responsibilities to objects. He defines several patterns for identifying and assigning

well-formed responsibilities.

I l@ve RuBoard

I l@ve RuBoard

Chapter 5. Collaborations

Christopher Alexander suggests that we solve a design problem in "the least arbitrary manner possible." If we do so,

we avoid misfits between form and context. So let's not be cavalier about how our objects cooperate! Software

objects are connected through interactions and shared responsibilities. If we design simple, consistent

communications, our solution won't be arbitrary. Our design will be more adaptable if parts can be changed without

effects rippling throughout the system. A complex software system becomes manageable when responsibilities are

partitioned and organized and when collaborations follow predictable patterns.

I l@ve RuBoard

I l@ve RuBoard

What Is Object Collaboration?

Collaborations are requests from one object to another. One object calls on, or collaborates with, another because it

needs something. The two objects work in concert to fulfill larger responsibilities. Designing collaborations forces us

to consider objects as cooperating partners and not as isolated individuals.

Application responsibilities are fulfilled by groups of objects that work together. In this chapter, our

focus shifts from finding objects and responsibilities to pinning down how objects interact to fulfill their

promises.

Collaborate: To work together, especially in a joint intellectual effort.

—The American Heritage Dictionary

Until this point in our design, any discussion of "this object doing this" and "that object doing that" has been

predicated on the notion that our objects will have information or services within reach at the precise moment when

they need them. As execution flows around our object model, however, necessary connections between

collaborators need to somehow come and go. Our model is incomplete until we describe how our objects interact and

how they connect. The collaboration model will describe the dynamic behavior of "how" and "when" and "with whom."

As we organize objects into neighborhoods with collective responsibilities, we need to carefully arrange how objects

within a neighborhood collaborate to fulfill their larger responsibilities. We also decide how objects outside a

neighborhood will interact with services that the neighborhood offers. As a side benefit of this effort, we should be

able to modify parts of our systems without changes rippling throughout the entire system. A well-designed

object-oriented application should absorb a certain amount of change without buckling.

Designing roles and responsibilities lays out a floor plan; deciding on collaborations adds the wiring

and the plumbing.

Preparing for Collaboration

Object-oriented design is fundamentally different from procedural design. Objects are structured in a network and not

a hierarchy. Procedures separate data from behavior, whereas objects blend them. The line between these two

technologies can get blurry, though. What about a powerful object that is surrounded by simple information-holder

objects? The all-capable object pauses occasionally to get data from its minions, but otherwise, it doesn't collaborate

or delegate work to anybody. It holds all the logic. Where is the information hiding? The encapsulation?

Using an object-oriented language promotes, but does not guarantee object-oriented thinking. It is

how objects are defined and how they interact that determines whether a design solution is

object-oriented.

A more object-oriented design is organized into neighborhoods, each having a distinctive character and specialized

responsibilities. Within each neighborhood, each object has a role to play and knows which of its neighbors to ask for

help. Responsibilities are shared among neighbors. Paths of collaborations are established within and between

neighborhoods. Some objects reach outside their communities for help. Others stay put, do a well-defined job, and

demand little of others. The architecture of an application dictates certain patterns of communication. Preexisting

components or frameworks impose their preferred styles of interaction. Our collaboration model must incorporate our

inventions into any preexisting fabric.

An object design evolves through iterations that adjust both its behavior and its support structure. Objects, roles, and

responsibilities evolve. Responsibilities shift as we discover better ways to balance the workload among

collaborators. We rearrange interactions as we discover preferred ways to communicate. Frequent paths become

more efficient; standard ways of accomplishing work become routine. Patterns of collaboration!

Recording Candidate Collaborations

Early in exploratory design, when our objects, responsibilities, and collaborations represent initial guesses, we are

building a candidate model. Candidates come and go, responsibilities move from one object to another, and

collaborations shift. As long as we are building a candidate model, we jot down our thoughts on CRC cards. They are

as dynamic as our thinking. Only when we have evidence that our objects, responsibilities, and collaborations are

"right" do we document them with more formal tools, or write some code. With that in mind, how do you write

collaborations on CRC cards?

CRC cards are informal tools we use to capture rough ideas about collaborations. Details of specific

message sequences and interactions with specific objects are best shown with collaboration or

sequence diagrams.

Responsibilities fill up most of the space. Because a collaborator may be asked to fulfill several responsibilities, we

mention it once, regardless of how many times it is used. When it comes time to write code, we certainly need to

know more. But now it's enough to say that the object is a collaborator and list it on the right side of the card. If you

want to be more specific, you can draw a line from one responsibility to each collaborator it uses (see Figure 5-1).

Figure 5-1. Responsibilities can be connected to their collaborators.

Don't clutter a card with obvious or uninteresting collaborations. An object can always use its own information or

services, so don't bother to list it as a collaborator. If you need two or more objects playing the same role, record the

role only once. Similarly, if an object plays two roles, then we should list both, each on a separate CRC card. We list

potential collaborations between objects playing roles and not each individual collaborator.

Avoid recording low-level decisions. If an object's role is to hold information, we typically don't list the objects it uses

from a standard class library to store information (such as numbers or strings or arrays) unless they are particularly

unusual choices. Leave that as an implementation detail.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

The Design Story for the Speak for Me Software

As a source of design ideas and examples throughout this book, we will consider the design of software that enables

a person with severe limitations to communicate with others. Here is the Speak for Me design story.

The Speak for Me Software

Our user is paralyzed and blind and cannot speak. Confined to a hospital bed, she is "locked in," unable

to communicate by any means other than blinking her eyes to indicate "yes" or "no." Speak for Me

allows her to spell and send messages. The software speaks the alphabet to her, using a small motion

sensor to monitor for the eye blinks that she uses to select the letters that she wants. After she selects

each letter, it speaks "space" to her, which she selects to end a word. If the partially spelled word is

longer than one letter, the system attempts to guess what she is spelling, using a variety of contextual

and linguistic rules for guessing. If it finds an appropriate word to guess, it speaks it and watches to see

whether she selects it. If she does, it appends the entire word to her message and begins a new word,

presenting the letters from the beginning of the alphabet again.

When she finishes a message and wants to tell the computer what to do with it, she spells one of the

software's special command words. There are commands for ending the current sentence ("ES"),

sending the message to different places ("SM"), displaying the message on the screen ("DM"), holding

the message for later ("HM"), and so on. Most of the available commands operate on the current

message—the one that she has just finished constructing. A few other commands do not require a

current message. For example, when she wishes to read e-mail, she starts the idling software with an

eye-blink and builds just one word: the command for reading e-mail: ("RE"). Or she might spell the

command for calling for help ("CH"). When the software recognizes any of these special command

words, it executes the command's corresponding behavior.

I l@ve RuBoard

I l@ve RuBoard

Collaboration Options

An object that has grown too big might be split in two, and what were the responsibilities of a single

object become a collaboration between the two.

Some objects collaborate a lot; others, little. Some objects offer help to many others; other objects are used

infrequently. An object's frequency and patterns of collaboration will depend on what its responsibilities are and how it

carries them out. We may design an object to gather information and then make a decision, or we may decide that it

should delegate the decision making to a neighbor that already has the information. Either choice results in

collaboration. Another object might be designed to perform all of its own responsibilities. As it gets big and clumsy,

we might delegate part of its work to others. After we've reassigned responsibilities to others, we'll have to form

collaborations between these smaller, more focused objects.

Often, objects are designed to fit together as an ensemble. Their roles and responsibilities are designed at the same

time. A responsibility exists in one object because it plays a role that supports another. Without its collaborator, we

couldn't conceive of a reason for it to exist.

In Speak for Me, how are Letters and Words spoken? They know their textual and spoken

representation, but it is probably inappropriate for them to also speak. They need to collaborate with

another object, a Presenter.

The fact that a helper turns around and delegates the entire task to one or more subspecialists isn't of any concern to

the requester. If we hide from an object's users the details of how it accomplishes its responsibilities, we have the

flexibility of changing how it accomplishes its work without impacting those who use it.

The Presenter may do everything, or it may wrap a native code text-to-speech library and pass the text

along again. Letters and Words know about the Presenter's public responsibilities but not how it actually

speaks.

Other collaborations are much looser. Relationships between objects offering services are established on-the-fly.

After a connection is made, requests flow. In these designs, who actually provides the service is less important than

how to ask for help.

In the online banking application, a component logs in to the domain server by sending a request to the

UserSessionManager. The UserSessionManager, after verifying the user's password, creates and

returns a UserSession object. The UserSession object is responsible for handling all subsequent

requests for service until a logout request is received or too much time elapses.

Objects that work in the same neighborhoods communicate more freely with one another than do long-distance

collaborators. In a close-knit neighborhood, the cost of communications is rarely a factor. The collaboration can be

more chatty and collegial; objects can exchange information without worrying much about communications overhead.

Crosstown collaborators—those objects working together while located in different processes—need to consider the

cost of collaborations. These collaborations definitely dictate fewer, more powerful communiqués; requests and

information are carefully planned, communications are typically packaged into large, meaningful chunks, and the cost

of sending and receiving information becomes a significant design consideration. Even if cost were not a factor, we

would still limit the collaborations between neighborhoods in order to decouple their responsibilities.

If you are traveling to a distant location to conduct business, you take care to make sure the trip is

worthwhile. You agree on an agenda, pack what you need, and prepare for contingencies. The same

is true for communication between long-distance collaborators.

Who's In Control?

Control is decision making and selection of paths through the software.

Control strategies have a strong influence on how responsibilities are distributed. As we consider alternatives, we

seek ways to distribute control between objects. We prefer a model with moderately intelligent, collaborating objects

over one that concentrates intelligence in only a few. Decisions about where to place responsibilities for controlling

execution are central to our design work. The choices that we make as we consider the control aspects occur at

several levels:

How do we control and coordinate application tasks?

Where do we place responsibilities for making domain-specific decisions (rules)?

How should we manage unusual conditions (the design of exception detection and recovery)?

As we develop a collaboration model, we need to develop a dominant pattern for distributing the flow of control and

sequencing of actions among collaborating objects. An object may incorporate more or less intelligence according to

how much it knows or does and how many other classes or objects it affects.

How Much Should Objects Trust One Another?

Objects are designed to collaborate with their neighbors. But who their neighbors are impacts how willing they are to

loan out their data and how tightly they lock their doors and windows. Can collaborators be trusted? There is another

definition of collaboration:

Collaborate: 1. To work together, especially in a joint intellectual effort. 2. To

cooperate treasonably, as with an enemy occupation force.

—The American Heritage Dictionary

These two very different views of collaboration lead to two extremes. The first definition is collegial: working together

toward a common goal. When one object asks collaborators for help, it expects that they will carry out its wishes.

There are no hidden surprises. The second definition is a bit startling and has serious implications. If the object's

collaborators can't be trusted to do the right thing, you must build in extra safeguards:

If you don't want information to change, you send a copy.

If you don't want an object to get out of whack, you make it read-only by eliminating any features that can

modify it. It becomes idiot-proof.

If you can't afford for things to go wrong, after calling on others for help you double-check to see that things

were performed correctly.

Eiffel was the first object-oriented language to let programmers define preconditions that must be true

before a body of code executes, and postconditions and invariants that must be true after a body of

code executes. Writing assertions that can be checked during program execution adds teeth to object

contracts.

All these tactics add a lot of defensive behavior just to collaborate! This often results in duplicated responsibilities for

error checking. There's more chance of introducing errors in code when the checking logic needs to by updated in

several places. If you don't want to always be on the defensive, you can get more formal, especially when you need

to establish a high degree of trust between disparate parts of a system. You can use object contracts to spell out

explicitly how objects are designed to interact. Without saying how these things are accomplished, contracts show

who uses which responsibilities (client contracts) and declare under what conditions these responsibilities are called

on (conditions-of-use guarantees) and what marks they leave when they are finished (aftereffect guarantees). Write

contracts when you want to be absolutely clear about expected usage and side effects of use.

All collaborations—whether among close partners, among different parts of an application, or among components

separated by time or space or communication overhead—require thought. It isn't enough to design a path for

collaboration. Collaborations should be effective and should preserve any natural separations between responsible

parties. Objects passed along with requests tie collaborators to one another. Inconsistencies can occur if the overall

plan for the ways information is to be used and maintained is uncertain to either party.

What does it really mean for an object to be untrustworthy? And if objects can't be trusted, how did they get that way?

Were they built by a treasonous developer? Or a third-party saboteur? Not likely. "Treason" rarely occurs. Instead,

when an object can't be trusted it is usually the result of a simple failure to communicate design intentions:

Failure to specify clearly what the object will do. An object may seem to promise one thing while actually

doing another quite effectively. It may not document that it changes data that is passed to it or that the

values that it returns can be outside an expected range. This information cannot be declared in an

interface. We can only hope that the designer documented it somewhere that is within our reach, in a

contract stating what is affected.

Failure to clearly state how the object should be used. A collaborator may require special

initialization—either of its own state or of others surrounding it—before it is called on. Again, these types of

constraints won't be published in an interface. Yet if we don't set up its environment correctly before we use

an object, things can break. The conditions required for correct operation can be declared in a contract. But

perhaps the documentation overstated what an object actually does, and you believed it.

Failure to fulfill the object's promises. Bugs! Errors in logic! The only way an object can avoid these is to

refuse to collaborate with any unknown source and implement all the behaviors itself. Unfortunately, no

contract can prevent coding bugs, and contracts cannot specify everything you need to know in order to

avoid problems.

In general, those objects that we design to work in the same neighborhoods can be designed with a high degree of

trust. It is those objects that we pick up from other sources and use that we must be wary of. When we use services

provided by preexisting class libraries or components, our objects must fit with and use the services that are provided.

How much trust we place in these objects and components depends on how well their designers convey how to use

them and how carefully we conform to their constraints. When we don't know much about our collaborators, we make

our objects as autonomous as possible. And when they ask for help, they must do what they can to ensure that their

intentions are fulfilled.

I l@ve RuBoard

I l@ve RuBoard

Strategies for Identifying Collaborations

Our strategy for giving shape and form to our collaborations model is very simple: Focus on areas that have big impacts. Instead

of concentrating on individual objects, we focus on how candidates work together to perform complex, coordinated actions.

Initially, our goal is to link individual responsibilities to collaborators. Next, we take a pass at solving more complex scenarios.

We explore collaborations using low-tech tools: CRC cards and rough sketches on white boards. We simulate collaborations by

tossing around Koosh balls and making rough sketches.

Experienced designers spot and document many collaborations as they distribute responsibilities. Their

candidates are linked from the start. Of course, there will be gaps in any preliminary model. Designers fill these

gaps by demonstrating how collaborations are enabled and by testing that they are well formed.

But before we get locked into any solution, we explore alternative ways for objects to collaborate. We look for ways to simplify

and streamline communications. Our goal is to create a workable solution that fits our design constraints and values. We

approach finding collaborations from several angles. Each reveals different insights. We do the following:

Look at an individual object's stereotype. We can think about collaborations based on the nature of each object. We

ask, based on its stereotype, what an object needs from its neighbors and what it offers them. Whom does it need

help from? Whom does it help?

Look at individual responsibilities. At the next level of detail, we make initial decisions about how an object carries out

any responsibility. As we do so, we look for collaborators. If there are objects that are needed to fulfill specific aspects

of a responsibility, we add them as collaborators.

Design the details of a complex responsibility. If a responsibility seems large or complex, we decide how it can be

broken into smaller parts. As we divide complex responsibilities into smaller ones, we assign them to appropriate

objects. These objects will be involved in a collaborative effort.

Design collaborations for a specific use case or event. We can design how a grouping of objects cooperate to fulfill a

use case or, at a lower level, how they respond to a specific event. As we do so, we make decisions about how

objects will work together.

Look for ways to organize communications. As we think about each object's position in the application architecture

and natural arrangements for collaborators, we may find that patterns of communications can and should be stylized.

Look for ways to simplify. After we've established several paths of communication, we can look for places where

collaborations seem complex or tedious. Are too many objects talking to one another? Can we consolidate many

low-level communications?

We now turn to examining each of these strategies in detail. Although we have arranged these strategies from simple to

complex, we don't necessarily march down this list in order. During design, we often back up and revisit initial decisions,

especially as we gain further insights. We comb over our entire design once in awhile, just to get our bearings and see whether

we're still on track. Our goal is to end up with a collaboration model that adheres to a consistent style, not an arbitrary one.

Once we are convinced that our objects fit together and work to support a larger set of responsibilities, we get

more precise. We pin down how objects become aware of their collaborators and design message sequences,

arguments, and return values.

Looking at an Individual Object's Role: Stereotypes Imply Collaborations

The roles an object plays imply certain kinds of collaborations. We consider both how an object typically fulfills its

responsibilities and how it is used by others.

Stereotype roles give clues as to collaboration needs. Service providers and controllers need information.

Coordinators and interfacers need services. Structurers organize others.

Information Holders

When an object is an information holder, it is primarily responsible for knowing facts. Typically, it won't collaborate much with

other objects except to acquire any information it is responsible for knowing. After it acquires its information, it may not need to

ask for it again. Sometimes, even gathering its information is someone else's responsibility. An information holder can be

created fully formed and populated with what it needs to know. Its only real responsibility, then, is to hold on to and keep its

information consistent.

However, there are always exceptions to these general tendencies. Information holders can always answer questions by turning

around or finding out information from others. They represent to the world that they know a fact when, indeed, they know it only

by referring to a helper that is hidden from others' view. Sometimes, information holders can be charged with additional

responsibility for making their information persist. Or they can compute instead of only holding on to uninterpreted facts. Each of

these design considerations implies certain responsibilities and collaborations. Ask these questions of an information holder:

Where does its information come from? Does the object create it or ask for it or get told about it? (Whomever it asks

will be a collaborator.) Who knows the information in the first place?

Is any information derived? Who is responsible for calculating the derived information? Does the object do the

calculation itself or just hold on to the result? (If another object does the work or holds on to other knowledge, it will

be a collaborator.)

Do the ways that the object derives its facts vary? How are the variations represented?

Does the information persist? Who handles the persistence?

Is information cached and refreshed when its sources change? When does it need to be updated? How is this

coordinated? (There will be some collaboration in order to keep information in sync with other sources.)

Does any information need to be converted to another form that the requester wants? If so, who does this

conversion? (If another object helps with conversion of "raw" information, it will be a collaborator.)

Don't assume that a responsibility for knowing some fact means that an object holds on to that information. It

can always turn around and get information from another object that knows it.

A transaction record in online banking is built by gathering information at the UI and passing it to a service

provider that stores it in a transaction record. The only collaborations that the transaction record itself uses are

persistent storage services to put itself onto disk.

Structurers

Most applications organize and structure information and group objects in different ways. Objects need to be pooled, collected,

and managed. Objects that are responsible for structuring and organizing must get the things they structure from somewhere.

The objects they organize may come into being through collaborations with other objects that are responsible for connecting to

databases or devices outside the software. Look for those collaborations. Or objects being structured can be built up and added

to the structurer as the application executes. Responsibilities for retrieving, matching, and updating the structured information

are also places to look for collaborations. Some of the same questions we ask of information holders also apply to structurers:

Where do the objects that are structured come from? Does the structurer create them, ask for them, or get told about

them?

How are the objects processed? Does the structurer process the objects that it structures, or does another object

"visit" them?

Does the structurer (or the objects it structures) persist? Who handles the persistence?

How are objects held by a structurer accessed? Is the way a structurer organizes and relates objects hidden? Or is it

visible to outsiders that collaborate with the structurer? Do other objects know of this organization and visit?

Is the structurer responsible for answering cumulative questions about what it structures? Does it do so itself, or does

it call on others to tabulate information?

Some objects have responsibilities for maintaining complex relationships. These, too, are structuring roles. These structurers

aren't responsible for maintaining pools of like objects but instead are responsible for managing connections and constraints

among related things. Each relationship generally implies one or more collaborations. A structurer has visibility of other objects

because it needs to know about them for a reason. Similarly, an object being structured may need to know its structurer (but this

is much less common).

The Unified Modeling Language lets us denote two interesting structural relations: composition and aggregation.

An aggregration consists of an object that represents a whole (a structurer) that has responsibility for managing

its parts (objects that are related only through the aggregation). The UML notion of a composition relationship

implies a further restriction: Parts in a composition cannot exist independently of the whole.

The rules surrounding permanence and connectivity between structurers and their parts is rarely simple or straightforward.

Debating whether a structuring object is a composition or an aggregation can sometimes be a wasted effort. The important point

is that composition and aggregation are special cases. Many structurers don't fit neatly into a compositional or an aggregational

role. Networks of objects often coexist with complex interrelationships, responsibilities, and collaborations. Trying to sort out

their interdependencies is what is important. To get to the crux of the matter, ask these questions of objects that structure and

relate others:

Why does the relationship between a structurer and those objects it structures exist? Who needs to know about each

other, and why?

What responsibilities are implied by the connections between a structurer and the objects it structures? Is it

responsible for knowing about the objects and answering questions about them? Does it delegate requests to them?

Is a structurer responsible for knowing how the objects it structures are related?

Does the structurer represent new, emergent properties of the group of objects?

Sometimes an object that is organized by a structurer needs to turn around and collaborate with it. An object that

knows its structurer should do so for a specific reason. Does the object tell the structurer when something about it has

changed? Or does it need to delegate the responsibility to its structurer when it receives a request that it can't

handle?

Is a structurer responsible for maintaining certain limits or constraints on the objects it structures? If so, how does it

come to know about these constraints and know when objects are to be removed?

In the online banking application, several structurers are involved: Customers know about BankAccounts and

Users. BankAccounts know about their Customers. Visibility of Accounts can be restricted among Users. Each of

these structuring relationships implies responsibilities for limiting or organizing the views of related objects and

specific collaborations.

Service-Providers

Responsibilities that require specialized skill or computation can be organized into service-providing roles. Sometimes the

member of a family of service providers are designed together, each member providing a slightly different means of

accomplishing a specific task. This leads us to ask the following:

Who has the information that a service provider uses? Does the service provider get told, or must it ask another?

Are services configurable? Who has the configuration information? How will the service be configured?

Is any part of a responsibility prone to change? Will it evolve as the application matures? Should a responsibility that

belongs to one object be removed and isolated in a separate service provider for this reason?

Does the application require different forms of the same service? How do the services vary, and who is responsible

for each?

Each transaction in the online banking application is responsible for recording information about the transaction

on permanent storage. If a transaction is responsible for logging its actions, it could do it itself or ask another

object. The decision depends on how much is involved in logging and how narrowly you define the transaction's

responsibilities.

Controllers

The distinction between controller and coordinator is a matter of degree. Controllers figure things out and take

action; coordinators are generally told what to do and make few, if any, decisions.

Objects that make decisions and direct the actions of others are controllers. They always collaborate with others for two

reasons: to gather the information in order to make decisions and to call on others to act. Their focus typically is on decision

making and not on performing subsequent actions. Their ultimate responsibility for accomplishing actions is often passed to

others that have more specific responsibilities for part of a larger task that the controller manages. This leads us to ask the

following:

Who knows the information that a controller uses to make the decisions? How does the controller find out what it

needs to know?

How much of the actions resulting from decisions is the controller responsible for? Whom does it delegate

responsibilities to if it doesn't take direct action? (The objects taking these reponsibilities will be collaborators.)

Is the decision making complex enough to warrant sharing the responsibility? (If so, the objects sharing the

responsibility will be collaborators.)

Are there events or intermediate results that the controlling object will have to track and respond to?

When a user chooses Save when editing a document in a word processor, the software must make several

decisions before saving the file. It decides what format to save the document in (HTML, text, PDF, etc.), whether

or not to invent a name for the file, and the rules for naming it. The object that is monitoring the user's actions will

either be directly responsible for these decisions or will share the decision making among its collaborators.

Coordinators

Coordinators exist solely to pass along information and call on others to act. Their focus is on holding connections between

objects and forwarding information and requests to them. Their job is to facilitate communication and the work of others. We can

find the collaborations related to a coordinator by asking the following:

How does a coordinator delegate work or pass along requests?

How does a coordinator inform others of things to do or changes in state?

How does a coordinator come to know about those objects that it delegates to? Do they need to know about the

coordinator?

A coordinator, like a structurer, holds connections to other objects. But their purposes differ. A coordinator is

focused on managing the actions of a group of workers, whereas a structurer manages a grouping of objects

and presents a coherent view of them to others.

If an object listening to the user's actions simply delegates a series of requests to those objects around it, it is

passing on the responsibilities for making the decisions. It may ask an object for the document format and then

ask another object for the name. These collaborators know the rules for formatting and naming. The coordinator is

responsible only for delegating the work to others.

Interfacers

Interfacers provide bridges between naturally disjoint parts. They can act as a bridge between users and our software (user

interfacers), between objects in other neighborhoods (internal interfacers), or between our application and outside services and

programs (external interfacers). Each type of interfacer has its own collaboration profile.

User interfacers transmit user requests for action or display information that can be updated. User interfacers typically

collaborate only with objects in other non-UI parts of the application to signal events or changes in the information they display.

Ask these questions of a user interfacer:

How does a user interfacer let others know about user actions, gestures, and changes in information it maintains?

What other objects, in other parts of the application, does a user interfacer know about?

How many states does it track and notify others about?

How do other objects tell a user interfacer they want to know about certain events or state changes?

When a user clicks a button labeled Close, a standard message is sent to an object that has been assigned

responsibilities for listening and responding to this event. The path of communication between the user interfacer

and the event handler it notifies is established when the UI object is created and configured for display.

Internal interfacers provide outsiders a limited view into an object neighborhood. They serve as the "storefront" to services

offered to outsiders. They convey requests to objects hidden from view. An internal interfacer collaborates by delegating

external requests to objects in its neighborhood. Whom it collaborates with and how it does so depend on how transparently it

packages the services it offers. To determine collaborations, ask:

How does an internal interfacer collaborate with objects in the part of the application it hides from others' view?

How does it come to know about the objects that really offer the services it provides?

Does it simply delegate requests, or does it need to collaborate with others to translate "external speak" to "internal

speak"?

In the online banking application, each component has a SessionManager object that can create specific Session

objects that provide services to other components. The WebServer component interacts with only two objects in

the DomainServer: the UserSessionManager, and a UserSession that the manager creates. The

UserSessionManager initially handles all requests from the WebServer component by creating the appropriate

UserSession service provider and then delegating the work to it. When the specific service is completed, the

UserSession reports the results directly to the WebServer. Only the UserSessionManager and UserSession are

visible to outsiders; individual service providers in the DomainServer component are hidden.

External interfacers usually do not collaborate with many other application objects. They may delegate to service providers the

responsibility to format or convert information that they push or pull from their external partners, but mostly they just encapsulate

non-object-oriented APIs. Who collaborates with them is much more interesting than whom they collaborate with. But there are

a few questions to ask about their responsibilities that may lead to identifying some interesting collaborators:

Will the external interfacer have to convert the data into an object form? Does it make sense to separate the

conversion from the interfacing?

How does the external interfacer connect to the outside? Are the connections limitless? Does another object manage

a pool of connections?

What will the interfacer do if it can't make the connection or if it detects errors? Who will handle the problem?

In a telco integration application, which coordinates the processing of service orders across multiple preexisting

systems, each integrated system has its own kind of adapter object. An adapter is responsible for translating

generic service requests into one or more specific API calls. A request to the BillingSystemAdapter, "Add a

Product to a Customer's billing account," for example, translated into multiple calls to the billing system. Both

requests and information had to be translated to the appropriate format. The BillingSystemAdapter reported any

errors in processing but left the resolution of problems to others.

Looking at Individual Responsibilities: They Imply Collaborations

Object responsibilities come in three flavors: knowing, doing, and deciding. These responsibilities usually overlap and interact.

To do something, an object might need to know certain information; to make a decision, an object might need to know certain

other information; to know something, an object might need to do something. When we look at individual responsibilities, we are

trying to decide what is needed to actually carry out a particular responsibility. Our goal is to determine obvious connections

between necessary collaborators. As we make these decisions, we have many options to explore.

Conceptually, an object may have a responsibility for knowing a fact, but it holds on to a grouping of more primitive objects it

uses to represent that knowledge. Objects that have public responsibilities for knowing can decide to hold on to and yield

information directly or to translate from one internally known form to an externally presentable one.

There are three primary reasons why we don't give objects free access to all others: information hiding, abstraction, and

adaptability. If every object had visibility of every other, then changes to any single object's design would impact many, many

others. Selectively revealing things through interfaces creates a barrier between collaborators. We have a choice in how we

represent things an object is responsible for knowing. We can design a higher-level view of information instead of presenting a

smorgasbord of raw data for public consumption. This technique lets us change low-level details of how an object actually

knows something without impacting any of its clients.

To form the next guess, Speak for Me's Guesser object collaborates with several smaller, more focused guesser

objects. Each is responsible for looking at the current Message and making a guess. The LetterGuesser object

knows the rules for guessing a next letter, and the WordGuesser uses different rules to guess a word. These

objects, in turn, hide the actual sources of data that they are using. Because these data sources are hidden from

the Guesser, they can change their data sources on-the-fly. For example, the LetterGuesser can switch from an

EnglishAlphabet to a SpanishAlphabet (which loads a different data file) without affecting the Guesser that calls

on it.

When we assign an object a responsibility, we are taking only the first step. Fulfilling its responsibility may

involve collaboration with a number of other neighbors, each with more specific responsibilities for knowing or

doing.

An object's responsibilities are often based on information that it asks others about. For example, an object that computes a

corporation's annual taxes needs access to many different pieces of information: tax tables, income categories, deduction rules,

and so on (see Figure 5-2). Further analysis of this responsibility reveals many subresponsibilities. Responsibilities often

depend on information, the information itself may need to be computed, and decisions are always based on information. We

must study an object's responsibilities, looking for necessary collaborations it should make to acquire missing information or ask

for help.

Figure 5-2. TaxCalculator collaborates with TaxRates to compute tax.

If an object is responsible for calculating taxes but does not know the tax rates, it must either take on that

responsibility or get the tax rate from another object. Someone must know the tax rate. We choose to assign this

responsibility to a TaxRates object whose knowledge is used by the TaxCalculator.

Designing the Details of a Complex Responsibility

If a responsibility seems large or complicated, a rough sketch of the collaborations isn't enough. Instead, we dig deeper into its

design and partition its subresponsibilities into collaborators. We do this by dividing these subresponsibilities into two parts:

The major steps of the responsibility (subordinate responsibilities)

A responsibility for sequencing the execution of the subordinate responsibilities (sequencing responsibility)

The sequencing responsibility will call on the subordinate responsibilities. In this part of the design, spend time identifying the

major steps. Write these down, but don't assign them to objects just yet. One complex responsibility can easily be rewritten as

5–10 subresponsibilities. The trick is to keep each of these responsibilities at the same level of precision and abstraction.

Calculating annual corporate taxes, if we are to be more precise, really means

Calculating applicable municipality taxes

Itemizing income, expenses, and allowable state or provincial tax deductions

Calculating applicable state or provincial taxes

Itemizing income, expenses, and allowable federal tax deductions

Calculating applicable federal taxes

We can assign subordinate responsibilities to the object itself (if it fits with its role and current set of responsibilities) or to others

(including new ones not yet discovered).

Part of making any tax calculation involves looking up tax rates. Earlier, we decided to assign this knowing

responsibility to the TaxRates object and decided that the TaxCalculator would collaborate with the TaxRates

object to find the tax rate used in tax calculations. We initially separate the responsibility for knowing from doing

for two reasons: It allows us to update TaxRates independently of their use, and it keeps any tax calculation

object focused on computing.

Each time you assign subparts of a complex responsibility, you are faced with this decision: Where should subordinate

responsibilities be allocated? If the subresponsibilities seem to fit and belong together, keep them with the initial object. If they

don't seem to fit with the original object, look for opportunities. Don't be content to pile them into the original object. You might

invent a new object, and right away you have a cohesive set of responsibilities for it. Or you might place them in a near neighbor

(increasing its responsibilities while still keeping it in character).

We choose to assign the responsibilities for calculating taxes, as we break it down further, to new and separate

SpecializedTaxCalculators, each responsible for a particular tax jurisdiction. Each is responsible for knowing how

to itemize income, expenses, and deductions. These individual calculators are coordinated by an overall

TaxCalculator. Similarly, we model deductions or expenses as separate service providers, which know how to

calculate their amounts based on information that we supply them and the tax rules that they have access to.

Sometimes you just don't know who should have a subordinate responsibility. It could belong with the complex responsibility,

but it seems slightly out of character. As a last resort, you can always put it there. However, if you don't know just yet who

should have that responsibility, put it on an "unassigned" list and move on. Use this list to jog your design thoughts later, after

you've made progress in other areas.

Designing Collaborations for a Specific Task

Starting with a specific use case or event, our goal is to design a candidate collaboration model that supports it. The first goal is

to develop a "big picture": a sketch of the objects, their responsibilities, and their interactions. After we have the general sense of

things, we can pick out an important or seemingly troublesome area and dive into designing a small neighborhood of objects

that does only that one part. The goal of designing collaborations for a specific task is to answer some key questions:

What services are being invoked between collaborators? What is the sequence of the work? Who is in control at any

one time? How do objects work together?

How and when are the objects created?

How long and how often do they need to see each other?

Where are the branches in the logic? Where are the decision points?

Do the decision makers have what they need? Where will the information that they need come from?

What information holders are passed around? Are we passing objects or simple data? Are any of them passed

everywhere?

After we've answered these questions we will have a good idea of how work is divided among collaborators and a good sense of

which objects are busy and active. But this beginning-to-end-of-a-task view isn't a complete picture. Many objects are likely to

support more than one task and accrue additional responsibilities. After we've designed these, we are likely to refine our initial

design, splitting roles into two or more objects, collapsing multiple roles into one, simplifying collaborations, and applying the

tools of object orientation: patterns, generalization, polymorphism, and information hiding. All the while, we will push toward a

well-thought-out, justifiable design.

Identifying Applicable Patterns

Design patterns can help us assign and arrange responsibilities and organize collaborations. If we recognize that a particular

pattern might be a good way to factor a shared responsibility among collaborators, then we don't have to invent a complete

solution. Instead, we adapt a pattern to our particular needs.

To leverage design patterns, you need to know several things. You need to know how to read pattern descriptions and where to

look for them. Before incorporating a pattern, you need to know how to weigh the consequences of applying it:

Does it change your objects' roles and responsibilities in ways that improve your design?

Does it make your design more adaptable? Is this needed, or is it overkill for the problem you are solving?

What are some viable alternatives?

What does the pattern do to your design's complexity or clarity? Is it a good choice?

Finally, you need to be able to adapt the generic solution offered by a design pattern to your specific situation. To do this, you

need to be facile at applying the fundamental object technology that underlies all design patterns: use of messages between

collaborators, composition, polymorphism, and inheritance.

If you know only the 23 patterns described in the original pattern book written by Erich Gamma and his

colleagues, you are missing out on a lot of other wisdom.

Certain patterns in the Design Patterns book (Erich Gamma et al., Addison-Wesley, 1995) are particularly worth studying.

Composite, Facade, State, Strategy, Mediator, Flyweight, Builder, Observer, and Visitor are patterns we've applied in many

situations. Each is worthy of imprinting in your design solution space. If we haven't mentioned one of your favorites, don't feel

slighted. Sure, we could list all 23, but we wanted to prune this list to 10 or fewer, just to keep those who aren't pattern-savvy

from feeling overwhelmed.

Two roles are defined within the Composite pattern: a leaf and a composite. A composite can structure other

objects, whereas a leaf does not. The Composite pattern is an aggregation of objects, each supporting common

responsibilities in addition to the ability to add and remove itself from the structure.

Patterns describe ways to organize and arrange responsibilities. They aren't a substitute for thinking. You must consider the

consequences and then decide whether a pattern fits with and improves your design.

A mailing list can hold individual e-mail addresses and other mailing lists. For example, the "Party" mailing list

might contain the "Work" and "Personal" lists, along with any number of individual addresses. The recursive

nature of this structure brings to mind the Composite pattern from the Design Patterns book. The intention of the

Composite pattern is to simplify the processing of a structure's elements. If the mailing lists or e-mail addresses

have similar responsibilities, then the Composite pattern gives us a standard way to add elements to a composite

and to ask them to perform tasks. Individual addresses and mailing lists are both types of Destination objects that

can send messages. An object that wants to send mail need not care which type of destination it has. It simply

tells it to send the message. The MailingList reacts by iterating across its contents, asking each Destination it

holds to send the message. Eventually, the contents of all of the MailingLists have been exhausted and each of

the e-mail addresses has actually sent the message.

Identifying How Architecture Influences Collaborations

An object's position in an architecture also may have implications about its potential collaborations. In a strictly layered

architecture, objects in one layer talk mostly to other objects in the same or adjacent layers. Messages flow between layers, but

the range of communication is limited. Other architectures support very stylized means of communications. In several

distributed system frameworks, components that provide services register with a ServiceBroker (see Figure 5-3). Components

needing remote services request them from a ServiceBroker. They may then communicate directly with the remote service

provider or speak through a Proxy, which has responsibilities for forwarding requests to a remote service and handling the

communications synchronization.

Figure 5-3. Distributed systems often use a service broker to find collaborators.

Solving Problems in Collaborations

Collaborations should be simple and powerful. Objects that are designed to work together should have an easy style of

communication. Here are some common problems and some simple ideas for streamlining and simplifying them.

Interfacers can be more or less intelligent, depending on how much responsibility you give them. Typically a

facade doesn't make complex decisions about whom should receive a request, nor does it translate requests

into sequences of delegated actions.

Too many connections from outside to objects within a neighborhood. A common design goal is to minimize

dependencies between different parts of the system. Exposing all of a neighborhood's objects defeats this purpose. Instead of

having lots of objects visible, we can construct portals to services that remain hidden. The Facade pattern introduces a single

intermediary (called a facade) between clients and services offered by a neighborhood. A facade is an internal interfacer with a

restricted set of responsibilities. This single point of entry takes on responsibilities for

Knowing which objects inside the neighborhood are responsible for handling any external request

Delegating requests to appropriate objects

The idea of a facade is fairly simple: create a single point of contact instead of exposing the interfaces of several objects (see

Figure 5-4). Outsiders can speak to the facade and don't know who is actually fulfilling a request. Objects within the

neighborhood don't have to change to work with a facade. Instead of receiving requests directly from outsiders, they receive

requests forwarded by the facade. They remain oblivious of whom it is that calls them to action.

Figure 5-4. Without a facade, client objects must know about the objects in the neighboring system.

Applying the Facade pattern promotes a looser coupling between a neighborhood and its clients (see Figure 5-5). Because only

one object (the facade) is used, designers are freer to change how things work without impacting clients.

Figure 5-5. The Facade pattern centralizes the interface to a neighborhood's services.

Many low-level messages. Sometimes an object packages its responsibilities into actions that are too small. Sending a flurry of

messages may add up to a bigger action, but the client must describe what it wants as tiny steps. If you find a client issuing a

stream of messages, ask whether any of these requests can be bundled into higher-level ones. The use of fewer, more

powerful messages is often an improvement. Instead of setting up a service provider's state through a series of messages, offer

a higher-level request that uses reasonable defaults. This removes the burden of establishing the right context before using its

services from all but the most sophisticated clients.

Code should rarely, if ever, explicitly check an object's type. If you find yourself writing code that checks type

and then branches, it indicates that responsibilities are misplaced and need refactoring.

Too many branches and choices. Communications get overly complex when many paths are possible and the rules for

determining which path to follow are complicated. You know you have potential problems when code that implements a

responsibility is filled with checks of object types and conditions. This makes collaboration paths difficult to follow. To fix this,

you may need to change both the client's code and the interfaces of collaborators. The goal is to simplify what any client needs

to know in order to collaborate. If collaborators' interfaces are similar but not identical, perhaps they can be made more

consistent. If argument types are being checked to determine which collaborator to use, this too, is a sign that decision making

may be in the wrong place. Not all complexity can be removed simply by readjusting interfaces and redistributing decisions.

Sometimes, things are just complicated and irregular. But be on the lookout for ways to simplify and make collaborations more

consistent and thereby improve your design's clarity.

The Double Dispatch pattern is one example of how conditional checking based on object type can be eliminated. In Figure 5-6,

decisions are made based on checking an object's type.

Figure 5-6. Before the Double Dispatch pattern is applied, these objects are basing their actions on type checking.

In the Double Dispatch pattern, a common request is issued to receivers, who turn around and call the right method. This

eliminates checks for object type in the caller (see Figure 5-7).

Figure 5-7. The Double Dispatch pattern eliminates type checks.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Simulating Collaborations

You can quickly find errors and omissions in your model by simulating the messaging between objects. It helps you to

find new objects (you will likely have to invent objects with responsibilities for controlling the flow of work or

responding to events), to discard ill-conceived objects, and to elaborate any vague responsibilities, and it results in

responsibilities shifting from one object to another. All this without writing a line of code! Simulating with low-tech

tools is also a good way to surface and handle missing or ambiguous requirements.

Why simulate? What collaborations do you simulate? What are the end products of a simulation? This

section offers guidance on planning and running a simulation, outlines what you can hope to

accomplish, and describes the changes and additions you will likely make to your design.

The basic idea of simulating a collaboration is simple, but there are several subtleties to pay attention to. Given that

your goal is to develop an optimal collaborations model, how do you balance the trade-offs in one decision or

another? Although there are no hard-and-fast rules, the following guidelines should get you started.

Planning a Simulation

It is all too easy to gloss over little details when you work with CRC cards only. Simulating collaborations will force

you to look more closely at your design. Running a simulation forces you to consider how one object gains visibility of

a collaborator, why one object is communicating with another, or whether a collaboration sequence is too simplistic or

too complex.

Whether you are working in a design team or developing a design on your own, it is useful to review your

collaboration model with others.

Role-play the hard parts first. Not everything is worth simulating. The roles-and-responsibilities model usually

reveals specific areas of the model that will be difficult to design or areas where your understanding of the design is

very rough. Identify these areas, and put them on the agenda for exploration. They may be whole use cases or key

events that exercise the core of your system. Simulation may involve modeling your application's response to specific

actions, or there may be specific parts of your application's machinery that you want to investigate. When you choose

one of the areas to simulate, identify exactly what it is you are trying to understand.

Set a goal for the simulation. It is best to decide what it is you are trying to accomplish before running the simulation.

Here are some possible objectives:

Developing a simple, consistent collaboration style

Testing or proving your ideas

Identifying what you know and don't know

Exploring the details of a small area

Studying the coordination and control

Refining an already working collaborations model

Finding logical partitions (object neighborhoods)

Identifying and rewriting responsibilities

We aren't simulating to "prove" anything—at least, not in the mathematical sense. We are developing

a model that handles the external events and actions well.

The way you conduct simulations changes according to what you are trying to accomplish. A well-defined goal—such

as "Test the pattern of interactions that act to control this use case" or "Explore alternative ways to diagnose a

disease"—has an implicit statement of which objects will be involved and for which details are best left out.

Set the boundaries. Based on your goal for the simulation, decide up front where you will stop—which objects and

responsibilities you will invoke and which ones you won't. Sometimes it is clear that a particular responsibility is at a

different level of detail from those of the others that you are simulating. If a piece of the system's actions can be

isolated because it doesn't depend on the other objects that you are studying, defer it. Focus on the particular area as

stated in your objectives for the simulation.

Assign candidates to team members. One way to get everyone involved is to role-play a simulation. People

playing the role of objects? You bet! Each role player should be assigned at least one object. Estimate how active

each object will be. Dole them out so that there is a fairly even distribution of message senders and receivers.

Sometimes an object will be a center of activity, a hub. Whoever has that one should have little or nothing else to do.

If a CRC card shows no collaborators, then the person playing that role won't collaborate with others. That person

only handles requests but never calls on others for help. Try to have everyone role-play at least one object that will

collaborate with another. Otherwise, team members won't feel involved.

Simulate use cases. Scenarios or conversations, with their step-by-step descriptions, are a good place to start. They

outline exactly what the system is responsible for and when it takes specific action. When the user does this, what

objects will answer? How will they fulfill the system's responsibilities at that point? What other actions of the system

lie hidden? How does a scenario start? What actions and collaborations must be carried out to fulfill the actor's goal?

We may have waved our hands in the early design, but simulating the exact response to the users' actions will iron

out the wrinkles in our candidate model. Start at the beginning of the use case, and make sure you can get to the

end.

Use cases divide an application's responsibilities, as seen from a user's point of view. Simulating the

object collaborations involved in each is a good way to verify (and find) collaborations.

Invent controllers if you need them. Your candidate objects usually don't include controllers, at least not initially. It

is at this time that you need to identify new objects that monitor events and react by delegating work to others, objects

that manage the flow of interaction between objects to accomplish a sequence of action, and objects with control or

coordination responsibilities. If you are simulating a use case, invent at least one object that monitors the user and

delegates to the objects that do the work. You will often find that you need several more, but you can start simply with

one. When a controller seems to be doing too much work, study it independently. Try to break up its work and

distribute it among collaborations in a neighborhood. Make the object delegate more to others and become less

involved.

Test one area at a time. Any task that the software can be asked to do is a candidate for role-playing. These tasks

range from entire use cases to specific computations buried deep in the software. If you want to demonstrate the

high-level decision making and coordination architecture, ignore the details of the objects that are beneath the

surface.

In Speak for Me, the presentation of letters must be synchronized with the user's actions for selecting

them. There are only five or six objects involved in that: the Presenter, the Selector, the

Message-Builder, the Timer, the Message, and the Guesser. We first work with that small set to design

the basic control strategy. Then, to test at a more detailed level, we simulate what the Guesser does

when you ask it for the next guess, or what the Message does when you tell it to add a letter to itself.

We first pinpoint the fundamental collaborations between these key objects before exploring further. We

design one small set of collaborations at a time.

Test for what you don't know. If you don't think that role-playing a collaboration will reveal any new information,

don't do it. It is those complicated or interesting collaborations that you have glossed over that need to be explored.

Simulating lets you draw and redraw alternative collaboration sequences and run through alternatives, always looking

for better ways to distribute object responsibilities.

Limit the time spent simulating. If you spend more than an hour or so simulating any collaboration, either you are

covering too much detail or too many variations, your scope is too large, you are doing too much design work during

simulation, or your team isn't sticking to the main point.

Running a Simulation

The goal of running a simulation is to make sure your model hangs together and makes sense. Do collaborations

seem reasonable? Are responsibilities correctly stated? Can you make it all the way through to accomplishing a

specific goal? Are there better ways of collaborating? Do responsibilities need to be reassigned? Have parts of the

design been ignored or slighted? As you run a simulation, you will be checking all of these things.

Start with an event. Begin by determining what event starts the action. A user makes a selection, types in some

data, or signals a choice. A timer signals that time is up, or a port signals that a piece of data has arrived—whatever.

Ignore the details of any interface objects. Know that they exist and notify some other object of the user's intentions

or external events. What you are interested in is which objects in your model are responsible for handling these

events and what chain of collaborations is involved afterward. When an event occurs, ask these questions:

What object should be informed of the event? Is there a CRC card that describes the object? If not, make

one. Does its role fit the current situation? If not, change the role or choose a different object card.

What responsibility will we ask the responding object to fulfill? Is the responsibility listed on its card? If not,

write it down.

Who will it collaborate with to fulfill the responsibility? Will it do the work itself or call on others?

Express the event as an intention and not as a button click or countdown timer time-out: "The user chooses to save a

file" rather than "The user selects Save File from the menu." Express it as a "time for next guess" event and not an

operating system process. All you care about is that something specific happened.

Now make your objects take responsibility for processing the event. Follow the action and record the sequence of

collaborations. As seen in Figure 5-8, you can toss a lightweight ball (we prefer a Koosh ball) to simulate messaging

between objects. Tossing a ball gets everyone kinetically involved. If you don't want to be so active, you can still

simulate collaborations. Point at a card of a collaborator. It may seem silly, but making connections between

collaborators is important. Move a card toward its collaborator. Draw lines between collaborators. If you can't explain

interactions, then you have found a gap in your design.

Figure 5-8. Rebecca, Alan, and friends run a simulation.

Stay at the same conceptual level. First, develop a breadth-first, high-level view of key object interactions, tracing

object collaborations at the same conceptual level (or one step lower) in the design. Then explore the depths of

individual areas, elaborating and subdividing roles and object responsibilities (see the "Test one area at a time"

guideline in the preceding section). Modeling candidates at widely differing conceptual levels makes simulation much

more difficult. It requires you to switch gears and think differently.

If you were analyzing a painting, your best strategy would be to consider the composition separately

from how the oils were mixed.

Follow the simulation closely. Watch both how the messages flow among objects (if you are tossing a Koosh ball,

see how it travels) and how the cards represent responsibilities and collaborators. There is a tendency to become

occupied with the mechanics of the simulation at the expense of the critical thinking. Dig in! As the ball is tossed

around or collaborators are pointed at, keep checking that the collaborations and responsibilities on the cards are in

sync with what is happening. If you spot an omission or inconsistency, stop to correct it, either on the cards or in the

simulation. If you see an alternative that simplifies the collaborations, try it out. And pin it down!

As we simulate the run-time behavior, we inevitably discover gaps and inconsistencies in the model.

Think critically. Be a skeptic. When someone responds to a message, ask, "What information did the object need to

do be able to do that?" If you didn't see the information gathered explicitly through another collaboration, the object

must have known the information itself. Is that one of its responsibilities? If not, what other object should it ask? Is that

collaboration written down on the object's card? If not, get it down.

If you see someone send a message, ask, "Where did the connection from the sender to the receiver get made?"

There are only a handful of possible ways that an object can hold a reference to another: It has it in a variable, it

received it in a method parameter, it got it as a return from a message it sent, it created it on-the-fly, or it referred to a

widely visible object. It must be one of these. Defer this questioning until you work out most of the collaborations, but

then address it. This is not something you want to leave undecided.

Sketch the collaborations. Lay out the object neighborhood and design the paths of the communications. You can

place CRC cards on big sheets of paper and draw thick lines to represent general paths of collaboration. Or you can

redraw objects on white boards and draw collaboration lines between them. Some teams may want to get more

formal and draw UML sequence diagrams. Whatever you do, connect the collaborators. After you've laid out the

paths, check out the sequence of their collaborations.

How many objects does any one object collaborate with? Communications create dependencies. Are there any traffic

hubs? These create objects that tend to be bloated with responsibilities. Do any objects flow through the system and

make themselves visible to everybody? Pay special attention to these. A change to their public responsibilities will

have an impact on their neighbors across the system.

Write down what you don't know. Don't try to decide everything during one simulation. When you encounter a gap

in the collaborations model, write it down and go on. If you can't decide which object should be doing something or

who should be collaborated with, start a list of questions and responsibilities that you need to consider later.

Our initial cut at the roles and responsibilities is mostly educated guesses. They make sense because

they mirror our notion of what the objects are. Often they have real-world features. But as we look for

better collaborations, the objects expand their responsibilities and become better software objects.

Rewrite candidate cards. When an object receives a message, the role player should check the object's CRC card

to verify that one of the responsibilities covers the message's intent. If you shift responsibilities from one object to

another, sometimes the responsibility should be reworded. Instead of doing a task itself, an object may be delegating

it to another. It may be ultimately responsible for getting the task done but is collaborating with another to get a bigger

job done. Be sure to keep things straight. As you revise your design during a simulation, write new cards for your

objects and take care to phrase responsibilities correctly and to keep collaborations up-to-date.

I l@ve RuBoard

I l@ve RuBoard

Designing Good Collaborations

There are no hard-and-fast rules for designing collaborations. Our goal is to design consistent, nonarbitrary

communications. We want to keep things simple and reduce unnecessary coupling between objects. There are no

rules that will lead to the ultimate design. Here are some guidelines, however, that we find useful.

Don't pass around primitive data types. If you find yourself passing text and numbers around among collaborators,

ask yourself what that text and those numbers represent. Words? Money? OrderQuantities? Are you really

communicating at the right level? You may have overlooked some simple concepts when inventing your first set of

candidates. It is best to use high-level representations of these things during design. When it's time to implement

them, you may choose to use simple data types, but you may also find that a Money object is a sensible place to put

responsibilities that you had overlooked: Who should convert from one currency to another? You can't do that with a

float! Using these placeholder objects gives you places to put new responsibilities that you encounter later. Give

these information holders names, and get them on the cards.

"... use small objects for small tasks, such as money classes that combine number and currency,

ranges with an upper and a lower, and special strings such as telephone numbers and ZIP

codes."

—Martin Fowler

Keep the big picture in mind. Are there a lot of requests made of a particular object? Or do any seem to be the

primary delegator? Are too many of the decisions or actions taking place in one object? Is it possible to shift its

responsibilities around to make it less of an authority? Do any of the objects seem to know about lots of other

objects? Are there any areas of the collaboration where more than the usual hand-waving is going on?

Watch for collaboration patterns. Some of the collaborations will look familiar. They may fit a pattern that you

recognize, or they may be similar to something that you have already done. If you use a consistent collaboration style

and keep the collaborations simple, you'll find that you have more confidence in your model—without simulating

every scenario—because you have seen a similar pattern of collaboration that already works.

The Law of Demeter: A Case Study

The best design is one that satisfies its requirements without being overly complex or inconsistent. Inconsistencies

make a design hard to change or comprehend. Making a design more flexible often increases its complexity. Many

times one design is tossed in favor of a less elegant, but more justifiable, one. The point is that design always

involves trade-offs, and we are giving you the tools necessary to adequately consider design trade-offs. Others

contend that there may be "laws" of object design that, if followed, will always lead to a good design. This is not so.

Consider the Law of Demeter.

The Law of Demeter was proposed by Karl Leiberherr and other researchers as a style to follow for designing

collaborations. When first proposed, this law caused a stir in the object community because it limits permissible

collaborations. "Only talk to your immediate friends" is its credo. A more general formulation of this law is that each

object should have only limited knowledge about others. It should use only objects "closely related" to it. A strict form

of the law suggests that collaborators should be used in very limited ways. It is worth exploring some of the finer

points to see the impact of this approach on a design.

It is hard to call anything in software design a law. Unlike the physical world, software machinery

doesn't have to obey physical laws, nor are we issued a citation if we break one. The intention of the

Law of Demeter was to indirectly couple objects. We are more comfortable thinking of it as a design

guideline.

The Law of Demeter says that if one object needs to request a service of another object's subpart, it should never do

so directly (see Figure 5-9). It is considered bad design to dig into a structurer to retrieve and use a subcomponent.

The more a potential collaborator knows how to "dig out" internal structures of an object, the more dependent it is on

that deep structure. The design is more brittle. It is OK to request a service of an object, but if you knowingly request

one of its structural subparts and then request a service of that subpart, you've violated the Law of Demeter (see

Figure 5-10). It supports the notion that structural details should be concealed from collaborators. Instead of asking

an object for something it knows and then turning around and asking a second object for something it knows and then

turning around and asking a third object to do something, requesters should make their requests only to the enclosing

object. That structurer should then turn around and take responsibility for propagating this request to all of its

subparts. This sounds reasonable. Why give a potential collaborator the extra burden of traversing long networks to

get what it needs?

Figure 5-9. The Law of Demeter minimizes object visibilities.

Figure 5-10. These collaborations don't follow the Law of Demeter.

However, this technique becomes of questionable design value when there aren't so many visibility links to chase. If

we strictly adhere to the law, instead of asking an account object for its transaction history and then asking the

transaction history object for its most recent item, a client should ask the account for its most recent transaction

history item. This places the extra burden on the account for knowing more detail about its history (rather than just

holding a reference to the history object that is responsible for knowing these details).

More formally, the Law of Demeter states that an object should call on the services only of the following kinds of objects:

Itself

Any objects passed to it as parameters

Any objects it creates

Any objects it stores references to that are its own subparts

Although following the Law of Demeter may increase the maintainability and adaptability of a design, it also has the

effect of forcing structurers to have additional responsibilities for propagating requests to their subparts. Structurers,

in turn, must know more about the abilities of the objects they structure. This may not always be a good design

choice. The law makes the trade-off of hiding structural details at the expense of adding to structurers'

responsibilities.

Our recommendations for designing collaborations are not so strict. They are intended to limit visibility and avoid

unnecessary coupling. They are not laws to follow, but guidelines. This means that you as the designer need to

exercise judgment and critical thinking to choose which parts of your design should be hidden (and changeable) and

which parts should be revealed to clients. We suggest that you observe these principles:

Establish a collaboration reference when needed. Discard it when it is no longer needed.

Store a reference to a collaborator if it is used repeatedly or when you discover that it is expensive to

re-create or reestablish the connection to the collaborator.

Give structurers added responsibilities to navigate to their parts and subparts when the way a structurer is

organized is considered a private detail that should be hidden.

If it is more important to get the right service than to get a specific object to perform the service, ask for help

indirectly.

The goal of all this is to develop a collaboration model in which object roles are clear and simple, responsibilities fit

with roles, and the number of objects seen by any one object are few and well chosen. Simulating with low-tech tools

lays the foundations for refinement. After we have demonstrated that fundamental collaborations work, we can

always simplify, expand, compress, and make things more consistent.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Making Collaborations Possible

Objects can collaborate only if the classes that implement them make it possible. We can use CRC cards and Koosh

balls to simulate the collaborations, but to enable collaborations among objects, we must design their classes to

support them. A collaboration has two sides. The behavioral side is the most obvious; objects call on each other for

help. UML sequence and collaboration diagrams demonstrate this flow of control, action, and information much more

precisely than do CRC cards or white board sketches. We will turn to these means of documenting our design soon

enough. But to make these calls in the first place, the calling objects must have references to their helpers. This

underlying structural side of an object must show the following:

How many other objects it will need to know

How it will refer to them

How long it should hold their references

A collaborations model is not complete until we have decided how each and every collaboration will be possible. This

level of detail is very hard to figure out and even harder to show on any UML diagram. Often, a class diagram shows

only the static, compile-time associations among the objects. Not only are we talking about these connections, but we

also are considering run-time associations that are enabled by these static declarations—references that enable

dynamic connections that may come and go or may be created and find permanent homes.

Collaborators on CRC cards will show up as references to variables, arguments, or return types. Or they may be

established by code that connects objects via events or object creation. But by one means or another, all objects that

collaborate must be made aware of those objects that they use. The more any one object knows about others, the

more dependent it is on the context provided by those collaborators. An object that is bound to many collaborators

must live in close proximity to them or reach out to other neighborhoods where those services exist. The less an

object knows about and relies on others, the more neighborhoods it will fit into. This creates a conflict:

Limiting visibility to other objects and limiting deep knowledge about how something does its job on

your behalf are good design principles to follow. Following this advice results in fewer dependencies

among objects.

Autonomy versus Collaboration:

To collaborate with others, an object needs to know its neighbors. Collaboration is good. To be

reusable, an object should be as independent as possible. Collaboration creates dependencies. What's

a designer to do?

The most successful design makes reasonable connections between collaborators. We try to make decisions about

collaborators that limit unnecessary dependencies.

Guidelines for Making Connections

When implementing a design, the programmer will discover any hand-waving about object associations done by the

designer. There is a harsh reality to designing collaborations:

To collaborate with another, an object must have a reference to it.

Every call from one object to another must be supported by some practice that establishes the communication path

from one to the other. These associations may be long-term, composition relations or sporadic and on-demand.

Follow these guidelines when you design collaborations.

Get a collaborator when you need it. Modern languages accommodate only a few schemes for associating objects:

Create a collaborator and then ask it for help.

Pass a helper as an argument to a request. The receiver will use it as a collaborator.

Grab an object reference that is returned from an earlier collaboration.

Hold on to a collaborator if it is used repeatedly. Creating a helper on-the-fly is appropriate when help is needed

to fulfill a specific responsibility. If there is too much overhead in creating a new helper repeatedly, or if the same

helper can be reused to fulfill different responsibilities, you can cache a reference and use it repeatedly. Choosing a

caching strategy depends on the frequency of use and the cost of creation. These are low-level concerns. As a first

approximation, an object can always create a helper when needed. If and when the cost of creation becomes an

issue, then maintaining a reference to a helper in its internal stores (instance and class variables) is always a viable

alternative:

If an object needs its own collaborator, store a reference to the collaborator in one of the object's private

instance variables.

If all the instances of a class need the same collaborator, hold it in a private class variable. This makes it

visible to all the instances of the class.

If different kinds of objects need the same collaborator, store a reference to the collaborator in the

object-oriented version of a global variable: a public class variable. In this way, any object that can see the

class can use the collaborator.

A collaborations model describes what objects any given object associates with, what requests it

makes of them, when it does so, and how much it trusts them to help carry out its purpose.

If an object is created when needed and then is forgotten when the responsibility is completed, the helper is a

use-once throwaway. This may be appropriate. However, if you have the luxury of designing the object and its

collaborators at the same time, it can be useful to give the helper more intelligence. If it isn't disposable, it can

remember and adapt to repeated requests. If you design the helper to stick around, you can gain leverage by having

it adapt to repeated use.

Ask for help by service name and not class name. An object can always create and use a service provider

directly. But there are ways to ask for help that aren't so direct. They usually increase a design's flexibility. Instead of

creating the object we need, we can ask another known object (a service broker) to give us the right kind of help,

based on the kind of help we need. This gives us the option to design the service broker in a variety of ways. And it

gives us the freedom to change who provides the implementation of a service or how that service provider is

managed without impacting any object that needs the service. When you need the flexibility, introduce an

intermediary instead of directly creating a helper (see Figure 5-11).

Figure 5-11. A broker's role is to provide collaborators to other objects.

The difficulty in designing exception-safe software isn't in pinpointing where an exception gets thrown,

or in determining who eventually handles it. The real problem is in designing all the intermediate

collaborations so that they leave the system in a reasonable state and allow the exception handler to

do its job.

Designing Reliable Collaborations

It is easy to design objects to work under perfect conditions. It is much harder to design for exceptional conditions. In

general, making one object more adept at handling its own problems relieves the burden of doing so from those that

collaborate with it. At the very least, if a responsibility completes only partially because of an error, the object should

make its best attempts to leave any resources it obtained in a consistent state. In general, if an object detects an

error during the middle of its performance, it should tidy up after itself.

A method in the middle of a long collaboration sequence opens a file and normally closes it. On error, it

takes care to close the file. This makes it a more responsible citizen.

Leaving things in a consistent state shifts the burden to clients to figure out how to

recover—something they may not always be equipped to do.

If a side effect of a neighbor's action could result in catastrophe, sometimes an object will want full control over its

holdings. If an object is to be used in many different environments or if it will travel around a distributed network and

is designed to work under adverse conditions, it must raise its guard. We use a simple strategy to prevent an object

from breaking: Hide the object behind a limited interface. By narrowing its responsibilities, we let an object restrict the

ways that others can affect it.

As shown in Figure 5-12, a Web browser can't possibly anticipate who its neighbors (applets) will be, so

it doesn't trust them. It protects itself and its operating system resources from malicious objects by

accepting only a few simple messages.

Figure 5-12. When you use Java applets, visibility and access to system resources is restricted.

In an ideal world, the browser would offer many more services to the applets. As developers, we would be able to

leave images and sounds—and not just text cookies—on the client machines.

Therein lies the rub. As we narrow the services we provide, we can make objects more reliable, but we offer fewer

services and less flexibility to our neighbors. It is one of the many compromises that we make.

I l@ve RuBoard

I l@ve RuBoard

When Are We Finished?

Object design is devoted to creating an arrangement of responsibilities among collaborators. Identifying roles defines

the participants; assigning responsibilities distributes the work. Designing collaborations connects the workers. As we

design collaborations, we readjust and reorganize the roles and responsibilities to make a better fit between any

given participant's needs and abilities. We factor responsibilities and design reliable communications.

There are many sources of raw material for building a collaborations model:

Use cases

Events

Themes derived from application stories

Real-world views of the domain

Patterns

Architectural styles

Designing collaborations will ground any hand-waving that we did earlier. Browsing (and thinking about!)

responsibilities gives a broad dynamic view. Analyzing the possible factorings of subresponsibilities among

cooperating objects and carefully simulating how our objects interact will fill in many details. Thinking carefully

through visibility, trust, and reliability issues completes even more of the picture. Although we've simulated

collaborations, we are still short of implementing them.

But this invites a question: When is a collaboration model good enough? It is good enough when it demonstrates that

objects interact in consistent ways and that any natural divisions in a system are preserved. Move on to more

detailed work when your objects, their responsibilities, and their collaborations are no longer candidates; when they fit

together in nonarbitrary ways; and when you have located the hard places and explored options for solving them as

simply as you can. At this point, you could rightfully declare that you are finished with exploratory design and ready to

move on—either to refinement or to a first implementation.

Developing a collaboration model has taken us a big step forward. However, more precision can be added, and many

more decisions must be made. Roles and objects will need to be mapped to their implementation as interfaces and

classes. Decisions will be made about which relations between collaborators should be static and which should be

fixed. Hooks may be added to the design to support variation, and extra behaviors to support more reliable

collaborations. Whether you make time to refine your design before you start coding or refine your ideas after you've

been coding for a while, an exploratory design model still lacks many details. In reality, design continues during

coding, testing, bug fixing, and code refactoring.

I l@ve RuBoard

I l@ve RuBoard

Summary

Collaborations are requests from one object to another. One object calls on, or collaborates with, another because it

needs help. Some objects collaborate a lot; others, little. Some objects offer help to many others; others are used

infrequently. An object's frequency and patterns of collaboration depend on what its responsibilities are and how it

carries them out.

To develop a collaboration model, you need to focus on how candidates work together to perform complex,

coordinated actions. Initially your goal should be to link individual responsibilities to collaborators. Responsibilities

usually overlap and interact. To do something, an object might need to know certain information, which it might get by

asking a collaborator. To make a decision, an object might need to know certain other information that it asks another

object about.

When you have a rough idea of how objects call on one another for help, you can take a pass at solving more

complex scenarios. You can quickly find errors and omissions in your collaboration model by simulating the

messaging between objects. Pick an area of your design to simulate. Start by asking, What gets things rolling? When

an event starts the simulation, what object should be informed of the event? What responsibility will you ask it to

fulfill? Who will it collaborate with to fulfill this responsibility? Follow a chain of collaborations from beginning to end.

Explore alternatives for how objects might work together.

Your goal is to develop a collaboration model in which object roles are clear and simple, responsibilities fit with roles,

and the number of objects seen by any one object are few and well chosen. After you have demonstrated that

fundamental collaborations work, you can always simplify, expand, compress, and make things more consistent.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Further Reading

Earlier we mentioned that you should look further than Design Patterns (Addison-Wesley, 1995) by Erich Gamma and

his colleagues for design patterns. A rich source for design pattern information is the patterns home page:

http://www.hillside.net/patterns/. The many Pattern Languages of Program Design conferences are another rich

source. There are four volumes in the PLoP series published by Addison-Wesley:

Pattern Languages of Program Design (James O. Coplien and Douglas C. Schmidt, 1995)

Pattern Languages of Program Design 2 (John M. Vlissides et al., 1996)

Pattern Languages of Program Design 3 (Robert C. Martin et al., 1998)

Pattern Languages of Program Design 4 (Neil Harrison et al., 2000)

In addition to these books, online PLoP conference proceedings have even more patterns. Check out

http://st-www.cs.uiuc.edu/~plop/.

"How Designs Differ," by Rebecca Wirfs-Brock, analyzes two designs for the same problem. This paper explores how

control architecture and level of communication between controllers and the objects they control can have a major

impact on a design. An online version of the paper can be found at www.wirfs-brock.com.

I l@ve RuBoard

http://www.hillside.net/patterns/default.htm
http://www.st-www.cs.uiuc.edu/~plop/default.htm
http://www.wirfs-brock.com/default.htm

I l@ve RuBoard

Chapter 6. Control Style

Douglas Hofstadter challenged his colleagues and friends to translate "A une Damoyselle malade," a poem originally

written in French, into any other language, maintaining seven properties of the original:

The poem is 28 lines long.1.

Each line consists of three syllables.2.

Each line's main stress falls on its final syllable.3.

The poem is a string of rhyming couplets: AA, BB, CC, etc.4.

Midway, the tone changes from formal ("vous") to informal ("tu").5.

The poem's opening line is echoed precisely at the very bottom.6.

The poet puts his own name directly into his poem.7.

From Le Ton beau de Marot by Diuglass Hofstader. Copyright © 1997 by Basic Books, a member of Perseus Books,

L.L.C. Reprinted with permission of Basic Books, a member of Perseus Books, L.L.C.

Hofstadter and his friends penned more than 100 translations, each with a unique style and twist. For many of the

same reasons, "translating" requirements into a software design results in wide variation. Given a complex software

problem, there are many ways to solve it. But fortunately, there are only a few options for distributing control

responsibilities—and developing a control style.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

What Is Control Style?

Writers express style with their choice of words, punctuation marks, breathers, emphasis devices, phrases, lists,

clauses, and sentences. Their style evolves from a combination of many factors. Finding a pattern and following a

style make a piece consistent. It's important to find a style and stick with it.

The titles of the translations of the 28-line poem by Marot, "A une Damoyselle malade," imply the

broad range of styles in its translations: "To a Sick Damsel," "My Sweet Maid," "Hi Toots!", "Yo There

Dog!"

Translators of poems or works of fiction have an even tougher job. Not only must they decide on a style and the

constraints they will honor, but also they constantly make micro-decisions as they work. How will they address new

constraints they discover? How will they deal with concepts or ideas that aren't easily translated? How liberally or

literally should each thought or idea be translated? How much of their own style and experience should they bring to

the translation?

"I suspect that the welcoming of constraints is, at bottom, the deepest secret of creativity."

—Douglas Hofstadter

Software design shares similarities with translation. There are many constraints on a solution. We loosely translate

requirements into a design. But there is much room for originality and creativity. In no way is translation from

requirements to design direct or straightforward. Even a simple design problem has many good solutions. It is

important to develop a sense of style and, when possible, to stick with it.

Conceptual integrity is an attribute of a quality design. It implies that a limited number

of design "forms" are used and that they are used uniformly.

—Alan Davis

Many things contribute to a design style: your choice of objects, their names, the kinds of responsibilities they have,

and their patterns of collaboration. Deciding on and developing a consistent control style is one of the most important

decisions a designer makes. In this chapter we explore how to consistently design control centers—places where

objects charged with controlling and coordinating reside.

I l@ve RuBoard

I l@ve RuBoard

COntrol Style Options

Although design variations may seem limitless, it's fortunate that there are only a few control styles to pick from.

Control style choices affect the way intelligence is distributed among objects charged with controlling others'

actions—controllers and coordinators—and those under their control.

A control style can be centralized, delegated, or dispersed. But there is a continuum of solutions: One design can be

said to be more centralized or delegated than another. Within this continuum, this chapter will primarily explore the

first two styles: centralized and delegated.

If you adopt a centralized control style, you place major decision-making responsibilities in only a few objects—those

stereotyped as controllers. These decisions can be simple or complex, but with centralized control, most objects that

are used by controllers are devoid of any significant decision-making responsibilities. They do their job, but generally

they are told by the controller how to do it.

A variation of a centralized control style is one in which decision-making responsibilities are assigned to several

controllers, each working on a small part of the overall control. Control is factored among a group of objects whose

actions are coordinated—a clustered control style.

If you choose a delegated control style, you make concerted efforts to delegate decisions, not only to other, smaller

controllers within a control center but also to objects having other responsibilities. Decisions made by controllers will

be limited to deciding what should be done. Following this style, objects with control responsibilities tend to coordinate

rather than control every action.

Choosing a dispersed control style means distributing decision-making responsibilities across many objects involved

in a task. In fact, when you spread actions across a large population of objects, it can be hard to locate where a

control center is—and harder yet to discern who's responsible for making major decisions. Every object has a piece

of the action, and all decisions have been reduced to very small ones.

As shown in Figure 6-1, most control designs fit within a band of solutions ranging from centralized (but not overly so)

to delegated (but not totally dispersed).

Figure 6-1. Control styles lie along a continuum.

I l@ve RuBoard

I l@ve RuBoard

Making Trade-Offs

There are a number of forces to balance when you choose a control style. If you make controllers take more

responsibility for setting up and monitoring activities, the objects under their control need not be so clever. If you

make them let go of the little details, the objects under their control must take care of them. Responsibilities and

workloads shift according to the choices you make.

Many decisions contribute to the design of a control style: How smart should objects with control responsibilities be?

How will responsibilities be factored between controlling objects and others? Will work be divided among several

controllers working together, or will it be concentrated in a single controller? What paths of collaboration will exist

among controllers and objects under their control? How much will controllers decide? How much will they push out to

others? These decisions are interrelated. Developing a control style means working on several aspects of a design at

once.

Centralizing Control

With centralized control, generally one object (the controller) makes most of the important decisions. It may do so by

collaborating with other objects, by querying information they maintain, or by using a combination of techniques.

Decisions may be delegated, but most often it is the controller that figures out what to do next. Responsibilities are

delegated; after all, the controller isn't doing everything! But typically the controller asks others to perform simple,

isolated responsibilities that are pulled together by the controller.

There is one very good reason for centralizing control: You can quickly locate control decisions. Decision-making

logic is concentrated in controllers, making it easy to find. If decisions are regular and simple, you can use a state

model to drive the controller's decisions.

On the other hand, plenty can go wrong if you don't counteract certain tendencies.

Control logic can get overly complex. Controlling code can get complicated. Determining what to do next may end

up as a nest of if-then-else-otherwise-until-unless code. Overly complex code with lots of branching doesn't always go

hand in hand with centralized control, but it is something to watch for. There are techniques for refactoring code to

make it simpler. If decisions are based on ranges or related facts, you can make them easy to read and more testable

by factoring them into helper methods that provide yes or no answers. Or you can design helper methods

implemented by the controller to return partial answers to a series of decision-making questions, ordered according to

their expected frequency of selection.

Controllers can become dependent on information holders' contents. This is a big problem. Centralizing control

and decision making means that other objects tend to do little work. Rather than being asked to do something

significant, they are poked and prodded by simple, transparent accessor methods. Information is moved in and out of

them by the controller. The controller may depend on details that should be hidden from it.

Objects can become coupled indirectly through the actions of their controller. Any change to the surrounding

objects ripples throughout the controller and those objects it controls. If one object is queried for information that is

then copied by the controller into another, these two objects are coupled—even if they don't collaborate. If one object

changes the way it manages information, it will affect both the controller and the other controlled object.

The only interesting work is done in the controller. Responsibilities can get sucked into a controlling object,

leaving collaborators with very minor roles and not much to do. One smart controller plus many small controlled

objects with minor responsibilities means that only the controller object is of any real interest.

Delegating Control

A delegated control style passes some of the decision making and much of the action to objects surrounding a control

center. Each neighboring object has a significant role to play. Delegating responsibility for control reaps several very

important rewards.

Delegating coordinators tend to know about fewer objects than dominating controllers. With a delegated

control style, objects surrounding the control center both know and do things. Objects surrounding the coordinator

take on more responsibility, leaving the coordinator with a simpler task and, typically, fewer objects to manage.

Dialogs are higher-level. Collaborations between a coordinator and the objects it coordinates are typically

higher-level requests for work and not simple requests to store or retrieve data. Communications are more abstract

and more powerful. Instead of asking objects to do small chores or divulge small bits of information, coordinators

typically delegate larger-grained requests.

Changes typically affect fewer objects. With more objects making decisions and taking on responsibilities, each

worker has a well-defined role and a smaller number of different kinds of objects to collaborate with. Consequently,

changing one responsibility will have a limited impact.

It is easier to divide design work among team members. With more objects having interesting responsibilities,

challenging work can be distributed among several designers. With centralized control—and responsibilities

concentrated into a single control center—there is less interesting design work on the periphery. With delegated

control, there still are control centers to be designed, but the workload among objects (and designers) can be more

evenly distributed.

Of course, there are pitfalls.

Too much distribution of responsibility can lead to weak objects and weak collaborations. Carried to

extremes, a delegated control style results in objects that neither do nor know enough or that collaborate awkwardly.

Look for these characteristics of weak factorings:

Small service-provider objects that are used by a single client. They have been factored out of their

controller and instead should be merged into the controller as helper methods.

Complicated collaborations between delegator and delegates. This can happen when not enough context is

passed along with a delegated request.

Lots of collaborations but not much work getting done.

The Limits of Control Decisions

Our preferred style, given that it suits the problem and meets other constraints, is a delegated control style. We prefer

a design in which no one object knows or does too much. But there are times when we must adapt to an existing

control style rather than invent one to our liking. Most frameworks force designers to work with a particular set of

collaborations and initial distribution of responsibilities. Framework designers make choices that predefine certain

collaborations and lead to certain control styles.

When you use a framework, it is best to go with the flow and adopt its control style. For example, control style in

stand-alone, interactive Java applications is dictated by patterns of collaboration with the user interface library. When

designing a control center that handles user interface events, you typically distribute control among many listeners.

Each listener, after registering with its widget, is responsible for responding to events raised by that widget—a

controller per widget distribution of control.

Most frameworks dictate a particular control style. You plug your objects in to an existing control

structure. Control has been designed by the framework author.

But the Java Swing framework stops short of telling you how to design how a listener handles a particular event (see

Figure 6-2). After all, frameworks don't make every choice for you! When a user pokes at a widget, it turns around and

notifies its listener. It's up to you to decide what the listener does next and how. You could design it to delegate

responsibilities to others under its control, or to make most decisions and do the work itself. Your listener could be a

coordinator or a controller. You could have either a centralized or a delegated control style, depending on how many

responsibilities you give each listener.

Figure 6-2. Java Swing uses distributed control among listeners.

Most designers who use this framework tend to separate responsibilities for interpreting events from responsibilities

for performing domain-specific actions. Each listener is typically designed to delegate work to one or more objects in

the domain layer. This is a conscious design choice. It makes good design sense to separate knowing what to do

from knowing how to do it. Separating these responsibilities into different objects keeps listeners focused on

interpreting and reacting to UI events. It also permits domain-specific responsibilities to be invoked from several

different listeners.

Instead of going with a one controller per widget design, nothing prevents us from hooking up one big listener to

several widgets. This listener would have to react to many widgets' events. But to do so, it would have to take on the

added responsibility of deciphering what a particular event meant. A clicked event from one button means a certain

thing, whereas a clicked event from another button means something else. As seen in Figure 6-3, creating a big

listener can even tighten the coupling between it and the user interface, especially if the listener must collaborate with

UI widgets to determine who said what in order to figure out what to do.

Figure 6-3. Centralized control can lead to concentrated decision making.

Lest we dismiss centralized control too quickly, there are advantages to locating control decisions into a single

controller. The single controller holds connections to collaborators, so if its context changes, it is a simple matter for it

to refresh and readjust connections to objects under its control (see Figure 6-4).

Figure 6-4. Centralized control collects connections to the domain.

However, when we follow the natural style dictated by the Swing framework, there is a direct relation between each

listener and its corresponding widget. So each listener knows what to do without deciphering what the event means.

Control is dispersed among the listening objects in the application services layer whose actions may need to be

coordinated. This control style variation might be characterized as many small related controllers.

Often, controllers working in tandem need to be synchronized. Clicking on an item in a list may mean populating

another widget with contents extracted from an object in the domain layer associated with the list item. The identity of

this domain object may need to be passed to one or more controllers, which need to know whom to talk to whenever

their events fire. Coordination can get quite complex.

Taking an even closer look, we can see that many decisions are involved in designing related controllers: Who sets

up and gives each controller visibility to the objects it needs? How should these connections be maintained? When an

event affects several controllers, who should notify them? Are they all listening to the same event, or does one

controller take the lead and inform the others? How will actions be synchronized and connections to domain objects

be maintained?

By distributing control among related controllers, we eliminate one design problem—how to interpret many widgets'

events—and swap it for two others: the need to coordinate actions and synchronize connections to collaborators (see

Figure 6-5).

Figure 6-5. Distributed control requires distributed connections and synchronization among interrelated

controllers.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Developing Control Centers

In all but the simplest applications, you will have multiple control centers to design. A control center is a place in an

application where a consistent pattern of collaboration needs to exist. Control design is important in the control of

User-initiated events

Complex processes

The work within a specific object neighborhood

External software under your application's control

Because control centers that aren't identified as important tend to accrue responsibilities until they are

unmanageable, it is important to really determine how much each will need to know or do, and how

many other kinds of objects it affects.

After you've identified those control centers, pick one, decide on a control style you think is appropriate, and then

work on specific responsibilities and patterns of collaboration. Get down to details.

What does it really take to fulfill control and decision-making responsibilities? How much work will objects in the

control center do? How much work will those they collaborate with do? How complex are their responsibilities?

Explore your options. Try one distribution of responsibilities to see whether your control center turns out as you

anticipated. You may want to back up and reconsider an alternative distribution of responsibilities.

Don't try to use the same style everywhere. Develop a control style suited to each control situation. Pick a

centralized style when you want to localize decisions in a single controller. Choose a delegated style when you want

to delegate work to objects that are more specialized. Several control styles can happily coexist in a single

application. Not all control centers need to have the same style. Although similar use cases often share similar control

style designs, control style within various neighborhoods varies widely. Control styles for control centers handling

critical events or complex processes may be quite different; it all depends on what's right for a particular area of your

design and how diligently you pursue a consistent style.

Developing a control style for a control center means deciding the following:

How decisions should be made

Who should make them

Whether decisions should be delegated

What patterns of delegation should be established and repeated

There are many valid reasons to choose one style over another. But as a general guideline, it's best to design

collaborations so that like things work similarly. For example, use cases with the same kinds of user interactions

might share a similar control style even if the participating objects differ. This will bring consistency, predictability, and

an overarching style to your entire design.

Be aware of the cumulative effect of design decisions. The more control centers you've designed, the

more difficult it may be to fit a new style in with established styles.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

A Case Study: Control Style for External User Events

In a layered architecture, application-specific control is usually located in an architectural layer that sits between the

presentation layer and the domain layer. Objects in this application services layer receive and interpret events passed from

interfacer objects located in the presentation layer. Messages are sent from the presentation layer to objects in the application

services layer. They then react to user events and coordinate the invocation of related software actions (see Figure 6-6).

Figure 6-6. Responses to UI events are delegated by controllers and coordinators.

To demonstrate the main feature of this software, take a look at Figure 6-7, the "Speak for Me" use case for building a message.

Figure 6-7. This use case conversation describes the user's interactions with the system as she builds a message.

To start, we invent a single object that is responsible for responding to user events and controlling the subsequent action of the

"Build a Message" use case. We name this object MessageBuilder. It must interpret two events: one from the presentation layer

when the user selects something that has been spoken, and another from the timer, signaling that time has elapsed without her

selecting something. We initially assign this controller three responsibilities, as shown in Figure 6-8.

Figure 6-8. The MessageBuilder's stereotype depends on how this object interacts with surrounding collaborators to

perform its role.

We know that the MessageBuilder has the overall responsibility for handling these events, but we don't yet know how much

work it will take on itself or delegate to others (see Figure 6-9). We'd like to see how much work is involved and, if things get

overly complex for the MessageBuilder, develop a delegated control style.

Figure 6-9. The MessageBuilder listens for events and delegates work to others.

Centralizing Control in the MessageBuilder

With such a simple user interface, one might think that one controller should be responsible for receiving notifications as well as

responding to them:

When the timer ticks, the MessageBuilder will select the best thing to present next: a letter, a space, a word, and so

on. This depends on the state of the message and what has been previously presented.

When the user makes a selection, the MessageBuilder will update the message with the selection. How it does this

depends on what the user selected.

It is not necessarily the number of different events that makes control complex. It can also be the number of

differing responses to the same event.

The MessageBuilder's response to the user's selection of what was spoken depends on many different conditions. As the user

builds the message, the software tries to guess each word (only one word guess for each letter that she chooses) as it sees

more letters. It matches the partial constructions against complete words in an online vocabulary. Special rules apply to the

beginning of a word. In what is called the onset of the word, there are only a few letters that may follow the first letter. This

consonant co-occurrence provides the software with a relatively simple way to predict the second and third letters of a word,

given the first letter, or first and second letters, respectively.

Reacting to the selection event involves two subresponsibilities (and numerous decisions):

What action must be performed when the user makes a selection?

Is the user at the very beginning? If so, she has just clicked to start the application. Do nothing except set

up to handle her first real selection.

Did she just now select a letter? Add it to the word under construction.

Did she just end a word by choosing a space? Add the word under construction to the message, and get

ready to build a new word.

Did she just choose a word? Clear out the word under construction and append the chosen word to the

message.

Did she just hear and choose an entire sentence? Replace the sentence under construction with the one

she chose.

1.

Depending on the contents of the message, what should be presented to the user?

Did the user just now start building a message? Determine the first letter in the alphabetic (A to Z) or

frequency (E to Z) sequence.

Did she just select a letter? Give her a "space" ("space" acts as the end-of-word).

Did she just end a word by choosing a space? Check to see whether the word under construction is a

command. If it is not, then start over with the letters in the chosen alphabetic sequence.

Are there two letters in the latest word construction? If so, ask the Vocabulary for any guesses.

Are there at least two words in the latest sentence? If so, get any sentences that match from the

SentenceDictionary.

If the SentenceDictionary and the Vocabulary both have something to guess, choose the best one and

present that to her.

2.

Initially, reacting to these events might have seemed simple. But it's not. If we keep all these decisions inside the

MessageBuilder, the code quickly becomes complex. The simplified code below demonstrates the kind of checking necessary to

control the presentation and selection of the user's choices. For brevity, only portions of this class are shown. Where something

is not shown, we will make note of the fact.

class MessageBuilder {

 // Holds the letters, words, and sentences

 private Message message = new Message();

 // The source of the letters

 private Alphabet alphabet = new Alphabet();

 ... declarations for vocabulary, sentenceDictionary missing
 // The last thing presented to the user (letter, etc.)

 private Object lastPresented = null;

 // The output device for a blind person.

 private Presenter presenter = new Speaker();

 // Controls when the user hears "space"

 ... Note: This state variable could easily be replaced with

 ... more state objects.
 private boolean spacePresented = false;

 public void handleSelection() {

 ... The code for handling Commands, Words, and Sentences is not shown.

 ... If you did, you would make a type check for each type of selection.

 ... Furthermore, you wouldn't admit to having written it.
 if (lastPresented instanceOf Letter) {

 if (((Letter)lastPresented).getValue() == ' ') {

 // The user completed spelling a word, so end the current word

 // and start a new one

 getMessage().endLastWord();

 }

 else {

 // She didn't end the word with a space, so add her selected

 // letter and continue, starting with a space

 getMessage().addLetter((Letter) lastPresented);

 spacePresented = false;

 }

 // Reset the alphabet back to the start of the letter sequence

 alphabet.reset();

 }

 ... And on and on. Three increasingly complex if/then blocks would

 ... follow to handle the user's selections of Words, Sentences,

 ... and Commands.

 }

 public void handleTimeout(){

 ... This code doesn't show suspending or presenting Words,

 ... Commands, or Sentences. It illustrates only how the user handles

 ... the first two letters of a word.
 // This is a call to a private method that checks the length of the

 // last word in the message. If the word has no letters in it, it

 // returns true.

 if (this.gettingFirstLetter()) {

 // While getting the first letter, present only letters

 nextLetter = alphabet.nextLetter();

 getPresenter().presentLetter((Letter)lastPresented);

 }

 // This is true when the last word in the message has exactly

 // one letter.

 if (this.gettingSecondLetter()) {

 // While getting the second letter, present only letters and

 // spaces

 if (!spacePresented) {

 // If we haven't already offered the user a space, do it now.

 // Then, present the sequence of letters. Present the space

 // only once.

 lastPresented = new Letter(' ');

 getPresenter().presentLetter((Letter)lastPresented);

 spacePresented = true;

 }

 else {

 // The space has been presented for this sequence, so present

 // only the letters in sequence until the user selects one.

 lastPresented = alphabet.nextLetter();

 getPresenter().presentLetter((Letter)lastPresented);

 }

 ... Code for suspending, handling Words, Commands, and Sentences

 ... is not shown
 }

 }

 ... other MessageBuilder methods
}

Work on understanding the complexity of the decisions that need to be made. If you fudge on this, your design will end up with

black holes of complexity that will be difficult to implement.

Don't be misled by the number of events that need to be processed. The number of events does not equate to

complexity.

Refactoring Decision Making into Small Controllers

The MessageBuilder must know a lot in order to handle a selection or timer event. Its correct responses are based on the state

of the message being constructed as well as what has been already spoken. When an object seems burdened with complex

decisions based on state, you can simplify its processing by distributing state-specific actions to other objects. The State pattern

explicitly addresses moving decisions from an object into a number of smaller decision makers working directly on its behalf. If

we adopt the State pattern, we'll end up with a clustered control style. Each small decision maker will assume responsibility for

responding to the events that the controller is handling given a particular state the controller is in, explaining the name State

pattern.

Name: State Pattern

Problem: How to design an object to alter its behavior when its internal state changes.

Context: Sometimes you need to make complex decisions about what to do based on the current state of an

object. An object's state can be represented by a number of different objects that collectively represent what state

the object is in. The object must change its behavior at run time depending on that state.

Forces: Complex, multipart conditional expressions are often used to decide what action to take. But this can

result in code that is hard to maintain.

Solution: Instead of writing code that specifically checks what state an object is in before deciding how to react,

design one new class for each possible state the object can be in. Reassign responsibilities for handling events to

each state object. Delegate all responsibilities to the state objects, and pass in whatever context they need to do

their work. It is the responsibility of each state object to know specifically what should be done. Typically, in

addition to handling state-specific responses, each state object also knows what the next state should be after

completing its response.

Consequences: The State pattern puts all behavior associated with each particular state into distinct objects.

New states and transitions can be easily added by defining new state classes. The State pattern does have some

drawbacks. It distributes behavior for different states across several state classes and is less compact than a

single class. But such distribution is actually good if there are many states, something that would otherwise

necessitate large conditional statements.

Controllers and coordinators make decisions, but to different degrees. A coordinator decides whom to pass the

buck to, whereas a controller retains control, enlisting others under close supervision.

The first step in using the State pattern is to analyze and enumerate the conditions that cause different responses. For example,

in Speak for Me, the state diagram in Figure 6-10 shows the states the MessageBuilder goes through as it constructs a

message. States are distinguished by how the MessageBuilder responds to the timer ticks or the user selections.

Figure 6-10. Speak for Me has many states that determine what the event responses will be.

The states in the State pattern come from identifying the sets of different responses to the same events.

After we decide to use the State pattern, it is a simple matter to assign the responsibilities for each state to a different object

(see Figure 6-11). Each state has its own object to handle the responses! We end up with seven states, seven different kinds of

objects, and seven pairs of responses to timer ticks and user selections.

Figure 6-11. Each state becomes an object.

Although you have applied a pattern, you still must make choices about the distribution of responsibilities.

Instead of the state object knowing what the next state is, the controller could take on this responsibility. Just

make sure that one or the other makes this decision.

Because they must be able to fulfill the same responsibilities but they have different implementations, we can implement seven

concrete state classes, as shown in Figure 6-12.

Figure 6-12. The State classes form an inheritance hierarchy.

With this new control style design, when the MessageBuilder is notified about an event it makes no decisions whatsoever. It

simply delegates the responsibility to whatever state object is currently plugged in and is responsible for handling events given

the current state. That state object is responsible for responding to events based on current conditions, instantiating the next

state object, and plugging it in to its coordinator.

The order in which the state objects are plugged in mirrors the transitions that appear in the state diagram. Together, the state

objects collectively handle all the conditions that can occur. Each state object makes two decisions on behalf of the

MessageBuilder: what to do with the selection, and what to do with a timer event. Because each state object represents one

branch of the current state of the message building process, each object's methods are a bit simpler than the original

MessageBuilder code. Each is simpler to understand. Let's look at several classes' methods to see how relatively simple each

one is.

The Idling class handles the timer and user events with its two methods. Its only responsibility is to handle message

construction:

class Idling extends MessageConstructionState {

// This class is used when the user has not signaled to start building

// a message. The clock is ticking, but the software does nothing in

// response.

 public MessageConstructionState handleTimeout(MessageBuilder builder){

 // The clock is ticking, but because we are idling, do nothing, but

 // stay in the same state.

 return this;

 }

 public MessageConstructionState handleSelection(MessageBuilder builder){

 // The user signaled to start building a message.

 // Transition to the next state, the one that will handle presenting

 // and selecting the first letter of a word.

 return new GuessingLettersOnly();

 }

}

The GuessingLettersOnly state class is simple too. It is responsible for presenting only letters to the user and, because the

user can only select letters, only adding them to the Message:

class GuessingLettersOnly extends MessageConstructionState {

// This class is used when the last word in the message is empty (the user

// has started the software but hasn't selected a letter yet).

 public MessageConstructionState handleTimeout(MessageBuilder builder) {

 // User is at the beginning of a word. Present only letters.

 Letter nextLetter = alphabet.nextLetter();

 ... code for handling end-of-alphabet (suspend) missing
 // Record that this letter was just presented to the user.

 // If she signals before we present a different one, this one

 // will be added to the message.

 builder.setLastPresented(nextLetter);

 builder.getPresenter().presentLetter(nextLetter);

 // Stay in the same state.

 return this;

}

 public MessageConstructionState handleSelection(MessageBuilder builder) {

 // Only letters are being presented to the user, so we know exactly

 // what to do: it must be a letter that the user selected, so add it to

 // the message, reset the sequence of letters to the beginning, and

 // start getting the next letter (but offer the user a space first).

 Letter letter = (Letter) builder.getLastPresented();

 builder.getMessage().addLetter(letter);

 builder.getAlphabet().reset();

 // We have to present a space after each selection from now on, so

 // transition to the state that behaves that way.

 return new GuessingLettersAndSpace();

 }

GuessingLettersAndSpace is responsible for deciding when to present a space instead of a letter. Even this decision

could be eliminated by creating a MessageConstructionState subclass to handle this condition:

class GuessingLettersAndSpace extends MessageConstructionState {

 // This class is used when the last word in the message has exactly one

 // letter. Under this condition, each letter selection is followed by a

 // space. The user selects the space to terminate the word.

 // This static variable is visible to all of the instances of the class.

 // They use it to know whether a space should be presented. It could

 // be eliminated by creating a MessageConstructionState class

 // that handled the condition of not yet having presented

 // the space (PresentingSpace).

 private static boolean spacePresented = false;

 public MessageConstructionState handleTimeout(MessageBuilder builder) {

 // The user has chosen exactly one letter. Offer a space to allow

 // the user to terminate the word even if it has only one letter

 // (such as "I"), and if the user doesn't select it, present the

 // letters in sequence.

 ... The code for handling the case when the user doesn't select a

 ... letter or a space (otherwise known as suspending) is not shown.
 Letter nextLetter = null;

 if (!spacePresented){

 // If the space hasn't yet been presented, choose it for

 // presentation to the user.

 nextLetter = new Letter(' ');

 spacePresented = true;

 }

 else {

 // The user didn't select the space when it was presented, so

 // fetch the next letter in the sequence.

 nextLetter = alphabet.nextLetter();

 }

 // Present the space or the letter to the user.

 builder.setPresented(nextLetter);

 builder.getPresenter().presentLetter(nextLetter);

 return this;

 }

 public MessageConstructionState handleSelection(MessageBuilder builder) {

 // The user could only have selected a space or letter

 State newState = null;

 Letter lastLetter = (Letter) builder.getLastPresented();

 if (lastLetter.getValue() == ' ') {

 // If the user selected the space, it means she has finished

 // building the word.

 builder.getMessage().endLastWord();

 // Start getting the first letter of a new word.

 newState = new GuessingLettersOnly();

 }

 else {

 // The user chose a letter. Add it to the word under construction.

 builder.getMessage().addLetter(lastLetter);

 builder.getAlphabet().reset();

 ... The GuessingLettersWordsAndSentences class that will handle

 ... presenting letters and guessing words and sentences is not

 ... shown.
 // Now we have two letters in the word under construction.

 // Begin guessing words and sentences along with the letters.

 newState = new GuessingLettersWordsAndSentences();

 }

 // We are either going on to guess words and sentences or are

 // getting the first letter of a new word.

 return newState;

 }

}

Simplicity comes from having two relatively straightforward methods implemented by each MessageConstructionState

class. Very cool.

The State pattern works well if all the states are discrete and detectable, and the transitions between them are

deterministic. This is not always the case. For example, a book in a library can be in multiple states at the same

time: for example, checked-in and lost.

As shown in Figure 6-13, the State pattern is one way of divvying control responsibilities—pushing them out to a cluster of

decision makers. It does make the MessageBuilder more manageable and state management systematic, but is it really the

solution we want? The State pattern removes responsibilities for deciding what to do from the MessageBuilder. But it still leaves

decision making in objects that are located within the control center located in the application control layer—a clustered control

style and not a delegated one.

Figure 6-13. The MessageBuilder delegates responses to its state objects.

If a particular pattern improves your design, you may jump on it without considering other options. Applying any pattern may

have benefits. But there are also consequences. The most important one is very subtle:

Choosing a pattern means that you are not designing a solution of your own.

What if there is an elegant solution waiting just around the bend? You will never get there if you put on pattern

blinders! Patterns are built on the tenets of object orientation. If a pattern doesn't suit your style, use basic

strategies—abstraction, encapsulation, classification, inheritance, polymorphism, and information hiding—and

stick to your design goals.

Adopting a pattern limits your options for distributing responsibilities to others. Responsibilities fulfilled by objects in a pattern

are responsibilities that might have been assigned elsewhere but weren't. There may be other solutions with a different

distribution of responsibilities that are better suited to your design goals. If you leap on a pattern without thinking things through,

you may be applying a solution to a well-known problem but still not have solved the problem in a way that matches your control

style goals.

Refactoring Decision Making into State Methods within the MessageBuilder

A state machine is an obvious control choice for our message building task. But instead of factoring state-based responsibilities

into different state objects, we could keep track of the current state within the MessageBuilder and redesign its

handleSelection() method to invoke its own action methods based on its current state. Instead of delegating state-based

behavior to state objects, the MessageBuilder would now comprise several smaller methods, one for each unique state in our

state model. We might prefer this design over the State pattern if we needed to support slightly different state-based behavior.

We could implement a subclass of the MessageBuilder that overrode a couple of methods in order to implement different idling

or guessing behaviors.

Abstracting Away Decisions

But to truly adopt a delegated control style, we need to remove decisions from the control center and place them in domain

objects. How can we make our control style delegated? Let's shelve the State pattern and state-based solutions for now and go

back to the drawing board. Let's try really hard to push responsibilities out of the MessageBuilder. What if we reassigned the

responsibility for constructing a message to those objects that the user selects? Instead of making that the MessageBuilder's

responsibility, why not make Letter, Word, and Sentence objects responsible? If a Letter is selected, it should append itself to

the last word in the message. A Word should add itself to the last Sentence in the Message, replacing the last Word in the

Sentence. Given that each selected object knows what kind of thing it is, it can add itself to the message without making any

decisions whatsoever!

In this new design, the MessageBuilder simply accepts the selection from the presentation layer, whatever it is, and delegates to

the selected object the responsibility for adding itself to the Message (see Figure 6-14). The MessageBuilder treats all selected

objects alike. When the Letter is asked to add itself to the message, it turns around and asks the argument (the Message) to

add "this" letter. How the letter is added to the Message is completely hidden inside the Message, where it should be.

Figure 6-14. Polymorphism and the Double Dispatch minimize concerns about object type.

When you discover a new role, create a CRC card for it, and note on the unlined side any candidate that plays

the role (the fact that it does).

To make this work, all the kinds of objects the user selects must share a common role and implement the same interface. The

user is presented with guesses that she can select. When she does so, these guesses are added to the Message she is

building. Let's define a Guess role that Letters, Words, and Sentences have in common as shown in Figures 6-15 and 6-16. By

doing so, we delegate work to Guess objects and eliminate decisions (what to do with a guess) from the controller.

Figure 6-15. The role of Guess is shared by Letters, Words, and Sentences.

Figure 6-16. Guesses are responsible for adding themselves to a Message.

This solution demonstrates some fundamental design principles:

Abstraction. Without the new role, Guess, we have nothing to represent the "sameness" of the different kinds of

objects that can be selected by the user.

Responsibility. So far, a Guess has only one responsibility: adding itself to a Message. But we now have a place to

hang other responsibilities if we need to. Of course, any new responsibilities will have to make sense for all objects

that share this common role.

Inheritance. All objects that play the role of Guess may be implemented by different classes in a common hierarchy.

Or we are free to define a common interface for a Guess role that is implemented by different classes, whether in the

same inheritance hierarchy or not. It's too early to tell. Regardless, each different kind of Guess will implement all

Guess responsibilities.

Polymorphism. This is key. By assigning the responsibility for adding themselves to a message to Guess objects, we

have reduced the complexity of our controller. This is a much more extensible and maintainable solution.

In Java, abstract, interchangeable parts can be implemented by an abstract class or an interface. When they

share common behavior, use an abstract class. When they simply share a role, use an interface.

MessageBuilder code for handling a selected Guess is reduced to a single line that looks something like this:

 selection.addTo(message);

When an instance of Letter receives the addTo(Message msg) message, it turns around and asks the Message to add it:

 msg.addLetter(this) // ask the Message to add the Letter

When an instance of Word receives the addTo(Message msg) message, it requests the Message to add it:

 msg.addWord(this) // ask the Message to add the Word

With this design choice, the decision making has been removed from the MessageBuilder and reassigned to each particular

kind of Guess. And each guess knows just what to do without making any decisions whatsoever!

Delegating More Responsibility

The MessageBuilder must come up with a new Guess every timer tick. As we've seen, this behavior is pretty complex. If the

MessageBuilder doesn't delegate guessing, it will have to evaluate the current state of the message and any local state that it

keeps track of, find all the possible matches that it has to choose from, and decide which possibility is best. It must query all the

dictionaries that hold the different kinds of guesses and get the best guess given the current state of the message under

construction: the Alphabet, the Vocabulary, and the SentenceDictionary. Lots of work, lots of collaborators, lots of connections

and low-level information-gathering. Whew!

The purpose of this section is to demonstrate how a "decision" is changed into a strategy and how varying the

identity of an object can eliminate conditional "decisions."

When you see a controller deciding which of many low-level objects to call upon, it's a good idea to move this complexity

outside the controller and into other objects—even if you have to invent them. If you follow this strategy, objects with control

responsibilities will have narrower coordination responsibilities. As a result, you may end up with more objects, but each one will

be more focused.

Because determining the appropriate guess to present to the user is not related to controlling message building, it is a cleaner

solution to wrap up all this guessing machinery and put it in a new object: a Guesser. The Guesser will access the current state

of the Message and various dictionaries (Alphabet, Vocabulary, SentenceDictionary). From the MessageBuilder's perspective it

will simply serve up a best guess every time it is asked for one. With this final design decision, the MessageBuilder remains

dedicated to coordinating actions. The complex guessing machinery is wrapped inside the Guesser (see Figures 6-17 and 6-18).

Figure 6-17. The Guesser determines the next guess to present to the user.

Figure 6-18. The Guesser collaborates with several sources to determine the best guess.

As a side effect of both this decision and the previous one, the MessageBuilder truly has become a simple coordinator ... and we

have designed a delegated control style for the "Build a message" task.

Designing the Control Style for the Guessing Neighborhood

Pushing out the responsibility for providing the best guess to the Guesser doesn't mean we're finished designing. We still have

work to do. Let's shift our attention from the MessageBuilder control center to the neighborhood consisting of the Guesser and

various dictionaries. Earlier, we nixed adopting the State pattern. But we are always on the lookout for patterns that clarify our

design. A pattern that seems to fit this best guess problem is the Blackboard pattern described in Pattern-Oriented Software

Architecture. It is an architectural pattern that is useful when the answer is a best guess. It is realized by three roles: a

Blackboard, one or more KnowledgeSources, and a Control (see Figure 6-19).

Figure 6-19. The blackboard architecture uses three object roles.

To come up with a result (in our situation, a guess), processing is done in cycles. During each cycle, the Control asks several

KnowledgeSource objects to evaluate information in a common store (the Blackboard). Each KnowledgeSource determines

how relevant its rules are to the information on the Blackboard and makes a correspondingly low or high bid. The Control simply

looks at all of the KnowledgeSources' bids and chooses the highest. The chosen object then updates the information on the

Blackboard according to its rules, and the cycle begins again. This repeats until the Control decides that the Blackboard

contains an answer that none of the KnowledgeSources can improve upon.

The Control is not making many decisions, and any one KnowledgeSource has a small portion of the rules governing the

program's execution. It is a delegated control strategy devoted to the control of guessing an answer to a problem. The

Blackboard pattern provides a basic architecture for distributing responsibilities among three roles.

We will use it to guide our invention: a control object, several objects to embody the knowledge and rules, and a shared

information holder to hold the answer as it evolves. In any given cycle, the Guesser has several possible guesses: a Letter

when there is nothing better, a Space if there is at least one letter in the last word and it hasn't been guessed during this cycle, a

Word if the last word in the Message is long enough and there are some matches, and the same for the Sentence. Also, the

Guesser needs some way to represent that there are no more guesses possible, not even any more letters. Where should we

put these rules? We should put them as close as we can to the objects that they apply to!

That means putting the rules and their evaluation into various dictionaries that hold Guesses. Matching the Blackboard pattern's

roles to our design objects, the Guesser plays the role of Control, GuessDictionaries are KnowledgeSources, and the Message

is the Blackboard they all query (see Figure 6-20).

Figure 6-20. Guessing uses a Blackboard architecture.

Each GuessDictionary is asked by the Guesser to check the Message and make a bid. The Guesser looks at all the

GuessDictionaries' Bids, selects the Guess from the highest Bid, and returns it to the MessageBuilder as the best guess.

Decisions made by the Guesser are limited to evaluating and choosing the highest bid. The real intelligence is distributed

among the dictionaries.

Instead of adding their results directly to the Blackboard, each KnowledgeSource instead returns its bid to the Guesser. In our

design, a Bid knows its value and its proposed Guess. You notice that we've slightly modified the Blackboard's roles and

responsibilities as we adapted this pattern to our design. We've done so because the Guesser's responsibility isn't to update the

Message directly. Instead, it needs to return the best guess when asked so that the guess can be presented to the user. Only

when the user selects a Guess will the MessageBuilder add her selected Guess to the message. We've had to adapt the

general roles and collaborations described by the Blackboard pattern to suit our specific design situation.

The final design of the MessageBuilder is now pretty simple. We've really pushed out most of the work to objects that the

MessageBuilder collaborates with (see Figure 6-21). When it hears the timer tick, the MessageBuilder passes the current

Message to the Guesser and asks it for the next guess. It gets back a Letter, Word, or Sentence, but it doesn't know exactly

what kind of thing it is. It only knows that it is a Guess. So it gives the Guess to the Presenter, which voices it to the user. If she

selects it, the MessageBuilder is notified, and the MessageBuilder asks this Guess, whatever it is, to add itself to the Message.

Figure 6-21. The Build a Message control center, delegates to the Guesser, Guess, and Message.

The MessageBuilder is a pure coordinator. This approach is quite different from our initial one. Control and decision making

have been removed from the MessageBuilder. But where have they gone? Actually, we've given responsibilities to objects that

the MessageBuilder collaborates with. And in the process, we've defined away the need for complex decisions based on explicit

states maintained by the MessageBuilder. The MessageBuilder simply coordinates guessing and adds guesses to the

Message—but it does so by delegating. Dictionaries will have to know some things about the current state of the message in

order to offer a bid, but those decisions are localized and pretty simple, too. Decisions that before rested with the

MessageBuilder are now accomplished as a side effect of choosing the highest bid, presenting it to the user, and having her

Guesses add themselves to the Message. Because each different Guess knows how to add itself to a Message, the decision on

how to update a message has been replaced with explicit responsibilities of Guess objects for doing the right thing when asked.

Designing a Similar Control Center: Can We Be Consistent?

When you develop a simple and effective control architecture for a given system task, you instinctively try to fit similar tasks to

the same style. However, some applications aren't regular and consistent; each use case is slightly different, so no common

pattern for designing a use case controller emerges, no matter how hard you push. If objects and their patterns of collaboration

are too dissimilar, don't try to fit them into the same mold. However, if things seem similar enough—if the objects involved and

the patterns of collaboration are close—you might be able to refactor responsibilities and readjust collaborations to make them

more similar than they might initially appear. You won't know until you try hard to see how similar things are.

You can't always repeat collaboration patterns. By their nature, some design problems don't lend themselves to

regular, consistent solutions. Sometimes, collaborations are prickly, and the rough edges in the problem will be

reflected in the solution.

Can the objects involved in the "Send a Message" use case fit the same roles and use the same collaboration patterns

established by objects in "Build a Message"? Or do we need an entirely different control style? Let's compare the candidates

involved in each use case and see what's alike and what's different. Here are the objects involved in "Build a Message":

In the presentation layer:

- Presenter—voices the guesses to the user

- Selector—notifies the MessageBuilder of user actions

In the application services layer:

- Timer—controls the pacing of the presentation of guesses

- Guesser—serves up the best guess

- MessageBuilder—coordinates the events and responses

In the domain layer:

- Guess—when selected, adds itself to the Message

- Letter, Word, Sentence—all play the role of a Guess

- GuessDictionary—makes a best guess based on the Message

- Alphabet, Vocabulary, SentenceDictionary—all play the role of a GuessDictionary

- Bid—associates a bid value with a particular Guess

- Message—structures the series of selections

The "Build a Message" task ends when the user spells the "send the message" command (the two-letter word SE). Then a new

task and a new group of objects take over. When the software recognizes SE as a command word, it needs to build the

community of objects: objects to coordinate the activities of building the list of destinations and, when the addressing is

complete, to send the message to those destinations (see Figure 6-22).

Figure 6-22. Control transfers from one control center to another. We'd like to design related control centers to work

in a similar fashion.

Again, as an initial placeholder in our design, we invent a control center (and a control object, the SendMessageCoordinator) to

monitor the user's actions and to coordinate the presentation of the addresses. If we can, we'd like it to follow a delegated style

(see Figure 6-23).

Figure 6-23. Send a Message control is more centralized than the Build a Message control center design.

As this controller fetches destinations from the business layer's AddressBook and presents it to the user, the user chooses what

she hears. Here is the initial list of candidates involved:

In the presentation layer:

- Presenter—voices the destinations to the user

- Selector—notifies the SendMessageController of address selections

In the application services layer:

- Timer—controls the pacing of the presentation of destinations

- SendMessageCoordinator—controls activities in building a destination list and sending the message

In the domain layer:

- AddressBook—knows all the possible destinations

- EmailAddress—knows a recipient's user name and domain

- NetworkNode—knows a machine's network address

- DisplayScreen—knows the computer screen

- PagerAddress—knows a network address of a pager

- MailingList—structures the destinations that the user selects

- Message—knows the text to be sent

When the user makes her selections, the user interface signals our new controller and passes it the objects that correspond to

her selections: the EmailAddresses, MailingLists, and so on. The controller then delegates to the MailingList the task of holding

her selections. When she indicates that she is finished, the controller passes the MailingList and the Message to the Mailer for

delivery.

We would like the pattern of collaboration to be consistent with those in "Build a Message." We can make a few simple checks

to evaluate whether we can achieve a similar control design.

When you're designing a control center, check to see whether the candidates involved are the same as those in a

similar one. If so, there is a possibility that the pattern of collaborations can be made to look alike. The messages may be

different, but the paths between the objects might be the same. But if any of the objects involved are playing more than one

role, the collaboration patterns may be too different.

In the "Build a Message" task, the following objects are involved: Selector, Timer, MessageBuilder, Guesser, Presenter,

Message, Guess, Letter, Word, Sentence, various Dictionaries, and Bid.

"Send a Message" uses Selector, Timer, SendMessageCoordinator, Presenter, Message, EmailAddress, NetworkNode,

DisplayScreen, PagerAddress, MailingList, and AddressBook. Some of the previous objects are here, but some key objects are

missing: the Guesser, the Guess, and all the various kinds of objects that play the role of a Guess.

There are similar coordination and control responsibilities: The SendMessageCoordinator must build a list of destinations and

then send the message to them; the MessageBuilder must build a message. The collaborations between the presentation layer

and the controllers looks identical, but the domain objects are entirely different. If objects that at first glance appear to be

different are playing the same role, we might still make the control design mimic the style that we adopted earlier.

Check whether responsibilities for actions are separate from responsibilities for information. When the doing is located

in one or very few objects and the knowing is done by many others, control is centralized. The object that performs the actions

will be constantly asking for the information that it needs.

As it currently stands, our "Send a Message" use case has only one area of activity: the SendMessageController. The other

objects involved are simple structurers, information holders, or service providers. In contrast, the control center for "Build a

Message" has spread responsibilities for constructing the message across the various Guess objects, and for guessing among

the GuessDictionaries. Currently, there is none of that blending of action and information in the "Send a Message" domain

objects.

Check to see whether the stereotypes involved are similar. If so, there is a possibility that they will fit into the other

collaboration's control architecture. But if one style uses lots of hybrids and while the other uses purer (and simpler)

stereotypes, it will take redistribution of responsibilities to make it fit.

In our "Build a Message" use case control architecture, we had the following stereotypes:

Timer—service provider

Presenter—interfacer

Selector—interfacer

MessageBuilder—coordinator

Guesser—service provider

Guess—information holder/service provider

Letter—information holder/service provider

Word—information holder/service provider

Sentence—information holder/service provider

Message—structurer/service provider

Do the objects involved in "Send a Message" have similar roles? Or do we need an entirely different control style for this new

part of the system? Our first stab at a candidate model resulted in these objects and stereotypes:

Timer—service provider

Presenter—interfacer

Selector—interfacer

SendMessageCoordinator—controller

AddressBook—structurer

EmailAddress—information holder

NetworkNode—information holder

DisplayScreen—interfacer

PagerAddress—information holder

Mailer—service provider

MailingList—structurer

The stereotypes of objects involved in "Send a Message" reflect a concentration of action in the Mailer and the

SendMessageCoordinator.

When the roles are similar but not the same, look for common abstractions. Objects that appear to be different are

sometimes similar in essential ways if we look for what they do in common. By expressing different responsibilities more

generally, we can unify disjoint responsibilities and use a common pattern of interaction.

Taking all these tips into consideration, we look to

Refactor the responsibilities out of the control center into domain objects to form smarter, hybrid stereotypes

Use many of the same roles in our new collaboration

Condense and unify the responsibilities and collaboration patterns

First, let's shift responsibilities for action out of the SendMessageCoordinator to the information holders. In addition to

representing an addressable location, we give each one the responsibility for doing something: adding its addressing

information to the message. We also define a common role, a Destination, shared by all. A Destination represents all the

different kinds of locations where Messages can be sent. The Message has a new responsibility too: knowing where it will be

sent.

Next, let's see if we can find any abstraction that would simplify the collaborations and make it more like the control style for

building a message. The most obvious abstraction missing is the notion of a Guesser and a Guess. Can we incorporate this

idea into this part of the design? Yes, if we shift our perspective on the EmailAddress, NetworkNode, DisplayScreen,

PagerAddress, and MailingList objects.

They, too, are kinds of guesses that the software presents to the user. Once she selects them, they are added to the list of

addresses the message will be sent to. Furthermore, another Guesser could easily serve up Destination guesses. Voila! If we

take this leap at unifying Destinations with Guesses that can be added to messages, our design can evolve toward the same

delegated style.

In both cases, information holders have additional responsibilities. Letters, Words, and Sentences add themselves to a

Message. Similarly, EmailAddresses, NeworkNodes, PagerAddresses, DisplayScreens, and MailingLists add their

corresponding destination to the Message. They are hybrid information holder/service providers. The "Send a Message" control

center now resembles the distribution of responsibilities in the "Build a Message" use case (see Figure 6-24).

Figure 6-24. Objects outside the control center take on more responsibility when we make the Send a Message control

center similar to the Build a Message control center.

Unifying a responsibility can mean making a more general statement of that responsibility.

When the user finishes addressing the Message, the SendMessage Coordinator can delegate all responsibility for delivering the

Message to the Mailer. The Mailer will in turn collaborate with the Message and its various Destinations to send the Message.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Summary

Developing a control style means deciding how objects assigned responsibilities for controlling action within a control

center—objects stereotyped as controllers or coordinators—interact with and direct others' actions. Adopting a

particular style narrows your choices. Repeating it makes your design consistent. Control style is governed by how

decision making and control behaviors are distributed. Control styles come in three major forms with several

variations. Decisions can be

Centralized

Delegated to objects outside the control center

Spread across many objects with no obvious centers of control

When you design collaborations, look for important control centers and choose the best control style for each. If you

are trying to be consistent, make similar things work alike. The clarity and simplicity of your design depend on your

ability to refactor responsibilities, invent roles, and define common patterns of collaboration so that like things work in

similar ways.

Often, the decisions made by a controller depend on information and services provided by objects in its surrounding

neighborhood. So the neighborhoods must be designed accordingly to provide the right information and take

appropriate action.

We suggest that you select a control style suited to the task at hand. Choose centralized control when the decisions

are few, simple, and related to a single task. Delegate control when the work or decision making can be broken into

smaller subresponsibilities and when each subresponsibility has clearly different semantics or requires a different

context. Look for ways to use patterns to simplify your design choices, as long as they match your design goals. The

State pattern removes decisions into separate state objects, simplifying the design of a controller and creating a

clustered control center. As you develop decision makers and their collaborators, strive to create a design having

moderately intelligent, collaborating objects.

Designing a control center takes time and effort. You many not get it right the first time, especially if you don't know

beforehand which responsibilities will require complex decisions. Designing a delegated control style generally

requires careful thought and effort. But the payoffs are worth it, especially when the problem is complex.

The most startling result may be that decision making can be eliminated simply by making objects responsible for

doing the right thing, based on what kind of thing they are. Polymorphism really simplifies a design!

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Chapter 7. Describing Collaborations

Francis Galton, a 19th century geneticist, remarked, "It often happens that after being hard at work, and having

arrived at results that are perfectly clear and satisfactory to myself, when I try to express them ... I feel that I must

begin by putting myself upon quite another intellectual plane. I have to translate my thoughts into a language that

does not run very evenly with them." We, too, experience a shift when we move from informal CRC card modeling to

more formal descriptions of collaborations and interaction sequences. Sometimes we need to paint a broad picture of

collaborators; at other times we need to offer quite exact explanations. When our models get more detailed, we must

change our level of abstraction. We're presenting a more concrete view of our design.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Telling Collaboration Stories

As you design the way objects collaborate, you will draw many rough sketches. You won't keep much of this white

board art, but sometimes you tidy things up, make your collaborations presentable, and show them to others. You

want to explain how things work—to describe the interplay of objects as they collectively accomplish system

responsibilities. You need to tell a story.

During early design, collaboration stories are less precise and more evocative. You may have started with CRC cards

and now want to design specific interactions. So you run through a few scenarios, role-playing some fairly intricate

collaborations with your teammates. Afterward, your team asks you to draw diagrams to illustrate the design. How

much detail should you include? A lot of things were mentioned during role-playing, and not all of them seem to fit

neatly on a diagram. Are there things you should definitely highlight? Should certain things be left out?

The further along you are, the more you know. So you can show and describe more things—if it's

appropriate. You can retell a simple collaboration story, embellishing certain parts while leaving others

understated.

Maybe you want to tell how your design supports key use cases. After people get the gist of these, they should be

able extrapolate. There must be a way to condense information and present it so that your readers don't get

overwhelmed. How can you avoid creating lots of very similar diagrams?

Perhaps you drew diagrams that illustrated "happy path" scenarios. But people want to know how exceptional

conditions are handled. What happens when happy paths aren't followed? Your colleagues won't really believe that

your design works until you show them. Should you add these exception-handling details to your initial drawings, or

draw new ones? Is there some way to explain how exceptional conditions are handled without drawing lots of new

diagrams or adding complexity to existing ones?

Perhaps you want to explain to newcomers the key aspects of your design—the subsystems, their responsibilities,

and general patterns of collaboration. You also want to introduce some important objects and put them through their

paces. So you explain your CRC card model and draw several sequence diagrams that illustrate a few typical

collaborations. But there's more that you'd like to explain. Is there a way to explain some alternatives you considered

and rejected without describing them in any great depth?

A story can be more or less involved, depending on what needs to be said and how complex the interactions are. The

best way to communicate any aspect of a collaboration depends on what you want to emphasize.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

A Strategy for Developing a Collaboration Story

As you can see, your intent in presenting any story varies widely. Sometimes you want to show things; many times

you also want to briefly explain them. Mostly, you want to get your ideas across effectively and compactly. You don't

want to leave out the important points or lose people in too many details. A story is meaningful if it tells people what

they want to know in a form they can easily digest. Often, multiple forms are needed; no one picture, diagram, or

written description tells all.

The Unified Modeling Language describes standard diagramming notations and their meaning. The

UML symbols and diagrams are readily understood. UML is a visual language for describing designs;

it is up to you to use it effectively.

One tool that should be part of your design and storytelling repertoire is UML. UML, or the Unified Modeling

Language, is an industry-standard visual language for describing object designs. In UML, several different diagrams

can be drawn. We won't cover UML in any great depth because that is the subject of other books. We will, however,

touch on those parts of it that are useful to illustrate collaborations. Specifically, we'll explain how to describe

collaboration relationships and specific interaction sequences. We'll discuss how to draw subsystems, collaboration

diagrams, sequence diagrams, and collaborations. With these diagrams you can show collaborations at different

levels of abstraction and in greater or lesser detail.

Before you launch into developing your story, briefly consider what you'd like to accomplish. Here is a basic plan for

developing any collaboration story:

Establish its scope, depth, and tone.

List the items you want it to cover.

Decide how detailed your explanations should be.

Choose the appropriate forms for telling your story.

Tell it, draw it, describe it.

Organize your story.

Revise, clarify, and expand as needed.

Be sure you know what you are trying to communicate and who needs to understand your story. Establish the

appropriate scope, depth, and tone of your story as well as point to places that deserve special emphasis. You will

make more informed decisions as you craft your story if you know your reasons for telling it.

I l@ve RuBoard

I l@ve RuBoard

Establishing Scope, Depth, and Tone

Your scope—how much or how little territory you cover and how comprehensively you cover it—depends on your

goals. Many stories have a narrow scope and limited depth. Perhaps you need to explain how your design supports a

use case or to illustrate some collaborations. Often, stories are dashed off quickly to impart knowledge or get

reactions. Their tone is informative but brief. Explanations (if offered at all) are intentionally sketchy. After all, you are

around to answer questions. The focus is on illustrating collaborations and not on explaining them at any length.

Stories that need to be understood without your helpful presence likely require some minimal written explanation in

addition to one or more drawings.

After a role-playing session, you decide to draw collaboration diagrams to illustrate each scenario you

discussed. Because you didn't get to designing message signatures, you just draw collaboration

diagrams with message names and returned values (where they matter). You list the issues and ideas

that were brought up, too.

You can always adjust your story's tone and broaden or narrow its scope. At first, your goal may be to get buy-in. You

present issues and options along with your collaborations. After you've nailed down answers, you illustrate and

explain instead of merely propose and question. You go into slightly more depth. At other times, you are writing for the

record and want to be as precise as you can. But you don't want to overwhelm your readers with details.

The tone of any story can be adjusted to be more or less formal, authoritative, precise,

comprehensive, and instructive. It is up to you to set the tone by adjusting it along several

dimensions.

Diagram choices, as well as word choices, help set the tone. Sequence diagrams are more formal than collaborations

diagrams. Both serve a nearly identical purpose. There are times when informality is preferred, especially when you

want to throw out a rough idea for comment and review. At other times more formal presentations are in order. But

don't think that every part of your story needs to be told in the same way or to the same depth. CRC cards are

informal, but they convey information about an object's role and responsibilities that cannot be found on either

sequence or collaboration diagrams. Diagrams as well as cards are valuable parts of a collaboration story. CRC

cards informally state what an object knows and does. These responsibilities can be hard to infer from looking at more

formal method signatures on class diagrams.

Formal and informal descriptions and diagrams all have a place in a collaboration story. Precision does not go hand in

hand with formality. Sequence and collaboration diagrams can be drawn with differing degrees of precision. It is

perfectly "legal" to leave messages unlabeled or to get highly exact and show message signatures, return values,

branches, and looping, all dressed up with accurate timing marks. Your story can be more or less formal, precise, or

comprehensive—depending on your goals.

I l@ve RuBoard

I l@ve RuBoard

Listing What You Will Cover

If your story is a comprehensive one, there will be many things to say. Even a simple story may have several points.

List everything that comes to mind, whether it is big or small or it overlaps with something already on your list. Don't

be concerned with how items on your list relate. Also, list things you want to exclude from discussion.

For example, if you are illustrating a specific use case, you may want to explain only a happy path scenario—what

actions take place when nothing goes wrong. Even so, consider how much you want to tell and what the main points

are.

Key Points for "Make a Payment" Collaboration

Use a sequence diagram—keep it simple (not a lot of adornments).

Point out calls to backend banking system that could be bottlenecks.

Start with a well-formed request (don't explain UI details).

Relate the diagram to the "Make a Payment" use case.

Don't worry about how to organize your story or the items on your list until you've written a large part of it. Perhaps

you need to develop several subplots, explain each one, and then weave them together. Even if your story is short

and sweet, you won't know the best way to present it until you've gotten it down. Worry about organization after your

content is in place.

I l@ve RuBoard

I l@ve RuBoard

Deciding on the Level of Detail

The same story can be told in different levels of detail. Your choice of level (or levels) should be based on how much you know

about a collaboration and how much you want to reveal. There are at least these different views of a collaboration:

A bird's-eye view of system components and subsystems showing the overall architecture and general collaboration

paths

A view showing only participants in some collaboration (and omitting all interaction)

A sequence of interactions among collaborators

An in-depth view that explains how objects interact under exceptional conditions or that goes into more details

A focused view that ignores some aspects in order to concentrate on specific collaborators and their interactions

An implementation view

A generalized view that illustrates how to adapt a collaboration

After you've decided what to tell, plot the best way to tell it.

Showing a Bird's-Eye View

You don't have to stick to describing collaborations among individual objects. At the highest level, you can show how a system is

organized into subsystems and illustrate their collaborations. A subsystem in UML looks like a file folder with either a fork

symbol or the word subsystem enclosed in double angle brackets (see Figure 7-1). The file folder symbol is called a package

symbol. It can be used to designate a subsystem. To say that one subsystem depends on another (shown by a dashed line with

an open arrow pointing to the dependent) means that the dependent likely uses services defined by that subsystem.

Figure 7-1. The UML package symbol can be used to represent subsystems. A dependency is drawn as a dashed line

ending with a stick arrow.

In UML, a package can organize any arrangement of design elements—from a set of classes to everything

designed to support a number of use cases. When labeled with a fork or <<subsystem>> designation, a

package represents a subsystem.

Paths of communication between subsystems can be shown more or less precisely. For example, you can illustrate precisely

which interfaces are offered by each subsystem and which clients use them. An interface symbol can be drawn rather

imprecisely as a lollipop figure (a circle attached to a line), or more precisely as a box with two compartments (see Figure 7-2).

Figure 7-2. Interfaces can be drawn showing more or less detail.

How many diagrams you draw and how precisely you draw them should be based on your project's goals and

design process. Use diagrams to communicate ideas. Diagrams hastily drawn on white boards are likely to be

less precise than those drawn in a tool. Consider how much information your intended audience really needs to

see before adding it.

Even if you're looking at a system from 30,000 feet, you can choose from among several degrees of precision to describe

subsystem collaborations. If you've just begun, you may choose to show only general paths of collaboration. At a more detailed

level, you can enumerate the operations supported by each subsystem interface (see Figure 7-3). You can always revise

drawings and add interfaces after they've been designed.

Figure 7-3. A subsystem symbol can be divided into compartments. Publicly accessible operations and interfaces can

be defined.

If you wish you can explain even more about how a subsystem is designed. You can draw a subsystem that is divided into three

compartments. These compartments describe interfaces and explain how they are realized by classes within the subsystem

(see Figure 7-4). Most of the time you don't need to be so precise.

Figure 7-4. A subsystem's interfaces can be mapped to their realization. Not all classes are shown.

If you want to paint collaborations with broad brush strokes, stop short of describing specific messages

between objects or identifying classes. Instead, emphasize paths of communication between key collaborators.

Showing Collaborators Only

You may want to include a high-level explanation of your objects' responsibilities and collaborators in your story, so use CRC

cards. You can transfer these cards to a high-level design document. But what next? Sometimes, looking at specific message

sequences gets in the way of seeing the potential pathways between collaborators. To highlight these pathways, you can

illustrate your CRC cards with a simple UML collaboration diagram. In its simplest form, a collaboration diagram includes only

objects and their collaboration relationships (see Figure 7-5).

Figure 7-5. A simple UML collaboration diagram shows roles and collaboration paths.

A straight line, called a link, establishes a relationship between two collaborators. One thing that isn't apparent from the simple

drawing in Figure 7-5 is who is collaborating with whom. Are two linked objects both sending messages to each other? Most

likely not. Probably the collaboration is only one-way. To make this perfectly clear, you can put a visibility arrow at the end of the

link pointing to a collaborator that is seen by the object that uses its services (see Figure 7-6).

Figure 7-6. The collaboration diagram can be drawn to show object visibility.

Extra precision can illuminate, but it can be constraining, too. If you add visibility arrows to some links, people will expect them

everywhere. But what if you don't yet know who is collaborating with whom? If you don't know something, don't specify it. You

can always redraw any diagram to reflect current reality. If you decide that two objects are co-collaborators, you can draw

arrows on both ends of a link. But don't feel compelled to add these details just because UML lets you.

"Precision is not the same as accuracy. If someone tells you, 'pi is 4.141592,' they are using a lot of

precision.... If they say pi is about 3, they are not using much precision ... but they are accurate for as much

as they said."

—Alistair Cockburn

The degree of precision you use on a diagram should be a conscious choice. Even if you do know who is collaborating with

whom, you need not specify it diagrammatically. After all, this isn't your only means of explanation. A collaboration diagram can

include more or less detail and still be accurate (but less precise). People will probably understand your collaborations without

this extra precision.

Even collaborators can be labeled more or less precisely. You can distinguish between a role and an object. The way you do so

is subtle: The name of a role is preceded by a backslash character ("/"); the name of an object is not (see Figure 7-7). You can

both name an object and identify its role.

Figure 7-7. You can specify both role names and object names on a collaboration diagram.

The less precisely you draw any diagram, the fewer times you will need to update it but the less information it

will convey.

Should you wish to be even more precise, you can specify the class that implements the object or role (see Figure 7-8). You

designate the class by following its role and instance name with a colon and class name (":" class name).

Figure 7-8. Collaborations can show object names, role names, and class names.

Of course, this may be far more precision than you need. If you've created a role that can be assumed by objects belonging to

different classes, you have no need to ever specify its class. Or if you've determined a role but haven't yet mapped it to its

implementation, designating its class is premature.

Showing a Sequence of Interactions Among Collaborators

A collaboration diagram, drawn with an appropriate degree of precision, sets the stage for illustrating subsequent interactions.

These specific interactions can be illustrated either with another, more elaborate collaboration diagram or with a sequence

diagram. To show sequence, you can add lines with arrows next to collaboration links on a collaboration diagram (see Figure

7-9). Each line represents a specific message between two collaborators. The arrow points from client to collaborator.

Sequence is indicated by numbers that label message names. If you want to show a different sequence, you draw another

collaboration diagram.

Figure 7-9. A UML collaboration diagram emphasizes relations among objects.

Sequence diagrams and collaboration diagrams can show roughly the same things, and many tools let you

transform from one form to another without losing information. Which form you choose is a matter of style and

emphasis.

As an alternative, you can use a sequence diagram (see Figure 7-10). It, too, can be used to illustrate a specific interaction.

Objects are located along the top. Their lifelines are drawn as a vertical line. Instance creation and destruction can be shown.

When an instance is created, its lifeline appears; when it is destroyed, it terminates. Messages are drawn as lines with arrows,

similar to those on the collaboration diagram. But they are not numbered. Sequence simply proceeds from top to bottom.

Figure 7-10. A UML sequence diagram emphasizes the sequencing of messages.

Showing an In-Depth View

Numerous things can be shown in an interaction sequence: branching, object creation, destruction, iteration, asynchronous

communication, active objects (those that represent a flow of control), even recursion. If you need to visually represent complex

interactions, you can get very elaborate.

"Sequence diagrams aren't depictions of precise execution semantics; they are statements of desired

communications under a limited set of conditions which may never occur in a normal running program."

—David Harel

If an interaction involves complex decisions, you can dress up a diagram to explain alternative paths (see Figure 7-11). Instead

of marching along in strict sequence, flow proceeds along a chosen path. Expressions, called guard expressions and enclosed

within brackets, specify which path will be taken. A guard is an expression that must evaluate to true before the message can be

sent. UML doesn't specify the language for guard expressions, so you are free to use plain text, mathematical expression, or

even pseudo-code.

Figure 7-11. A UML sequence diagram can show polymorphic messaging.

In an application in which timing constraints must be met, sequence diagrams can be annotated with timing marks, event

identifiers, and timing expressions (see Figure 7-12). To draw a timing mark that describes how much time has elapsed, you

draw a vertical bar with a time value expression. A timing expression, like a guard condition, can be written more or less

informally. If events that invoke a message are added to a diagram, timing expressions can use them.

Figure 7-12. You can add timing constraints to a sequence diagram.

A concurrent application has more than one flow of control—that is, more than one set of interactions can be happening

logically at once. You can describe interactions for a concurrent application using only these few additional UML constructs:

active objects, asynchronous messages, and broadcast messages (see Figure 7-13). In UML, a class can be designated as

being active. An active class is a class whose instances are active objects. When an instance of an active class is created, its

associated flow of control starts, too. When the instance is destroyed, its flow of control terminates. An active class can create

instances that are either heavyweight (processes) or lighter weight (threads). A process represents a flow that executes

concurrently with other processes, whereas a thread executes concurrently with other threads in the same process. In a system

with both active and inactive objects, both kinds of objects communicate with one another. In UML diagrams, an active object is

drawn with a bold border. Messages can be sent asynchronously or can be broadcast to a number of objects.

Figure 7-13. Sequence diagrams can highlight active objects and show message broadcasting.

"Building a system that encompasses multiple flows of control is hard. Not only do you have to decide how

best to divide work across concurrent active objects ... you also have to devise the right mechanisms for

communication and synchronization.... For that reason, it helps to visualize the way these flows interact."

—Grady Booch

Showing a Focused Interaction

At times, it is desirable to treat part of the system as a black box whose contents are purposely hidden. This technique lets you

focus on a part that is of particular interest that you want to describe. Perhaps you want to show how user actions stimulate

some part of your design into action. In this case, you remove most UI details, ignore the myriad objects in a screen, and

assume that those necessary objects can be assembled and play their interfacer roles. Yes, you are removing a lot of detail.

This detail will have to be dealt with fairly soon. But you don't want to explain those objects if your story is trying to emphasize

what happens after the user clicks the Save button.

Have you ever seen those cartoon-style maps that exaggerate a particular point of view and shrink everything

else to minute proportions? Seen from New York, the rest of the United States appears scrunched into a tiny

space until the outline of California appears. This is the same technique you use when you want to focus on

one part of a collaboration.

To remove detail about UI interactions, ignore individual keystrokes, button clicks, or what happens when the

cursor moves in and out of focus. You can represent requests as being UI-independent, if you like. Instead of

notification of button click events in a particular messaging protocol defined by a particular UI implementation,

they can be logically shown as requests to "make a payment" or "view account history" or "save a file."

When you draw a sequence diagram with this focus, you aren't really lying about the UI. Instead, you are

abstracting away its details so that you can concentrate on what happens when your system receives notification

of an important UI event. Even if your design must update the UI, these details, too, can be summarized with a

message at the same level of abstraction: "present confirmation" or "present account history" or "return control to

the user."

UI details are elided for a reason. You are confident that you can construct a lower-level model of the UI using an

arrangement of objects (even though this can be quite a lot of work). But this is not the focus of your collaboration

story (see Figure 7-14).

Figure 7-14. A user event from the UI subsystem starts the collaboration.

"You will work with different semantic levels in developing an application; it is a normal part of software

design.... Each shift from one level to another requires a design step."

—James Rumbaugh

Showing an Implementation View

If you are documenting something that is already implemented, you want to be very accurate; what you see on a diagram is

precisely what has been coded. But even so, your diagrams include fewer details than are found in code. Diagrams are not

executable specifications. As a consequence, unless you explicitly label it, it will be impossible to tell whether a diagram

illustrates a proposed or a working solution. Make this perfectly clear in your diagram's title. And include specific

facts—message signatures, significant return values, branches, and interaction. But don't show everything. It is up to you to

decide what deserves emphasis in a diagram. There's always code to read.

A diagram is useful only if it shows the right stuff. Simply because you can automatically generate diagrams

from code isn't a good reason to create piles of them. Piles of diagrams obscure rather than enlighten.

Showing How to Adapt a Collaboration

You may have designed collaborators to be configurable—to be adapted by replacing one collaborator with another, by setting

certain conditions or parameters, or by plugging in new objects to complement existing ones. To explain how to adapt a

collaboration, you really need to explain three things: how the current design works, which aspects are adaptable, and how to

make these adaptations.

Start by concretely explaining how your design works. After you've done this, explain how to adapt your design. If your

adaptation is simple, you can use the techniques we've already presented. You can also provide a simple step-by-step

description of how to make an adaptation.

To Add a New Kind of Guess

Define a class that implements the Guess interface. This type of object must know contents, formatted

for both display and speech, know how long to wait before continuing with another guess, and be able

to add itself to a message. Specifically, it must implement these methods:

 public String displayableText()

 public String speakableText()

 public String getContent()

 public Duration waitTime()

 void addTo(Message m)

1.

Define a class that implements the Bidder interface. This type of object will contain all of the

corresponding Guess objects and determine which is most relevant to the current message. Then wrap

up the chosen Guess and the numeric bid value in a Bid object. Specifically, it must implement

 Bid bidOn(Message m)

2.

To emphasize objects and collaborations that are adaptable on a diagram, use notes to tag places where new collaborators

could be plugged in (see Figure 7-15).

Figure 7-15. Notes can show where collaborators are configurable.

You may have developed a pattern of collaborating roles instead of collaborating objects. Instead of being adapted, this

collaboration must be adopted (or instantiated) by designing multiple objects that fill these specific roles and plug into a stylized

collaboration architecture. To communicate how a generalizable collaboration works, at the very least you must describe each

role and discuss its specific responsibilities and collaborations. Of course, there is much more to describing a full-blown pattern

than what we outline here.

You can use a UML drawing, called a collaboration, to illustrate a generalizable grouping of collaborating roles (see Figure

7-16). Dashed lines are drawn from the named collaboration to each participant. Lines are labeled with role names.

Figure 7-16. The Observer pattern has two roles: a subject and an observer.

This drawing is very similar to a high-level collaboration diagram but serves a narrower purpose. You can illustrate how a

particular implementation plugs in and realizes the collaboration by showing how specific classes generalize the roles in the

collaboration (see Figure 7-17).

Figure 7-17. A collaboration diagram can show objects that realize the Observer pattern roles.

You can identify roles (not just objects and their classes) on a sequence or collaboration diagram, too (see Figure 7-18). Thus, it

is simple to explicitly illustrate how roles in a collaboration interact.

Figure 7-18. Observer role interactions can be shown in a sequence diagram.

Where UML Diagrams Fall Short

Still, the best way to "see" isn't always with a diagram. Consider complex algorithms. It's hard enough to figure out that sorting is

going on by reading a sequence diagram, let alone discriminate the key aspects of the algorithm. A sequence of messages

doesn't illustrate any side effects. So you can't see what happens when an object is added to a hashtable or when a buffer

overflows. And unless you add explicit annotations, you won't know what conditions cause branching, iteration, or the successful

completion of the algorithm. Algorithmic details are better expressed in words, pseudo-code, real code, a BNF-grammar, a state

machine diagram, decision tables, or pictures that identify and illustrate the important aspects and characteristics of the

algorithm (see Figures 7-19 through 7-23). This doesn't mean that you shouldn't draw a sequence diagram; it just won't explain

these algorithmic details.

Figure 7-19. Text is often the best way to describe something.

Figure 7-20. Visualizing the bubble at work demonstrates the algorithm clearly.

Figure 7-22. A sequence diagram is not the best tool for documenting the bubble sort algorithm.

Figure 7-23. Sequence diagrams are best used to show happy path interactions.

Figure 7-21 Code makes the bubble sort algorithm clear ... to a programmer.

Bubble Sort Code

class BubbleSorter

{

 void sort(int a[])

 {

 for (int i = a.length; --i>=0) {

 boolean swapped = false;

 for (int j = 0; j<i; j++) {

 if (a[j] > a[j+1]) {

 int T = a[j];

 a[j] = a[j+1];

 a[j+1] = T;

 swapped = true;

 }

 if (!swapped) return;

 }

 }

}

There is only so much you can piece together by studying a sequence diagram. Looking at one is like

observing a butterfly in flight. You can see what flowers the butterfly visits and in what order, but you won't

know why it chooses to visit one flower over another or how it affects a flower. Unless there is some other

explanation, you won't know the effect a message has on the object receiving it.

Every message on a sequence diagram has equal visual significance. Nothing stands out as special unless you add a note or

guard expression or write some commentary. What appears to be a recurring pattern may not be. Although the collaboration

paths look identical, the messages vary. So, for example, if you want to emphasize how exceptions to a happy path scenario

are handled, a table can be an extremely useful addition to your story (see Table 7-1). You can use a row in a table to describe

specific information about each exception: a general description, where it is detected, and how it is resolved. You can even

highlight, perhaps by shading their row, those exceptions that aren't recoverable.

Explaining these things on a sequence diagram alone would be difficult, if not impossible.

Table 7-1. A table explains online banking transaction exceptions and their impacts on the system and its users.

Exception or

Error

Recovery Action Effect on User

Connection is

dropped between

UI and domain

server after

transaction request

is issued.

Transaction continues to completion.

Instead of notifying user of status,

transaction is just logged. User will be

notified of recent (unviewed) transaction

results on next login.

User session is terminated.

User could've caused this

by closing browser, or the

system could have failed.

Users will be notified of

transaction status the next

time they access the

system.

Failure to write

results of

successful

transaction to

domain server log.

Administrator is alerted via console and

e-mail alerts. Transaction information is

temporarily logged to alternative source. If

connections cannot be reestablished, the

system restricts users to read only and

account maintenance requests until

transaction logging is reestablished.

Users can see an

unlogged transaction in

transaction history

constructed from backend

banking query but won't

have it embellished with

any notes they may have

entered.

Connection

dropped between

domain server and

backend bank

access layer after

request is issued.

Attempt to reestablish connection. If this

fails after a configurable number of retries,

transaction results are logged as "pending"

and the user is informed that the system is

momentarily unavailable ... check in later.

When connections are reestablished,

status is acquired and logged. Further

logins are prevented until backend access

is reestablished.

User will be logged off with

a notice that system is

temporarily unavailable

and will learn of

transaction status on next

login.

Backend banking

request fails.

Error condition reported to user.

Transaction fails. Failed transaction is

logged.

User receives error

notification but can

continue using online

services.

I l@ve RuBoard

I l@ve RuBoard

Choosing the Appropriate Form

Drawings you created using a tool have a certain polish. They appear solid and finished; a design illustrated with

them must be good, right? But they aren't the only way to communicate. Illustrations, charts, written explanations,

tables, and CRC cards all have a place (see Table 7-2). Common sense tells us that any diagram should show less

detail than can be found in code, and any written explanation should offer something more than can be found on CRC

cards. This still leaves a lot of leeway.

To tell stories that have impact and present insights, you'll need to develop a wide range of

expression that includes words, charts, CRC cards, UML diagrams, and other illustrations.

Consider what you want your readers to learn by studying a particular collaboration story. Then decide how best to

tell each part. Base your decisions on several factors: where you are in design, what you want to communicate, and

which tools and how much time you have available. If you are just beginning, your collaboration stories probably

aren't very elaborate. The further along you are, the more likely you are to include more detail.

Table 7-2. Many collaboration representations and options are available.

Goal Simple Representation Options

Describe

responsibilities and

collaborators.

Use CRC cards. Transfer information on cards to a

document.

Show collaboration

relationships among

objects.

Draw a simple collaboration

diagram.

Add visibility links to make explicit

who collaborates with whom.

Show paths of

collaboration among

subsystems.

Draw a subsystem diagram

with dependencies.

To be more precise, add subsystem

interfaces.

Illustrate an

interaction

sequence.

Draw a collaboration diagram. To be more formal, draw a

sequence diagram.

 To explain how objects are affected,

add a running commentary.

 To explain interactions among

subsystems, treat them as "big

objects" and describe messages

between them.

Explain complex

algorithms.

Create a visual animation or

storyboard.

Pseudo-code.

 Draw an interaction diagram and

annotate it with information that

explains branches and choices and

makes algorithmic details more

evident.

Describe detailed

interactions.

Use either a collaboration or a

sequence diagram.

Add timing marks, guards,

branches, loops, recursive calls, and

notes to the diagram.

 Include a running commentary.

Describe design

alternatives.

Write a brief description of

alternatives and rationale for

options chosen.

Additional sequence or collaboration

diagrams that illustrate key

alternatives.

Describe how to

reconfigure a

collaboration.

Define a collaboration. Write a recipe describing a

step-by-step procedure for

configuring a collaboration.

 Define responsibilities of

configurable objects.

 Draw a typical interaction

sequence. On it, identify where

configurable alternates can be

plugged in.

Include examples or sample code.

I l@ve RuBoard

I l@ve RuBoard

Tell It, Draw It, Describe It: Guidelines

Theodore Strunk and E.B. White wrote The Elements Style in 1935. Since then, countless writers have turned to this slim book

for straightforward advice. Strunk and White's words ring true for software designers, too. Form, presentation, and content

matter. The following guidelines for describing collaborations are based on the principles outlined in Strunk and White's book.

Joe Molloy, a graphics design teacher, says that writing and drawing use parallel strategies. Although your goal

is probably not to become a talented writer or visual artist, you can apply Strunk and White's advice to

describing and illustrating your collaboration stories.

Do not overwrite. Sure, you can keep written explanations brief and to the point, but what about drawings? If a picture is worth

1,000 words, are 10 pictures worth 10,000 words? Certainly not. Consider each drawing's purpose. Your goal should not be to

use every UML feature in a diagram. Instead, draw at the level of detail your audience needs. If collaborations are similar, show

a typical case first and then note how remaining ones differ. Draw representative interactions. Consider your readers' attention

span as well as what you want to communicate.

Do not overstate. Any explanation can include more or less information. Our advice: Don't tell more than what you believe at

any given point in your design. Don't dress up a collaboration story with speculation. If you know only general paths of

collaboration, don't show specific messages. If you know specific messages but not the arguments, don't invent arguments just

to fill in the blanks. Be as specific as you can, but don't state more than you will feel comfortable defending in a review.

Omit needless words. Stop short of telling everything. Keep your explanations to the point. There are ways to avoid clutter in

technical writing. We mention a few particularly relevant techniques. Don't start a discussion with metatext—text that describes

the text that follows. Don't pile on extra words or invent jargon; use simple language. Don't blindly fill in the blanks of a

heavy-handed template; say what you want to say, and stop.

But how can you keep drawings simple without oversimplifying them? Too much clutter on a diagram will cause your readers to

tune out, just as too many words will. Visual equivalents of needless words include the following:

Values returned from message sends

Internal algorithmic details

Details of caching and lazy initialization

Object creation and destruction

Sometimes, these details are important. If so, take exception to our guideline. Most of the time, however, they just add clutter.

Show return values only when they affect or alter the message flow. Or, if you can't see how one object could possibly

collaborate with another, perhaps show that it was returned earlier.

Omit details of how objects do low-level tasks. Stop short of explaining how preexisting objects work. Describe only how they

are used by objects of your design; do not show their collaborations (unless they interact with your objects). Don't describe

collaborations with primitive data types unless you really are trying to explain how a collection or string is used. These are

probably implementation details.

Revise and rewrite. If people don't understand what you are saying, rewrite. If people don't understand a diagram, redraw it. If

certain people want to see some things and others do not, draw two versions: an abridged one and an unabridged one.

Sometimes, the same story needs to be told slightly differently to different audiences.

A collaboration story, just like refactored code, improves whenever it is reworked for clarity.

A designer drew two views showing the same collaboration between subsystems. One view omitted the interface

details, and the other included them. Developers who were going to use these subsystems' services wanted to

know which interfaces to use. Developers who wanted to understand how their parts of the system were activated

didn't want to see these details. It was simple enough to draw the same collaboration both ways. So that's what

the designer did.

If a diagram becomes too complex, you can break it into smaller sub-diagrams. UML lets you draw a dangling message arrow

on one diagram (meaning that details aren't shown there) that can lead to a hanging message arrow in another diagram (see

Figures 7-24a and 7-24b). To explain how these diagrams are linked, you'll need to add a note.

Figure 7-24a. Dangling arrows can be used to link two diagrams.

Figure 7-24b. Hanging arrows can also be used to link two diagrams.

If a diagram is too simple, add missing details. But think before you pile them on. What was misunderstood? Was some internal

detail unclear? If so, perhaps it is better explained in another form. Maybe your readers should be reading code to get these

details. Attach an explanatory note instead of adding several low-level collaborators. These low-level messages might make the

diagram too busy and might cause important collaborations to become lost in these new details.

Do not affect a breezy manner. Don't fudge on details. Are CRC cards too breezy? They are if you want to explain an

interaction sequence. In that case, CRC cards don't go far enough. You are being breezy if you intentionally leave things

understated, undrawn, or unexplained because you cannot be bothered or because you don't know the answer.

When you're drawing rough sketches on a white board, use whatever form seems to fit your style (and the

degree of precision you are striving for). White board collaboration drawings can be converted to any standard

drawing format when they are redrawn in a tool.

Just because things are hard to communicate or take time to draw, don't leave them unexplained. If you need to illustrate and

explain things, too, don't worry about being redundant. Repeatedly stating things in a slightly different fashion adds emphasis.

Condense your work only after you've clearly spelled things out. (See the earlier quideline on revising and rewriting.)

Don't arbitrarily limit your diagrams to a single page or to 10 or fewer objects. Stick with your story. You may have difficulty

reproducing a large diagram drawn with a CASE tool on paper or on a Web page. But worry about that later. Get it down first,

and then figure out how to present it.

If you are focusing on interactions between domain objects, stick to a description of their interactions. Don't

explain how database connections are established in order to store and retrieve them. This may be interesting,

but why are you talking about this now?

Be clear. If you choose the right form of expression, your collaborations will be more understandable. To emphasize message

order, use a sequence diagram. Annotate it to show timing, branching, looping, return values, and many other things—if these

things bring clarity to your design. If they cause confusion, perhaps you need to explain things, too. Add a running commentary

alongside a sequence diagram, tool permitting, or write commentary in a text editor.

When you want to arrange collaborators in a pleasing fashion, choose a collaboration diagram. Emphasize which objects are

important by placing them in the center. Place a controller in the middle to emphasize the delegation to objects surrounding it.

Messages radiate from it like spokes on a wheel. Put a coordinator in the middle and arrange its collaborators around it (see

Figure 7-25).

Figure 7-25. A coordinator is surrounded by the things it delegates to or receives requests from.

Or you can organize objects according to their position in a layered architecture. This approach will let you see that messages

follow a layered communication pattern: flowing either between objects in a given layer or from an object within a given layer to

objects in adjacent layers. Whatever your strategy, try to arrange collaborators so that people won't have to hunt for the next

message in sequence.

To improve legibility, you can limit the number of objects and messages on a diagram. An interaction will be more

understandable when it shows a limited number of messages (25 or fewer) between a limited number of participants (10 objects

or fewer) with nominal branching.

"The first rule of style is to have something to say. The second rule of style is to control yourself when, by

chance, you have two things to say; say first one, then the other, not both at the same time."

—George Polya

Make sure the reader knows who is speaking. Sticking to a single point of view is equivalent to speaking in one voice. If you

are telling a story from one perspective, stick to that storyline. If you are explaining how subsystems collaborate, don't drop

down two levels of detail and show objects inside those subsystems collaborating with objects from a standard library. Do not

shift between outside and inside views. Present internal subsystem details in another diagram. To explain things, you often

have to dive in and explain how some things work at the next level of detail. But if you do so, don't inadvertently raise more

questions than answers or detract from your main point. So if your intent is to show how a complex responsibility is divided

among collaborators, show which helper methods are invoked. But stop there. Don't show how the helper methods work unless

these details are relevant to your story. And after you've burrowed down two or three levels or have moved to the side to follow

a distant collaborator, it can be easy to get lost.

Don't change your voice or add new voices to your discussion. Parenthetical comments and notes are often spoken with a

different voice and tone. When you point things out too often, people stop reading. Too many parenthetical comments,

cautionary notes in text, or even notes on diagrams convince your readers that you speak hesitantly.

This is a distraction—ignore it!

Anticipating questions that would be asked at a presentation, a designer included answers (parenthetically

enclosed) in running commentary about a high-level interaction. (She chose to parenthesize this side

commentary so as to not detract from the main flow.) These parenthetical comments (even with the best of

intentions) were quite distracting and impossible to skip over. (They might include something of interest, so you

just had to read them. But it turns out they weren't of general interest. They included only details that some folks

might question.) After she removed the parenthetical comments, the commentary was surprisingly easy to read.

Use these devices only when you really have something important to say and you want it to stand out.

NOTE: This is really, really important!! Keep notes to 2% or less of what you are saying, unless you like writing

stuff that nobody reads.

I l@ve RuBoard

I l@ve RuBoard

Organizing Your Work

The best way to present a story isn't likely to be the same way it was developed. Consider which topics belong

together and which ones deserve special emphasis. Ideally, closely related information belongs together. But when

you're explaining collaborations, it can be hard to structure information. Everything is interconnected! Should you

explain your objects, before describing their collaborations? Should you present an overview before going into

details? Should you present details first, and then explain the principles behind them, or vice versa? What if you are

telling your story to people who have different interests and backgrounds?

Adding Emphasis

You can consciously attempt to emphasize or deemphasize certain parts of your story. Certain things gain

prominence, whether you like it or not, merely by their position or their appearance. You need to be aware of these

factors so that you can give aspects of your story proper emphasis. Here are some ways to increase emphasis:

Put something first. Things that appear first have more emphasis. That's why we recommend that you orient

your readers first before plunging into your collaboration story. It's also why we relegate topics that aren't

central to an appendix.

Highlight something. In UML, active objects are drawn with bold lines.

Surround text with white space.

Surrounding an example with white space and making text bold give it double

emphasis.

Give something more space. If explanations are lengthier, are they necessarily more important and

deserving of extra emphasis? No. But they will have it. If the name of one object is longer than another's

and your tool draws a larger shape, the longer-named object will gain emphasis.

Place something in the center. Attention is drawn to objects in the middle of a collaboration diagram.

Make a bulleted list.

Refer to something many times. If you talk about some object or some collaboration pattern or some

subsystem in many different places, it will be emphasized.

Restate things in different forms. Showing exceptional paths as well as describing them in a table increases

their emphasis. Adding a running commentary to an interaction reemphasizes the actions.

"Emphasis is a way of distinguishing the two percent of the content that is most important from the

remaining ninety-eight percent."

—Ben Kovitz

If explanations are too lengthy, they can put your reader to sleep. Giving an inconsequential item too

much space causes readers to tune out and ignore whatever follows.

Unfolding Your Story

There are ways to begin simply and then lead to more interesting or intricate views. Landscape architects use the

principle of progressive realization to design linked scenes. They design views that purposely conceal things that are

revealed only as you move through the landscape. The idea is to move the viewer to the desired destination in

gradual, interesting steps. Something new and interesting is around every corner! John Simonds, in his book

Landscape Architecture, states, "A view should be totally revealed in its fullest impact only from that position in the

plan where this is most desirable." Each view is intriguing in its own right. And each new view contains new surprises.

With progressive realization, pleasure builds in anticipation of what's around the corner.

"I must begin not with hypothesis, but with specific instances."

—Paul Klee

You, too, can set up your readers to comprehend things more deeply as they move through your collaboration

landscape. Your collaboration stories will benefit from pacing, emphasis, and progressive realization techniques.

When you're telling a high-level collaboration story, stick to the main points. Present it as if it were a

news flash. Your audience will want to scan the headlines before deciding to read further. So grab their

attention. Present the fundamentals first: who the players are, what is important about them, and how

their collaborations work. Reveal only enough to keep readers engaged. After they've read this

overview, direct them to more detailed explanations. After explaining typical cases, give your readers

options to veer off in one of several directions: to a more detailed view, to exceptional conditions, to

alternatives.

Understanding What's Fundamental

Ben Kovitz, in Practical Software Requirements, admits that achieving an ideal sequence—in which every

explanation precedes its use in any description that follows—is difficult, if not impossible. Present your stories in a

way that builds interest and momentum instead of worrying about eliminating forward references. Even if you could

manage to organize your story so that fundamentals were presented first, it could make for a very dull presentation.

Even if you try very hard, you can't avoid forward references. If an object collaborates with

another—and you haven't yet read a description of that second object's role and responsibilities—you

can only guess at why it is being used.

Readers' interests and backgrounds differ. Some may know more than others and don't want to be bored by a review

of things they know. Others may be looking for specific facts. Still others may want to know only the punchline. There

are many reasons to tell a story in one way or another. If you know that some readers may lack fundamentals and

while others are not patient enough to wade through them, you'll have to choose which things come first. Things that

are only moderately interesting, or are background material, can always be relegated to an appendix.

Deciding whether some information is more fundamental than other information can be tricky. These heuristics, based

on Ben Kovitz's work, are equally applicable to collaboration stories as to software requirements:

Information not within your power to choose or change is more fundamental than those things that are

under your control. So descriptions of a problem (which is not something you are likely to alter) should

generally come before solutions (which are your own creation). This means that use cases are more

fundamental than the collaboration diagrams that illustrate them.

Things are more fundamental than relations between them, their attributes, and their actions. So ideally,

you would want to understand objects, their responsibilities, and their purpose before understanding their

collaborative relationships or how they participate in specific interaction sequences.

The normal case is more fundamental than exceptional cases. A happy path collaboration is more

fundamental than an exceptional path-filled collaboration. If you want to explain both, you should separate

the two.

Putting It All Together

So can you emphasize new material while building a story's energy and momentum? And when and where should

you present fundamental information? With progressive realization, each step along the way presents something

new. New things, if they are different enough from what has already been seen, are looked on with fresh interest.

Your new perceptions are colored by memories—past impressions shape new ones—and your overall impressions

accumulate. That's how a story can build to a dramatic conclusion: It lays down the important parts and then presents

new material in novel, interesting ways.

Be aware of monotony setting in. After four or five nearly identical drawings, attention wavers. If you want to keep

your readers' attention, shift their focus by inserting commentary that explicitly calls out some details or explains

what's different in the next diagram. Or point out that the next five diagrams are similar and all but the most eager

readers can skim them in good conscience. You can't always spice up your stories. After all, there are only so many

ways to draw sequence diagrams.

Progressive realization works if your readers want to follow your lead and you lead them where they want to go.

Those who are seeking specific facts won't sit still for very much nonsense. To help them search for facts, include an

index or a section that answers frequently asked questions (FAQs). There are many different ways to put together a

story. Pick one and make it work. You needn't present fundamentals first. Important things that need emphasis should

be stated first. Pointers to supplementary information can always satisfy the needs and curiosity of those lacking

fundamental knowledge.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Preserving Stories

Preserving stories requires commitment to a written and drawn design record. We offer you this thought on why you

should go to this effort: Do you really want to explain your design over and over again, or have people make

gratuitous changes that break your design? If not, preserve some key collaboration stories even after the code is

released. After the code is working, detailed design drawings become less valued by those maintaining the code.

They rarely look outside their code browsers for inspiration. But design discussions and explanations can increase in

value, especially if they tell things that cannot be inferred from the code. So focus on preserving things that will have

value and impact over time.

Some important collaboration stories are likely to become part of your permanent design record. It is these that you

want to keep up-to-date. It's important to distinguish between working and archival documents. But after you've

pushed further along in design, the early stories that you preserved can seem naïve. They need retelling to keep their

currency. However, you don't want to constantly retell and redraw as you redesign and recode. Yet you don't want

stories to get hopelessly outdated.

Collaboration ideas will change as you get closer to a working implementation. You can spend a lot of

time spinning your wheels revising collaborations diagrams every time you make a slight change.

Avoid this—even if you are using the ultimate power design drawing tool.

We offer this simple preservation strategy: Whenever you significantly readjust your design, update your collaboration

stories. Changing a message or one of its arguments probably isn't significant. Adjusting what several objects do (or

don't do) probably is. Revise a story whenever responsibilities shift among collaborators or newly invented objects

become central to the story.

I l@ve RuBoard

I l@ve RuBoard

Summary

As you design how objects collaborate, you will draw many rough sketches. As you work out details, you may want to

describe and diagram specific interactions. Maybe you want to show how your design supports key use cases or

explain tricky exception-handling logic. In each case, you need to tell a collaboration story.

The best way to communicate a collaboration story depends on what you want to emphasize. How much detail you

show should be based on how much you know about a collaboration and how much you want to reveal. Sometimes

you want to show things; many times you also want to briefly explain them. Mostly, you want to get your ideas across

effectively and compactly.

You can use UML diagrams to describe collaboration relationships and specific interaction sequences. Using UML,

you can show collaborations at different levels of detail. But sometimes the best way to explain your design isn't with

a diagram. For example, algorithmic details are better expressed in words, pseudo-code, real code, a state machine

diagram, or decision tables.

Some important collaboration stories are worthy of being part of your permanent design record. Use these stories to

explain your design to others. Preserving these collaboration stories requires some commitment. Unless you are

using a roundtrip-engineering tool, changing detailed design diagrams to reflect actual code can be difficult. We

recommend that you update important stories when you significantly readjust your design.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Further Reading

Ben Kovitz's book, Practical Software Requirements: A Manual of Content and Style (Manning, 1998), is about writing

software requirements. But parts of this book are priceless for all those who want to improve their technical

communications. The chapters on organization, clear writing, and small details are worth the price of the book.

Bruce Powel Douglass, in Real-Time UML: Developing Efficient Objects for Embedded Systems (Addison-Wesley,

1999), has packed a lot of good advice on how to design as well as describe real-time systems. If you need to design,

describe, or define systems with active objects, hard timing constraints, and complex state-based models, there's a

wealth of material in this book.

There are ways to illustrate collaborations other than those we've explored in this chapter. Ray Buhr, a professor at

the University of Ottawa, invented the use case map. Don't confuse use case maps with use cases. The two things

are totally different. Use case maps can be drawn to tie together related responsibilities that are invoked as a result of

a specific chain of events so they can be used to illustrate use cases.

"Use Case Maps can express the causal flow of responsibilities, even without an underlying

structure of components. Afterwards, the same UCM scenario can be placed on top of different

such structures, allowing one to evaluate different architectural alternatives.... People working

directly at the level of message sequence diagrams tend to make many (premature) decisions."

—Daniel Amyot

A thorough explanation of use case maps can be found by browsing the Web site www.usecasemaps.org, which is

devoted to promoting the use and understanding of use case maps. A good explanation of use case maps can be

found in the chapter Understanding Macroscopic Behavior Patterns in Building Application Frameworks:

Object-Oriented Foundations of Framework Design (Mohamed Fayed, ed., John Wiley, 1999).

I l@ve RuBoard

http://www.usecasemaps.org/default.htm

I l@ve RuBoard

Chapter 8. Reliable Collaborations

Henry Petroski, structural engineer and historian, talks of the need to understand the consequences of failure: "The

consequences of structural failure in nuclear plants are so great that extraordinary redundancies and large safety

margins are incorporated into the designs. At the other extreme, the frailty of such disposable structures as

shoelaces and light bulbs, whose failure is of little consequence, is accepted as a reasonable trade-off for an

inexpensive product. For most in-between parts or structures, the choices are not so obvious. No designers want

their structures to fail, and no structure is deliberately under designed when safety is an issue. Yet designer, client,

and user must inevitably confront the unpleasant questions of 'How much redundancy is enough?' and 'What cost is

too great?'" As software designers, we too must make our software machinery hold up under its anticipated use.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Understanding the Consequences of Failure

Software need not be impervious to failure. But it shouldn't break easily. A large part of software design involves

building our software to accommodate situations that, although unlikely, still must be dealt with. What if the user

mistypes information? How should the software react? What if items a customer wants aren't available? Even if the

consequences of not delivering exactly what the customer wants are not catastrophic, this situation must be dealt with

reasonably—in ways that are acceptable to the customer and the business. When information is mistyped, why not

notify the users and let them reenter it? Not enough stock on hand? Again, ask the users to cancel or modify their

order. Software should detect problems and then engage the user in fixing them!

But what if a user is unable to guide the software? Shouting "stack overflow!" or "network unavailable!" won't be

helpful to the disabled user of Speak for Me. "Punch in the gut" error messages are unacceptable in that design. It

should handle many exceptional conditions and keep running without involving the user.

There is an enormous difference between making software more reliable and user-attentive, on the one hand, and

designing it to recover from severe failures on the other hand. Fault-tolerant design incorporates extraordinary

measures to ensure that the system works despite failure:

Telephone switching equipment is extremely complex and yet must be very reliable. Redundancies are

built into the hardware and the software. Complicated mechanisms are designed to log and recover from

many different faults and error conditions. If a hardware component breaks, a redundant piece of

equipment is provisioned to take its place. The software keeps the system running under anticipated

failure conditions without losing a beat.

The more serious the consequences of failure, the more effort you must take to design in reliability. Alistair Cockburn,

in Agile Software Development (Addison-Wesley, 2001), recommends that the time you spend designing for reliability

fit with your project's size and criticality. He suggests four levels of criticality:

Loss of comfort. When the software breaks, there is little impact. Most shareware falls into this category.

Loss of discretionary monies. When the software breaks, it costs. Usually there are workarounds, but

failures still impact people, their quality of work, and businesses' effectiveness. Many IT applications fall into

this category, as do applications that affect a business's customers. If a customer gets overcharged

because of a billing miscalculation, this doesn't cause the business severe harm. Usually the problem gets

fixed, one way or the other, when the customer calls up and complains!

Loss of essential monies. On the other hand, some systems are critical. At this level of criticality, it is no

longer possible to correct the mistake with simple workarounds. The cost of fixing a fault is prohibitive and

would severely tax the business.

Loss of life. If the software fails, people could get injured or harmed. People who design air traffic control

systems, space shuttle control software, pacemakers, or antilocking brake control software spend a lot of

time analyzing how to keep the system working under extreme operating conditions.

The greater the software's criticality, the more justification there is for spending time to design it to work reliably. Even

if it is not a matter of life and death, other factors may drive you to design for reliability:

Software that runs unattended for long periods may operate under fluctuating conditions. Exceptional

conditions in its "normal" operating environment shouldn't cause it to break.

Often, software that glues larger systems together must check for errors in inputs and must work in spite of

communications glitches.

Components designed to plug in and work without human intervention need to detect problems in their

operating environment and run under many different conditions. Otherwise, "plug and play" wouldn't work.

Consumer products need to work, period. Their success in the marketplace depends on high reliability.

When you've gauged how reliable your software needs to be, you'll need to consider key collaborations and look for

ways to make them more reliable. As you dig deep into design and implementation, you will uncover many ways your

software might break. But let's get real! It is up to us designers to decide what appropriate measures to take, to

propose solutions, and to work out reasoned compromises—but extraordinary measures aren't always necessary.

I l@ve RuBoard

I l@ve RuBoard

Increasing Your System's Reliability

Reliability concerns crop up throughout development. But once you have decided on the basic architecture of your

system, have assigned responsibilities to objects, and have designed collaborations, you can take a closer look at

making specific collaborations more reliable—by designing objects to detect and recover from exceptional conditions.

"At an architectural level, the basic patterns, policies, and collaborations for exception handling

need to be established early, because it is awkward to insert exception handling as an after

thought."

—Craig Larman

We suggest you start by characterizing the different types of collaborations in your existing design. This will give you

a sense of where you need to focus efforts on improving objects and designing them to be more resilient. Then

identify key collaborations that you want to make more reliable.

After you've characterized your system's patterns of collaborations and prioritized your work, you need to get very

specific:

List the exceptions and errors cases you want your design to accommodate.

Decide on reasonable exception-handling and error recovery strategies to employ.

Try out several design alternatives and see how responsibilities shift among collaborators. Settle on a

solution that represents a best compromise.

Define additional responsibilities for detecting exceptions and obligations of other objects for resolving them

if that is part of your solution.

Look at your design for holes, unnecessary complexity, and consistency.

Consider conducting an "environmental impact study" on the existing or proposed architectural

environment where your system may live—is it a software-friendly fit?

A system is only as reliable as its weakest link. So it makes little sense to design one very reliable object surrounded

by brittle collaborators, or to make one peripheral task very reliable while leaving several central ones poorly

designed. The system as a whole needs to be designed for reliability, piece by piece.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Determining Where Collaborations Can Be Trusted

One way to get a handle on how collaborations can be improved is to carve your software into regions where trusted

communications occur. Generally, objects located within the same trust region can communicate collegially, although

they may still encounter exceptions and errors as they perform their duties. Within a system there are several cases

to consider:

Collaborations among objects that interface to the user and the rest of the system

Collaborations among objects within the system and objects that interface with external systems

Collaborations among objects outside a neighborhood and objects inside a neighborhood

Collaborations among objects in different layers

Collaborations among objects at different abstraction levels

Collaborations among objects of your design and objects designed by someone else

Collaborations among your objects and objects that come from a vendor-provided library

Whom an object receives a request from is a good indicator of how likely is it to accept a request at face value.

Whom an object calls on determines how confident it can be that the collaborator will field the request to the best of its

ability. It's a matter of trust.

Trusted Versus Untrusted Collaborations

When should collaborators be trusted? Two definitions for collaboration are worth reexamining:

Collaborate: 1. To work together, especially in a joint intellectual effort. 2. To

cooperate treasonably, as with an enemy occupation force.

—The American Heritage Dictionary

Not every object needs to take responsibility for ensuring reliable collaborations. If every object took a

paranoid stance, most of the time would be redundantly spent checking for preconditions to be

established and busily guaranteeing that postconditions are satisfied. Once you've made sure that

appropriate parties perform their assigned responsibilities, you can cut out a lot of design redundancy.

The first definition is collegial: objects working together toward a common goal. As shown in Figure 8-1, when objects

are within the same trust region, their collaborations can be conscientiously designed to be more collegial. Both client

and service provider can be designed to assume that if any conditions or values are to be validated, they need be

done only once, by the designated responsible party.

Figure 8-1. Objects often trust their collaborators.

In general, when objects are in the same layer or neighborhood, they can be more trusting of their collaborators. And

they can assume that objects that use their services call on them appropriately.

The second definition requires you to think critically. When collaborators are designed by someone else or when they

are in different layers, or a library, your basic assumptions about the appropriate design for that collaboration need to

be carefully examined. If a collaborator can't be trusted, it doesn't mean that it is inherently more unreliable. But a

more defensive collaborative stance may be appropriate. A client may need to add extra safeguards, potentially both

before and after calling an untrusted service provider.

If a request is from an untrusted or unknown source, extra checks may be made before a request is honored. There

are several situations to consider:

When an object sends a request to a trustworthy colleague

When an object receives a request from a trusted colleague

When an object uses an untrusted collaborator

When an object receives a request from an unknown source

When an object receives a request from a known untrustworthy source

Collaborations among trusted colleagues. A client that provides a well-formed request expects its service provider

to carry out that request to the best of its ability. When an object receives a request from a trusted colleague, it

typically assumes that the request is correctly formed, that it is sent at an appropriate time, and that data passed

along with the request is well formed (unless there is an explicit design decision that the receiver takes responsibility

for validating this information).

There are exception-handling mechanisms to put in place to assist with untrustworthy collaborations,

and there are additional exception-handling mechanisms that have nothing to do with trustworthiness,

such as "out of stock." In spite of trust, things can still go wrong.

During a sequence of collaborations among objects within the same trust region, there is little need to check on the

state of things before and after each request. If an object cannot fulfill its responsibilities and is not designed to

recover from exceptional conditions, it could raise an exception or return an error condition, enabling its client (or

someone else in the collaboration chain) to responsibly handle the problem. But the object may be legitimately

designed to not check. In this case it won't even notice when things fail. In a trusted collaboration there is no need to

check for invalid collaborations. So if trust is ever violated, things can go terribly wrong.

When using an untrusted collaborator. When collaborators are untrusted, extra precautions may need to be taken,

especially if the client is designed to be responsible for making collaborations more reliable. You may pass along a

copy of data instead of sharing it with an untrusted collaborator. Or you may check on conditions after the request

completes.

When receiving requests from an unknown source. Designers of objects that are used under many different

situations—such as those included in a class library or framework—must balance their objects' expected use (or

misuse) with overall reliability goals. There aren't any universal design rules to follow. Library designers must make a

lot of hard choices. You can design your object to check and raise exceptions if data and requests are invalid (that's

certainly a responsible thing to do, but it's not always necessary) or to ignore such exceptions (that's the simplest

thing, but not always adequate). Your goal should be to design your framework or library to be consistent and

predictable and to provide enough information so that clients can attempt to react and recover when you raise

exceptions.

When receiving requests from an untrusted client. Requests from untrusted sources often are checked for

timeliness and relevance, especially if your goal is to design an object that works reliably in spite of untrustworthy

clients. Of course, there are degrees of trust and degrees of paranoia. Designing defensive collaborations can be

expensive and difficult. In fact, designing every object to collaborate defensively leads to poor performance and

potentially introduces errors.

Implications of Trust

Determining trust regions for a system is straightforward. After you determine them, it is easier to decide where to

place extra responsibilities for making collaborations more reliable.

Objects generally don't check on who calls upon their services at run time. Decisions about whether

requests are trusted or untrusted are typically design decisions, not run time ones. So responsibilities

are typically implemented assuming a specific degree of trust.

In the Speak for Me application, all objects within the core of the application are designed to work

together and are considered to be within the same trust region. Objects in the application control and

domain layers all assume trusted communications. Objects at the "edges" of the system—within the

user interface and in the technical services layer—are designed to take precautions to make sure that

outgoing requests are honored and incoming requests are valid. For example, the Selector debounces

user eye blinks and presents only single "click" requests. And the MessageBuilder quite reasonably

assumes that it receives trusted requests from the objects at the edges: the Selector and the Timer.

Objects controlled by the MessageBuilder assume that they are getting reasonable requests, too. So

requests to add themselves to a message or to offer the next guess are done without questioning the

validity of input data or the request. Trusted collaborations within the core of the system greatly simplify

the implementation of the MessageBuilder, the Dictionaries, the Guesser, the Message, and Letter,

Word, and Sentence objects' responsibilities.

Objects at the edges of the system have additional responsibilities for detecting exceptions and trying to

recover if they can or, if not, to report them to a higher authority (someone at the nurse's station). When

a message cannot be reliably delivered, extra effort is made to send an alarm to the nurse's station and

raise an audio signal.

In a large system, it is useful to distinguish whether collaborations among components can be trusted and

furthermore to identify the guarantees, obligations, and responsibilities of each component. After these constraints

are agreed on, each component can be designed to do its part to ensure that the system as a whole works more

reliably.

The telco integration application receives service order requests and schedules the work to provision the

services and set up billing systems. The architecture of the system consists of a number of adapter

components that interface to external applications. Collaborations between an adapter and its "adapted"

application are generally assumed to be untrusted, whereas collaborations between any adapter and

core of the system are trusted.

The order taking adapter component receives requests to create, modify, or cancel an order from an

external Order Taking application. These requests are converted into an internal format, which is sent to

the scheduler component. The order taking adapter does not trust the Order Taking application to give it

well-formed requests; it assumes that any number of things can be wrong (and they often are). It takes

extraordinary efforts to guarantee that requests are correctly converted to internal format before it

passes them to the scheduler.

Even so, it is still possible to receive requests that are inconsistent with the actual state of an order: For

example, a request to cancel an order can be received after the work has already been completed. It is

business policy not to "cancel" work that has already been completed. So although collaborations

between the Order Taking adapter and the scheduler are trusted, well-formed requests still can fail.

I l@ve RuBoard

I l@ve RuBoard

Identifying Collaborations To Be Made Reliable

At first, you may not know just exactly what measures to take to increase your system's reliability. The first step is to identify

several areas where you want to ensure reliable collaborations. Revisit your initial design and take a stab at improving it. You

might consider the following:

How collaborations support a specific use case or task

How an object neighborhood responds to a specific request

How an interfacer handles errors and exceptions encountered in an external system

How a control center responds to exceptional conditions and errors raised by objects under its control

After you've identified a particular collaboration to work on, consider what needs to be done. Maybe no additional measures

need to be taken; objects are doing exactly what they should be doing. More likely, you will want to add specific responsibilities

to some objects for detecting exceptional conditions, and to others for reacting and recovering from them. The first step in

making a collaboration more reliable is to understand what might go wrong.

What Use Cases Tell Us

Ideally, some requirements document or use case should spell out the right thing to do when things go wrong. But even if use

case writers have written quite detailed descriptions, rarely have they considered everything. Alistair Cockburn, in Writing

Effective Use Cases, assigns four precision levels to use cases. Only those in the most precise level identify failure conditions

and describe how the system should respond to them. Cockburn cautions use case writers not to write in too much detail too

early:

"[Describing exceptions] is often tricky, tiring, and surprising work. It is surprising because

quite often a question about an obscure business rule will surface during this writing, or the

failure handling will suddenly reveal a new actor or new goal that needs to be supported.

Most projects are short on time and energy. Managing the precision level to which you work

should therefore be a project priority."

—Alistair Cockburn

No wonder exception-handling strategies often remain unspecified until design! Use cases generally describe software in terms

of actors' actions and system responsibilities and not in terms of objects and exceptions. At best, use case writers will identify a

few problems and briefly describe how some of them should be handled.

Just because someone describes a possible exception doesn't mean it will actually happen. Your design may

have successfully side-stepped the potential problem.

But that doesn't relieve you of the responsibility for identifying real problems and resolving them as you encounter them. As you

dig into design, you are likely to identify many exception conditions and devise ways of handling them. When your solutions are

costly or represent compromises, review them with all who have a stake in your software's overall reliability. They should weigh

in on your proposed solutions.

Distinguish Between Exceptions and Errors

It is easy to waste a lot of time considering things that might go wrong or pondering the merit of partial solutions when there is

no easy fix. To avoid getting bogged down, distinguish between errors and exceptions. Errors are things that are wrong. Errors

can result from malformed data, bad programs or logic errors, or broken hardware. In the face of errors, there is little that can be

done to fix things and proceed. Unless your software is required to take extraordinary measures, you shouldn't spend a lot of

time designing your software to recover from them.

For the most part, errors can be ignored. On the other hand, exceptions aren't normal, but they happen and you should design

your software to handle them. This is where the bulk of your energy should go—solving exceptional conditions. If a use case

identifies exceptional conditions, it may also have identified how they should be accommodated:

"I have long (but quietly) advocated dealing with exception handling issues early in the design of a system.

Unfortunately, there is a natural tendency to focus on the main functional flow of a system, ignoring the

impact of exceptional situations until later."

—John Goodenough

Invalid password entered—After three incorrect attempts, inform the users that access is denied to the online

banking system until they contact a bank agent and are assigned a new password.

To translate this policy into appropriate objects' responsibilities, you'll need to assign some object the responsibility for validating

the password; several more are likely to be involved in recovering from this problem. This is pretty easy. There is nothing

difficult or challenging in designing an object to validate a password or report an error condition to the user.

But wait. Is the event an error or an exception? Mistyped passwords are a regular, if infrequent, occurrence. We want our

software to react to this condition by giving the user a way to recover, so we view it as an exception and not an error. In fact,

most use cases describe exceptions that cause the software to veer off its normal path. Some will be handled deftly, and users

will be able to continue with their original task. These are recoverable exceptions. With others, users won't be able to complete

their original task. The use case will end abnormally, but the application will keep running. From the user's perspective, these

are unrecoverable exceptions. Rarely will use cases mention errors unless their authors are experienced at describing

fault-tolerant software.

List exception conditions you expect at whatever level you are working at. If you have use case descriptions

that you are designing for, start with those. But don't expect them to be a complete or particularly detailed guide

as you design reliable collaborations.

Object Exceptions Versus Use Case Exceptions

Let's get one thing clear: Exceptions described in use cases are fundamentally different from exceptions uncovered in a design.

Use case exceptions reflect the inability of an actor or the system to continue on the same course. Object exceptions reflect the

inability of an object to perform a requested operation. During execution of a single step in a use case scenario, potentially

several use case-level exceptions could happen. However, the execution of a single use case step could result in thousands of

requests between collaborators, any number of which could cause object exceptions. There isn't a one-to-one correspondence

between exception conditions described in use cases and object exceptions. Nevertheless, we need to make our application

behave as its use case writers desire. We also need to make it reasonably handle the many more exceptional conditions that

arise during execution.

Object Exception Basics

Invariably, an exception condition detected during application execution leads some object or component to veer off its normal

path and fail to complete an operation. Depending on your design, some object may raise an exception, whereas another object

may handle it. By handling an exception, the system recovers and puts itself into a predictable state. It keeps running reliably

even as it veers off the normal path—to an expected but exceptional one. Left unhandled, however, exceptions can lead to

system failure, just as unhandled errors do.

It is up to you to decide what to do when an exception condition is encountered. Many object-oriented programming languages

define mechanisms for programmers to declare exceptions and error conditions, signal their occurrence, and to write and

associate exception-handling code that executes when signaled (see Figure 8-2).

Figure 8-2. Execution transfers directly to callers' exception-handling code.

"A program must be able to deal with exceptions. A good design rule is to list explicitly the situations that

may cause a program to break down."

—Jorgen Knudsen

Alternatively, you could design an object to detect an exception condition, and, instead of raising an exception, it could return a

result indicating that an exception occurred (see Figure 8-3).

Figure 8-3. A caller can check for an exception condition returned in a result.

In part, it's a matter of style, but largely it's the implementation language that determines whether you design your objects to

raise exceptions or report exception conditions. Either design described would "handle the exception condition" of an invalid

password.

The first design (Figure 8-2) uses exception facilities in the programming language; the second (Figure 8-3) returns values that

signify an exceptional condition. Both techniques convey the exceptional condition to the client. Yet another design alternative is

to make a service provider smart. It might remember that an exception condition has occurred and provide an interface for

querying this fact.

Let's look further at what it means to define and use exception facilities in an object-oriented programming language. When an

object detects an exception and signals this condition to its client, it is said to raise an exception. In the Java programming

language, the term is throw an exception. To throw a specific exception, a programmer would declare that a particular type of

Throwable object (which contains contextual information) will be sent along with the exception signal. An object throws an

exception by executing a statement:

if (loginAttempts > MAX_ATTEMPTS) {

 throw new TooManyLoginAttemptsException();

}

The handler of an exception signal has several options. It could fix things and then transfer control to statements immediately

following the call that raised the exception (resumption). Or it might re-signal the same or a new exception, leaving the

responsibility for handling it to a possibly more knowledgeable object (propagation). In most cases, instead of grinding to a halt,

it is desirable to make progress. This involves a cooperative effort on the part of the object raising the exception, the client

sending the exception-causing request, and one or more objects in the collaboration chain if the requester chooses not to

handle the exception then and there.

There must be enough information available that the object that takes responsibility for handling the exception can take a

meaningful action. The design of appropriate exception objects that are returned to the client when an exception is raised is a

topic we won't explore in great detail. Be aware that when you design an exception object, you can declare information that it

will hold. When the object that detects the exception condition creates an exception object, it populates it with this information.

Typically, exception objects are information holders.

In Java, there are subclasses of Error—for exception conditions that need not be handled—or subclasses of

Exception—for conditions that are required to be handled or implicitly rethrown.

We offer the following general guidelines for declaring and handling exceptions.

Avoid declaring lots of exception classes. The more classes of exceptions you define, the more cases an exception handler

must consider (unless it groups categories of exceptions). To keep exception-handling code simple, define fewer classes of

exceptions and design clients to take different actions based on answers supplied by the exception object.

Deep exception class hierarchies and wide exception class hierarchies are seldom a good idea. They significantly

increase the complexity of a system, but the individual classes are seldom actually used. Compare the complexity

of an IOError class hierarchy with 20 subclasses (probably arranged in some sub-hierarchy structure) with one

I/O error class that knows an error code with 20 possible values. Most programmers can remember and

distinguish 5–7 clearly different exception classes, but if you give them 20–30 exception classes with similar

names and subtle distinctions, they will never be able to remember them all and will have to continually refer to

the system documentation.

Identify exception classes in the same way you identify any other classes—via responsibilities and collaborations. Unless two

exceptions will have distinct responsibilities or participate in different types of collaborations, they shouldn't need different

classes. Outside the world of exceptions you wouldn't normally create two distinct classes simply to represent two different state

values, so why create multiple exception classes simply to represent different values of an error code?

It makes sense to have different exception classes for FileIOError and EndOfFile exceptions. Some people

might try to treat EndOfFile as a FileIOError, but this wouldn't be a good design choice. FileIOError
represents a truly exceptional and unexpected occurrence. Its collaborators are likely to have to take drastic

actions. EndOfFile is usually an expected occurrence, and its collaborators are likely to respond to it by

continuing the normal operations of the program. Seldom, if ever, do you want to respond in the same way to

both of these exceptions. But you are quite likely to want to respond in an identical manner to all FileIOErrors.

Name an exception after what went wrong and not who raised it. This makes it easy to associate the situation with the the

appropriate action to take (see Figure 8-4). The alternative makes it less clear why the handler is performing specific actions. An

exception handler may also need to know who originally raised it (especially if it was delegated upward from a lower-level

collaborator), but this can easily be defined to be included as part of the exception object.

Figure 8-4 TooManyLoginAttemptsException explains what happened and not who threw it.

try {

 loginController.login(userName, password);

}

catch (TooManyLoginAttemptsException e) {

 // handle too many login attempts

}

Recast lower-level exceptions to higher-level ones whenever you raise your abstraction level. When very low-level

exceptions percolate up to a high-level handler, there is little context to assist the handler in making informed decisions. Recast

an exception whenever you cross from one level of abstraction to another. This enables exception handlers that are way up a

collaboration chain to make more informed decisions and reports. Not taking this advice can lead your users to believe that your

software is broken, instead of just dealing with unrecoverable errors:

A compiler can run out of disk space during compilation. There isn't much the compiler can do in this case except

report this condition to the user. But it is far better for the compiler to report "insufficient disk space to continue

compilation" than to report "I/O error #xxx." With the latter message, the user may be led to believe there is a bug

in the compiler rather than insufficient resources, something that can be corrected by the user. If this low-level

exception were to percolate up to objects that don't know how to interpret this I/O error exception, it will be hard to

present a meaningful error message. To prevent this, the compiler designers recast low-level exceptions to

higher-level ones whenever subsystem boundaries are crossed.

Provide context along with an exception. What's most important to the exception handler is to identify the exception and to

gain information that will aid it in making a more informed response. This leads to the design of exception objects that are rich

information holders. Specific information can be passed along, including values of parameters that caused the exception to be

raised, detailed descriptions, error text, and information that can be used to take corrective action. When recasting exceptions,

as shown in Figure 8-5, some designers also embed lower-level exceptions, providing a complete trace of what went wrong.

Figure 8-5. Exception information is preserved in inner exceptions.

Assign exception-handling responsibilities to objects that can make decisions. There are many different ways to handle

an exception: One way is to log and rethrow it (possibly more than once) until someone takes corrective action. Who naturally

might handle exceptions? As a first line of defense, consider the initial requester. If it knows enough to perform corrective action,

then the exception can be taken care of right away and not be propagated. As a fallback position, it is always appropriate to

pass the buck to some object that takes responsibility for making decisions and controlling the action. Controllers and objects

located within a control center are naturals for handling exceptions.

Handle exceptions as close to the problem as you can. One object raises an exception, and somewhere up the

collaboration chain another object handles it. Sure, this works, but it makes your design harder to understand. It can make it

difficult to follow the action if you carry this to extremes.

External interfacers often take responsibility for handling faulty conditions in other systems they interface to, relieving their

clients of having to know about lower-level details and recovery strategies. Service providers often take on the added

responsibility to handle an exception and retry an alternative means of accomplishing the request.

Consider returning results instead of raising exceptions. Instead of raising exceptions, you always can design your

exception taking object to return a result or status that is directly checked by the requester. This makes it more obvious who

must take at least some responsibility: the requester.

Exception- and Error-Handling Strategies

In the case of errors as well as exceptions, handling them is a matter of how much effort and energy you want to expend. Highly

fault-tolerant systems are designed to respond by taking extraordinary measures. A highly fault-tolerant system might recover

from programming errors by running an alternative algorithm, or from a suddenly inaccessible disk by printing data on an

alternative logging device. Most ordinary software would break (gracefully or not, depending, again, on the design and the

specific condition).

"The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is

that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or

repair."

—Douglas Adams

There are numerous ways to deal with a request that an object can't handle. Doug Lea, in Concurrent Programming in Java™

(Addison-Wesley, 1999), poses the question, "What would you do if you were asked to write down a phone number and you

didn't have a pencil?" to explore several options. One possibility is what Lea calls unconditional action. In this simple scheme,

you'd go through the motions of writing as if you had a pencil, whether you had one or not. Besides looking silly, this is

acceptable only if nobody cares that you fail to complete your task.

Employing this strategy often leads to unpredictable results. In real life, you likely wouldn't be so irresponsible, and your

software objects shouldn't behave this way either. If an object or component or system that receives a request isn't in the proper

state to handle it, nothing can be guaranteed. An unconditional act could cause the software to trip up immediately or, worse yet,

to fail later in unpredictable ways. Ouch! There are more acceptable alternatives:

Inaction. Ignore the request after determining it cannot be correctly performed.

Balk. Admit failure and return an indication to the requester (by either raising an exception or reporting an error

condition).

Guarded suspension. Suspend execution until conditions for correct execution are established; then try to perform the

request.

Provisional action. Pretend to perform the request, but do not commit to it until success is guaranteed.

Recovery. Perform an acceptable alternative.

Appeal to a higher authority. Ask a human to apply judgment and steer the software to an acceptable resolution.

Rollback. Try to proceed but, on failure, undo the effects of a failed action.

Retry. Repeatedly attempt a failed action after recovering from failed attempts.

Inaction, balking, and guarded suspension can be categorized as pessimistic, or check-and-act, policies.

Provisional action, appealing to a higher authority, rollback, recovery, and retry are try-and-see, or optimistic,

policies.

These strategies impact the designs of clients as well as objects fulfilling requests and, possibly, other participants in recovery

activities. No one strategy is appropriate in every situation.

"Decisions about these matters usually need to be made relatively early in the design of an application....

Choices among policies impact method signatures, internal state representation, class relations, and

client-visible protocols."

—Doug Lea

Inaction is simple but leaves the client uninformed. When an object balks, at least the requester knows about the failure and can

try an alternative strategy. With guarded suspension, the object would patiently wait until some other object gave it a pencil (the

means by which someone knows what is needed and supplies it is unspecified).

Provisional action isn't meaningful in this example, but it makes sense when a request takes time and can be partially fulfilled in

anticipation of later completion. Recovery could be as simple as using an alternative resource—a pen instead of a pencil.

Appealing to a higher authority might mean asking some human who always keeps pencils handy and sharp to write down the

number instead. Rollback doesn't make much sense in this example because nothing has been partially done—unless the

pencil breaks while the requester is writing down the number. In this case the object would throw away the partially written

number. Rollback is a common strategy in which either all or nothing is desired and partial results are unacceptable. Retrying

makes sense only when there is a chance of success in the future.

There will always be consequences to consider when you're choosing any recovery strategy:

"The designer or his client has to choose to what degree and where there shall be failure.

Thus the shape of all designed things is the product of arbitrary choice. If you vary the terms

of your compromise...then you vary the shape of the thing designed. It is quite impossible for

any design to be 'the logical outcome of the requirements' simply because the requirements

being in conflict, their logical outcome is an impossibility."

—David Pye

Mixing or combining strategies often leads to more satisfactory results. For example, one object could attempt to write down the

phone number but broadcast a request for a pencil if it fails to locate one. It might then wait for a certain amount of time. But if

no one provided the waiting object with one, ultimately it might ignore the request. Meanwhile, the requester might wait a while

for confirmation and then locate another object to write the phone number after waiting a predetermined period of time.

The best strategy isn't always obvious or satisfying. Compromises don't always feel like reasonable solutions even if they are

the best you can do under the circumstances.

It isn't always possible to devise simple solutions to difficult problems. Systems that make concerted efforts to

handle exceptions often employ complex strategies.

Determining Who Should Take Action

But objects do fail to fulfill their responsibilities. Because objects do not work in isolation—they collaborate to fulfill larger

responsibilities—a key question to consider is which objects should take on additional responsibilities for guaranteeing success

in spite of individuals' failures. In the case of writing a phone number, other than doing the job yourself, the most assured way of

guaranteeing success is to hand in a new pencil along with each request! However, providing the resources an object needs to

ensure success isn't always practical, nor is it guaranteed to avoid all further failures. Objects and systems fail for many

reasons: They can lack the resources they need; they can call on other objects that fail; the underlying operating systems and

networks can fail. Although it is extremely difficult to build completely fail-safe objects, you certainly can make them more

reliable.

You can do so by placing the burden for success on the requester, shifting some of it onto the object providing the service,

splitting some extra responsibilities between them, or even designating others to get involved when things go wrong. Each

choice has consequences.

Asking the Client to Check Before Making a Request

Here are some considerations when you're deciding to burden the requester with checking beforehand that an object can do

what it is asked:

Can clients easily check for success? Is it easy to check whether the service provider is in a state that guarantees success?

If not, you may need to expand the service provider's interface and assign it public responsibilities for reporting on what initially

seemed like private implementation details. For example, we could give our object the added responsibility of reporting whether

it has a pencil. Even if you do this, someone (most likely the initial requester) still must take some responsibility for reacting

appropriately when the answer is no.

What guarantees are there that after an object has been checked for readiness, it stays ready? In concurrent systems, objects

and resources are shared, and their state changes from moment to moment. If your service provider is shared or if it turns

around and uses shared resources to fulfill its responsibilities, then between the time you ask whether it can honor a request

and the time you ask it to perform the request, conditions could change. The pencil may have broken or may have been passed

along to another. To avoid this, allow clients to check and reserve with a single request.

Is the cost of checking prohibitive? Are conditions for success readily checked beforehand without incurring too much

overhead? What if the consequences of asking whether an object has a pencil causes it to ask every one of its backup

resources whether it has a pencil, and this takes a long time? Sometimes, determining whether a request will be successful

involves more computation than simply performing the request and responding to exceptions.

Does checking produce undesirable side effects? Checking may cause undesirable side effects. What if asking whether an

object has a pencil causes it to drop everything and order one from a supplier? Would that be appropriate?

Giving the Client Some Responsibility for Recovery

If you give a client some responsibility for guaranteeing success, there are many things to consider. How much responsibility

should it take? Is it reasonable for each client to employ individual recovery strategies as it sees fit, or should you design some

common recovery facilities that requesters can use? Or should some object better equipped to handle the situation be told of the

failure?

Giving the Service Provider Some Responsibility for Recovery

Even if you decide to shift some responsibility to the service provider for error recovery, don't be surprised by the demands this

strategy can place on clients. Clients may have to understand the consequences of alternate courses of action taken by the

service provider.

Is it acceptable to introduce pauses or delays? Is it OK for the client to wait, perhaps indefinitely, for the service provider to

acquire what it needs? What if the service provider queries its backup resources when it doesn't have a pencil? Sometimes

these queries are quickly answered, and at other times, when they are busy, the responses can take a long time. If the client

must turn around and give the phone number to another object within a prescribed time limit, intermittent and indeterminate

pauses introduced by a more responsible service provider won't be acceptable.

What is the probability that unavailable resources can be acquired? If the service provider doesn't have what it needs, can

it reliably acquire it? If other users of this resource are ill behaved, then their performance impacts the service provider's ability

to fulfill its responsibilities. A service provider is only as reliable as the resources it depends on.

Are there alternative ways to fulfill failed requests? Does it make sense for the service provider to have a different means of

accomplishing a request at its disposal, or is this overengineering? For example, what if our service provider had pens, pencils,

and a variety of paper stock always on hand?

Is it easy to detect failure? Of course, it is easy for people to know whether they've written down a phone number. They can

scan a piece of paper and see a legible sequence of numbers. But sometimes, it isn't so easy for an object to know whether its

actions have had the desired effects, especially if it collaborates with or changes the state of external devices or systems. The

more collaborations involved in fulfilling a request, the harder it is to guarantee that each subrequest has the intended effect.

I l@ve RuBoard

I l@ve RuBoard

Designing A Solution

So far, we've considered strategies for handling failures for a single request. Making larger responsibilities more

reliable can get much more complex. After you've identified a particular collaboration sequence that you want to make

more reliable, think through all the cases that might cause objects to veer off course.

Start simply and then work up to more challenging problems. Given the nature of design, not all acceptable solutions

may seem reasonable at first. You may need time for a solution to soak in before it seems right.

Brainstorm Exception Conditions

Complex collaborations can fail in numerous ways. Even simple collaborations can have many places where things

can go wrong. Thinking through all the ways a collaboration might fail is difficult work. Make a list. Enumerate all the

exceptional conditions you can think of for a specific chunk of collaborative behavior. Whether you are working with

the collaborations in support of a use case or designing a collaboration deep inside your system, list everything that

you reasonably expect could go wrong. Consider the following:

Users behaving incorrectly—entering misinformation or failing to respond within a particular time

Invalid information

Unauthorized requests

Invalid requests

Untimely requests

Time out waiting for a response

Dropped communications

Failures due to broken or jammed equipment, such as a printer being unavailable

Errors in data your software uses, including corrupt log files, bad or inconsistent data, missing files

Critical performance failures or failure to accomplish some action within a prescribed time limit

This list is intended to jog your thinking. But be reasonable. If some condition seems highly improbable, leave it off

your list. Put it on another list (the list of exceptions you didn't design for). If you know that certain exceptions are

common, say so. If you don't know whether an exception might occur, put a question mark by it. You may not know

what are reasonable and expected conditions if you are building something for the first time. People and software and

physical resources can cause exceptions. And the deeper you get into design and implementation, the more

exceptions you'll find.

Limit Your Scope

Take exception design in bite-sized increments. If you've already designed your objects to collaborate under normal

conditions, start modestly to make the collaboration more reliable. Pick a single exception that everyone agrees is

common and that you think you know how to handle. If you are designing collaborations for a specific use case,

tackle one unhappy path situation. What actions should occur when there are insufficient funds when a user tries to

make an online payment? What if the user blinks her eyes too rapidly and makes a false selection? What if the file is

locked by another application?

After you've decided on what seems a reasonable way to handle that situation, design a solution using the

object-oriented design techniques we've described. Minimize or purposely ignore certain parts of your design in order

to concentrate on those objects that will take the exception and those that will resolve it. You needn't reach all the

way from the user interface to the lowest technical service objects. Here is what we consider to be both in and out of

scope for the exceptional case of insufficient funds:

Make a Payment Collaboration: Insufficient Funds

Assume a well-formed request (no data entry errors).

Ignore backend system bottlenecks.

Ignore momentary loss of connections or communication failures (they will be handled by

connection objects in the technical service layer).

Offer the user an opportunity to enter an alternative amount.

Determine who should detect an exception and how it should be resolved. Assume that everything goes

according to plan up to the point where the particular exception you are considering is detected.

Collaboration ideas will change as you get closer to a working implementation. You can spend a lot of

time spinning your wheels revising collaborations every time you make a slight change. Concentrate

on who should be responsible for handling an error or exception. Designate places where the buck

stops and where recovery actions will happen.

We know that the existing backend banking system returns an error code indicating insufficient funds to

our external interface component. Now what?

The backend banking component reports the exception via a Result object to the

FundsTransferTransaction that is responsible for coordinating the transaction. The

FundsTransferTransaction interprets this as an "unrecoverable exception," which causes it to halt and

return a Result (indicating failure) to the UserSession.

Describe additional responsibilities of collaborators. Service providers, controllers, and coordinators are often

charged with exception-handling responsibilities. In our example, the FundsTransferTransaction—a service

provider/coordinator—coordinates the work of performing a financial transaction. It makes relatively few decisions,

altering its course only when the result is in error. It is responsible for validating funds transfer information, forwarding

the request to the backend banking interface component, logging successful transactions, and reporting results.

Objects within the application server component are within the same trust region. They receive untrusted requests

from the UI component and collaborate with the backend banking component (each of those collaborations spans

another trust boundary). The backend banking component interfaces to the backend banking system, a trusted

external system that either handles the request or reports an error. Occasionally, communications between the

backend bank system fail, and then our software must take extraordinary measures.

Objects at the edges of a trust region can either take responsibility for guaranteeing that incoming requests are well

formed, or they can delegate all or part of that responsibility.

If you have the luxury of designing a group of objects to work together, you can assign certain objects

responsibility for guaranteeing that information is correct or that requests are timely and relevant, and

then turn around and relax some of the responsibilities of objects within a trusted boundary.

In the online banking application, any incoming request from the user component is validated. The

UserSession object receives and validates requests from the UI component and then creates and

delegates the request to specific service providers. In the earlier example, a FundsTransferTransaction

is created. It has responsibility for validating the funds transfer information and reacting to errors

reported from the backend system.

Make sure you have considered the following:

Who validates information received from untrusted collaborators

Who detects exceptions

How exceptions are communicated between collaborators (via raised exceptions or error results)

Who recovers from them

How recovery is accomplished

Who recovers from failed attempts at recovery

Who recasts exceptions or translates them to higher levels of abstraction

Record Exception-Handling Policies

After you've decided how to solve one exceptional condition, tackle another. Often, you can leverage earlier work. If

you decide that "these types of exceptions" are very similar to "those," you'll likely want to handle them consistently.

There are two conditions that can cause a funds transfer request to fail: The account has a "hold" status

that prohibits any monetary transactions, or the backend system might be too busy to handle the request

within a reasonable time. In each case, the specific condition is reported to the user and the funds

transfer fails.

In the online banking application, both the FundsTransferTransaction and the UserSession react to

exception conditions returned from requests. The FundsTransferTransaction is responsible for

transaction-specific exceptions; the UserSession, a controller, takes on broader exception-handling

responsibilities including unauthorized account access, invalid requests, and communication failures.

Write down general strategies you will attempt to follow. Deciding on exception-handling policies can save a lot of work:

System Exception Policies

Recoverable software exceptions. These are caught exceptions that do not necessarily mean an

unstable state in the software (corrupt message, time-outs, etc.). The strategy to be followed in these

cases is to first log the exception and then try to handle it (if retrying is likely to succeed). If not, raise the

exception so that it can be handled (if the caller is within the same process); or return an error (if the

caller is not within the same process).

Unrecoverable software exceptions. These are caught exceptions that presumably can lead to an

unstable state, such as running out of memory or a task being unresponsive. The response in these

cases is to log the cause of the exception and to restart the application unless the severity of that

specific condition is "hold&do not restart."

I l@ve RuBoard

I l@ve RuBoard

Documenting Your Exception-Handling Designs

You will likely want to beef up existing collaboration stories with exception-handling details. But don't pile on details. You can

easily make a collaboration story incomprehensible or a diagram illegible, obscuring the main storyline. Instead, draw new

diagrams to show how specific exceptions are handled. Leave existing diagrams alone. Any new diagram will look nearly

identical to the normal case but will include additional details about how exceptions are detected, communicated, and dealt with.

Describe your solution. Your readers will get a much better sense of your exception design if you explain it. Describe which

exceptions you considered, how each is resolved, and what you consider to be out of scope:

The online banking application is designed to cover communications failures encountered during a financial

transaction. A full set of single-point failures was considered. Some double-point failures were explicitly not

considered because they are unlikely and covering them adds undue complexity to the processing of

transactions. In each case, the general strategy is to ensure that transaction status is accurately reflected to the

user. Failures in validating information will cause the transaction to fail, whereas intermittent communications to

the external database or to the backend banking system during the transaction will not cause a transaction to fail.

Here are the exceptions common to every transaction:

Network fails during attempt to send request to backend: Detect that response times out. Retry request

after communications are restored. If too much time elapses, inform user of system unavailability and

fail the transaction.

1.

Failure to log transaction results to local database: Continue, but report condition to alternate log file

and active console.

2.

Failure to receive acknowledgment from backend system: Report system unavailability to user and

report backend request status when connection is reestablished.

3.

Add a running commentary to existing collaborations. Accompany a happy path collaboration diagram with commentary

that describes exceptions that you considered at each step. This is an extremely effective way to present your design.

Reviewers are unlikely to get the big picture by looking at many diagrams, trying to piece together whether you've covered all

the bases. So tell them what might go wrong at each step.

Understand the limits of what can be explained with a diagram. If you show an exception being raised, you won't

necessarily know which object handles it unless you explicitly add that detail. When an object detects an exceptional condition,

it can either raise an exception or return a result whose value indicates an exception condition.

In UML, an exception is modeled as a signal. To show that an object raises an exception, draw an asynchronous message

between it and the client whose request caused the exception. This is drawn as a line with a stick arrowhead (see Figure 8-6).

Designate the line as an <<exception>>. Label it with the name of the exception to distinguish it from other asynchronous

signals.

Figure 8-6. Labeling exceptions with notes clarifies what's going on.

If you are returning a result to indicate an exception condition, add a return to your diagram. It is drawn as a dashed line with an

open arrow. The value that is returned can be recorded above the line.

You can describe both normal and exceptional paths on the same diagram (see Figure 8-7). Show multiple paths emerging from

the same point in the diagram. Label each with a guard condition that describes the conditions that cause one path to be

selected over another. One branch continues with the normal path; others take exceptional ones.

Figure 8-7. FundsTransferTransaction takes one of two branches, depending on whether or not the transaction is

successful.

Limit the number of diagrams. Create new diagrams only to illustrate key exception-handling cases or obscure solutions. If

certain exceptions are handled similarly, say so, don't draw so.

Limit the number of exceptions shown on any single diagram. Don't show more than one or two exceptions on a single

diagram. Piling on details makes diagrams incomprehensible.

Add notes to diagrams to clarify exception-handling responsibilities. You can't tell whether or not an object receiving an

exception handles it. To make it absolutely clear that an object handles an exception, add an explanatory note (see Figure 8-8).

Figure 8-8. Clients can trust the commands to handle any exceptions.

To show that an object recasts an exception, add a note (see Figure 8-9).

Figure 8-9. Additional notes explain your exception-handling strategy.

Add exceptions to class definitions. The specification of a class in UML includes a declaration of operations, attributes, and

relationships. An operation can be declared in syntax specific to the programming language. This enables you to precisely

specify the exceptions raised by each operation. We typically do not go to this level of detail, leaving it for code comments and

documentation.

Add details sparingly. Just because you can embellish a sequence diagram with exception details or show exception

declarations in method signatures, don't go overboard. The more you pile on, the harder it is for viewers to discriminate what's

important. Show those things that your readers cannot find elsewhere. If your exceptions can be found by browsing class

documentation, do you really need to include them on class diagrams? Think carefully whether these embellishments add value

or clarity or only another opportunity for code to get out of sync with your design.

"... the low-level design handling of particular exceptions is felt by many developers to be most

appropriately decided during programming or via less detailed design descriptions, rather than via detailed

UML diagrams."

—Craig Larman

Specifying Formal Contracts

The interplay between collaborators can get complex. In a given collaboration, objects are designed according to a set of

expectations, demands, and obligations on both the client and the provider of the service. When you need to get precise, use

contracts to specify how collaborators should responsibly interact.

Bertrand Meyer views contractual relations between collaborators as an important specification tool. Contracts can be written to

define the expectations and obligations of both client and service provider for any request. According to Meyer, any contract

entails obligations as well as benefits for both parties; an obligation for one usually can be restated as a benefit for the other.

"In relations between people or companies, a contract is a written document that serves to

clarify the terms of a relationship. It is really surprising that in software, where precision is so

important and ambiguity so risky, this idea has taken so long to impose itself. A

precondition-postcondition pair ... will describe the contract that the routine (the supplier of a

certain service) defines for its callers (the clients of that service)."

—Bertrand Meyer

Eiffel was the first language to let programmers define preconditions that must be true before a body of code

executes and postconditions that must be true after a body of code executes. Writing assertions that can be

checked during program execution adds teeth to object contracts.

Obligations can be stated in terms of preconditions that must be true before a request is honored, and postconditions that will be

guaranteed by the service provider:

A precondition obligates a client. It defines the conditions under which a request is valid. It is an obligation for the

client—to make sure that preconditions are met—and a benefit for the service provider. Meyer goes so far as to say

that if the requester does not satisfy the preconditions, then the service provider is not bound to satisfy the request.

A postcondition obligates the service provider. It defines the conditions that must be ensured after the request is

complete. It is a benefit for the client and an obligation for the service provider.

So if a service provider wanted to be very lazy indeed, its contracts would place high demands on what must be true before it

starts (strong preconditions) and guarantee nothing in return (weak postconditions). Only if the preconditions are met will it start

to work.

A contract specification is a job description for the service provider: Its work will start from the initial state of the

system as characterized by the preconditions, and it will deliver results defined by the postconditions.

For a trusted collaboration, the service provider expects well-formed requests and the client expects reasonable attempts at

performing the request. In untrusted collaborations, a client might take special preparations before making a request and

possibly make extra checks afterwards to verify that the service was performed correctly.

Table 8-1 shows how we might state a contract outlining the obligations and benefits of a request that spans a trust boundary

from the online banking system to the backend bank system to request a funds transfer.

Table 8-1. A contract explains both obligations and benefits.

Request: Funds

Transfer

Obligations Benefits

Client: online

banking application

(precondition) User has two

accounts.

Funds are transferred and balances

adjusted.

Service provider:

backend banking

system

(preconditions) Sufficient

funds were in the first

account.

Only needs to check for sufficient funds

and active accounts, need not check

that user is authorized to access

accounts.

 Honor request only if both

accounts are active

 (postcondition) Both accounts'

balances are adjusted to

reflect transfer.

Meyer's notions of obligations and benefits is contrary to defensive collaborations, in which nothing is trusted and everything is

checked. In fact, if you spelled out the contractual obligations between collaborators in great detail, you could theoretically

implement only a minimum number of checks. The hardest part in implementing objects that fulfill their obligations is ensuring

that postconditions are met. This is especially difficult when a service provider collaborates with many others to get its job done.

You and your coworkers may go back and forth dickering over what constitutes "reasonable" benefits and obligations for a

specific contract. This is a good exercise. After you decide who should take responsibility, you can implement collaborators to

work within these constraints.

If you are designing a component that must work reliably in spite of untrusted requests, you can purposely design it with a

defensive posture—checking everything before it does anything. If checks are expensive, you should probably assign more

obligations to the service provider. Decisions about who should take responsibility for guaranteeing preconditions is partly a

matter of style and partly a matter of the trust between objects.

Defining contracts is good way to reason about the obligations and benefits of a particular collaboration. But it's also a lot of

work. Not all collaborations warrant this extra attention. Contracts are especially useful for defining the obligations and benefits

between your software and external systems:

In the online banking application, it is reasonable to put the obligation on the backend bank to keep track of funds

in accounts. Other transactions can be made by other banking applications that affect account balances,

independently of the online banking application. Even if the online banking application can check beforehand via

an expensive communication, it can't guarantee that the funds will still be available by the time it actually makes

the request.

Contracts make absolutely clear what is expected. They are especially important for describing collaborations that need to be

reliable and that cross trust boundaries.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Reviewing Your Design

Even with the best intentions, you can't spot all the flaws in your work. Have you ever had an "Aha! moment" when

you explained something to someone else? Simply talking about your design with someone else helps you to see

things clearly. A fresh perspective will help spot gaps in your design.

The most common bugs in exception-handling design, according to Charles Howell and Gary Veccellio in Advances

in Exception Handling Techniques (Alexander Romanovsky, ed., Springer 2001), who analyzed several highly

reliable systems, crop up when the following things happen:

When writing exception-handling logic, you fail to consider additional exceptions that might arise. Don't let

your guard down! Any action performed when an exception is handled could cause other exceptions. Often,

the appropriate solution to this situation is to raise new exceptions from within the exception-handling code.

You map error codes to exceptions. At different locations in your design, various objects may have the

responsibility to translate between specific return code values and specific exceptions. The most common

source of error is to incompletely consider the range of error codes—mapping some, but not all, cases.

Mapping is often required when different parts of a system are implemented in different programming

languages.

You propagate exceptions to unprepared clients. Unhandled exceptions will continue to propagate up the

collaboration chain until either they are handled by some catchall object or they are left to the run-time

environment. Designers usually want some graceful exception reporting or recovery. What they'll get

instead, if clients aren't designed to handle an unexpected exception, will be program termination.

You think an exception has been handled when it has merely been logged. Exception code should do

something meaningful to get the software back on track. As a first cut, you may implement a common

mechanism to log or report an exception. But this doesn't mean it has been handled. You've done nothing

but report the problem—something that is only slightly more useful than taking no action at all.

In addition to these potential sources of error, look for places where complexity may have sneaked in:

Redundant validation responsibilities. When you aren't certain who should take responsibility, sometimes

you put it in several places. Different levels of validation may be performed by different objects in a

collaboration—first checking that the information is in the right format, next checking that it is consistent with

other information. It is OK to spread these responsibilities among collaborators. But avoid two different

objects performing identical semantic checks.

Unnecessary checks. If you aren't sure whether some condition should be checked, why not check

anyway? The reason is that it can decrease system performance and give you a false sense of security.

This is an easy trap to fall into. By doing this, you've done absolutely nothing to increase your software's

reliability and are likely to confuse those who will maintain your design.

Embellished recovery actions. At first, extra measures seem to be a good idea ... but wait. Is it really

necessary to retry a failed operation, log it, and send e-mail to the system administrator? Look for places

where extra measures detract from system performance, make your system more complex, and, on a really

bad day, clog someone's inbox.

"Redundant checking ... is a standard technique in hardware. The difference is that in a hardware

system some object that was found to be in a correct state at some point may later have its

integrity destroyed because of reasons beyond the control of the system itself... [but] software

doesn't wear out when used for too long; it is not subject to line loss, to interference or noise."

—Bertrand Meyer

At the end of a review, you should be convinced that your exception-handling actions are reasonable, cost-effective,

and likely make a difference in your system's reliability.

I l@ve RuBoard

I l@ve RuBoard

Summary

As a first step in increasing your software's reliability, you need to understand the consequences of system failure.

The more critical the consequences, the more you can justify the effort and energy of designing for reliability. To

clarify your thinking, distinguish between exceptions—unlikely conditions that your software must handle—and errors.

Errors are things that go wrong—bad data, programming errors, logic errors, faulty hardware, broken devices. Most

software doesn't need to be designed to recover from errors, but it can be made more reliable by gracefully handling

common exceptional conditions.

Approaches for improving reliability are rarely cut and dried. The best alternative isn't always clear. To decide what

appropriate actions should be taken involves sound engineering as well as consideration of costs and impacts on the

system's users.

Objects do not work in isolation. To improve system reliability you must improve how objects work in collaboration.

Collaborations can be analyzed for the degree of trust between collaborators. Within the same trust boundary, objects

can assume that exceptions will be detected and reported and that responsibilities for checking on conditions and

information will be carried out by the appropriately designated responsible party. In some programming languages,

exceptions can be declared. When an exception is raised, some other object in the collaboration chain will take

responsibility for handling it. An alternative implementation technique is to return values from calls that can encode

exceptional conditions.

When collaborations span trust boundaries, more precautions may need to be taken. Defensive

collaborations—designing objects to take precautions before and after calling on a collaborator—are expensive and

error-prone. Not every object should be tasked with these responsibilities. When you need to be very precise, define

contracts between collaborators. Bertrand Meyer uses contracts to specify the obligations and benefits of the client

and the provider of a service. Spelling out these terms makes it absolutely clear what each object's responsibilities

are in a given collaboration.

I l@ve RuBoard

I l@ve RuBoard

Further Reading

Doug Lea has written a very handy book called Concurrent Programming in Java™: Design Principles and Patterns,

Second Edition (Addison-Wesley, 2000). This book is invaluable, even to non-Java programmers. It is packed with

in-depth discussions and examples and good design principles. Even if you aren't building highly concurrent

applications, this book is worth careful study.

Advances in Exception Handling Techniques (Alexander Romanovsky et al., eds., Springer Verlag, 2001) grew out of

a workshop on exception handling for the 21st century. It is a collection of chapters written by programming language

researchers, database designers, distributed system designers, and developers of complex applications and mission

critical systems, who share their vision of the current state of the art of exception handling and design. You will find

very readable papers that discuss exceptions from multiple perspectives.

Bertrand Meyer's book Object-Oriented Software Construction (Second Edition) (Prentice Hall, 2000) is the definitive

work on software engineering using the principle of Design by Contract. It is a weighty book. But two

chapters—Design by Contract: Building Reliable Software, and When the Contract is Broken: Exception

Handling—are a good exposure to thinking in terms of preconditions, postconditions, invariants, and collaboration

contracts.

Henry Petroski talks about the role of failure analysis in successful design in To Engineer Is Human: The Role of

Failure in Successful Design (Vintage Books, 1992). Software designers clearly don't understand the laws that govern

software failures as well as structural engineers understand physics and materials. But you can learn many lessons

from this book.

I l@ve RuBoard

I l@ve RuBoard

Chapter 9. Flexibility

Seemingly effortless improvisation—whether in music or software—requires you to quickly identify and fit something

new alongside what's already there. You slip in and go with the flow. Coming up with variations with little apparent

effort is what improvisation is all about. Composing on the spot. Making it look easy.

Only after you've acquired the basic skills can you begin to improvise. To get really good at it takes talent, sure, but

also lots of practice and experience. How can you get to this level? If your software has been carefully designed, it's

much easier. Software that has been designed to flex is set up for ready extension. It has the structures in place that

allow for change, so you can look good without having to work so hard.

I l@ve RuBoard

I l@ve RuBoard

What Does It Mean to Be Flexible?

Most people think object software inherently is flexible. It isn't. Flexibility, even in object software, takes extra effort. It

must be explicitly built into your design. Flexibility is a measure of how easily software can adapt to a range of design

parameters. The larger the scope of these parameters' effects, the more flexible the software is.

"Music is your own experience, your thoughts, your wisdom. If you don't live it, it won't come out of

your horn."

—Charlie Parker

Flexible: Capable of responding or conforming to new or changing situations.

—Webster's Seventh New Collegiate Dictionary

Designing software as a collection of roles, responsibilities, and collaborations is the first step toward creating flexible

software. Flexible software has fewer hard-wired assumptions, fixed values, or static connections between

collaborators. It's looser. Things can be slipped in. It is designed to include "knobs" that can be turned to adjust

things. There are explicit places in the design that have been prepared for adaptation.

Flexible software may dynamically alter its own behavior as it executes, reacting to changes in its environment. Or

the end user may be able to customize how the software works. That's flexibility, too. Or flexible software may be

extended by a developer who adds new behaviors in prescribed ways—creating new subclasses, defining new

methods, or plugging in new collaborators. In all these cases, software can be adapted to fit changing requirements.

From the user's point of view, flexible software accommodates varying conditions or requirements.

From a developer's point of view, flexible software can be modified or extended with ease.

There is a difference between an adaptable system and a flexibly designed one. Software can react to various

situations even if its design is inflexible. What distinguishes a flexible design from other solutions is that it

incorporates mechanisms—hooks, if you will—that enable it to be changed. Designers have anticipated future

adaptations and have structured their design to accommodate them. They've placed extra mechanisms into the

software in anticipation of its flexing. They have made educated guesses about how the software will need to be

tweaked and have incorporated design elements that specifically enable additions and modifications and extensions.

If they've make sound choices about where to incorporate these flexion points, their work will have a big impact on

maintenance.

A design that meets its stated objectives may or may not be able to flex and adapt to a new condition.

What does it take to make software flexible? In part, it depends on who makes the adjustments. If the person making

changes is a programmer or designer, there will be obvious clues and special hooks installed in the design. Some of

these hooks will exist regardless of who makes the changes. But when a system is designed to be extended, there is

even more work involved. Special attention may have been paid to designing and documenting class hierarchies with

specific extension points. Ideally, when developers need to alter some behavior or extend the software's feature set,

they should follow a well-understood procedure: Add a class here or override a method there. This works only if

preparations have been made.

In a good design, flexibility isn't an accident; it's a byproduct of careful preparation. It takes extra machinery and

inventions and design discipline as well as extra attention to design and coding details. You might need to identify

common roles and document how class hierarchies can be extended. You might need to include additional

embellishments that enable programmers to dynamically configure collaborators or varying information. It takes

energy to describe and make points of extension evident. It's more work to develop coding examples that illustrate

how to make an adaptation or write recipes that describe how to tinker with the flexible machinery.

"People never understand how arranged Bill Evans's music really was. Sure, it was free and

improvised. But the reason we could be so free is that we already know the beginning, the middle,

and the ending."

—Chuck Israels

Anticipating future changes is a bit of a gamble, sure, but the payoffs can be immense. Flexibility enables design

improvisation.

I l@ve RuBoard

I l@ve RuBoard

Degrees of Flexibility

The ways software could flex are limitless. There is never enough time and energy to realize every idea. Not every

good design is a flexible one. And not every object needs to be flexible to make a system flexible. You should

emphasize flexibility when

It is clearly justified in support of tangible requirements

It doesn't compromise other project goals

Your software will live in an environment with a history of change

Your software needs to adapt to different environments

It is of high value to you, your teammates, and other project stakeholders

"Patterns are a cornerstone of object-oriented design, while test-first programming and merciless

refactoring are cornerstones of evolutionary design. To stop over- or under-engineering, balance

these practices and evolve only what you need."

—Joshua Kerievsky

When's the right time to think about flexibility? As soon as you start partitioning responsibilities into related chunks,

you can start thinking about flexible solutions. Monolithic software can be hard to change. It is easier to add flexibility

to software that is organized into well-defined components and subsystems.

If you need to adapt to varying environmental conditions, it's better to structure your system so that points of potential

change and variation are insulated from the rest of the system. You can intentionally wrap potential points of variation

to prevent dependencies on specific features from permeating other parts of the system. The sooner you make these

decisions, the easier it will be to keep your options open. Very early decisions can dramatically increase or inhibit your

software's ability to flex.

But during exploratory design there are also many decisions that impact flexibility. Choices you make as you assign

responsibilities to objects and design collaborations affect flexibility. Many of the practices we have mentioned in this

book improve your design and, as a side effect, make it easier to change. Responsibilities are design placeholders

where various object types and behaviors can be plugged in to replace others. The ways you choose to divide

responsibilities among objects enable you to neatly encapsulate any behaviors that might change. But only when you

add explicit hooks—which allow responsibilities to be modified or collaborators to be replaced without affecting

working code—do you really support flexibility.

Whether it be extension, modification, or run-time configuration, flexibility isn't something that just

happens. It must to be identified and designed into software.

Design patterns typically allow small groups of objects to flex in specific ways. How you use patterns impacts the

ways your software flexes. Consider the Command pattern. It encapsulates an action in an object. You can add new

operations by inventing new types of Command objects (see Figure 9-1). You can do so relatively easily as long as a

new Command object operates under the same assumptions as existing Command objects. The mechanism for

supporting a new command is preestablished, leaving the design of the new command's behavior for you to

concentrate on.

Figure 9-1. The Command pattern supports varying actions on a target.

Your choice of patterns and the way your design is organized impact how amenable your software is to adaptation.

But flexibility concerns don't stop there. At the most detailed level, seemingly small choices affect your software's

ability to flex. How you construct methods, specify signatures, declare interfaces, and use inheritance impact

flexibility. Identifying shared roles and then defining common interfaces make your software more flexible.

Encapsulating private details inside objects makes clients less dependent on others' inner workings, thus making it

possible to change how they work without rippling changes throughout the design. Code refactorings, described in

Martin Fowler's Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999), improve the structure

and quality of the implementation. Refactorings are intentional restructurings that preserve a design's intent while

preparing it to better absorb an anticipated change. Whether you refactor during design or coding, refactorings tend to

shift responsibilities among collaborators or move them around in an inheritance hierarchy.

I l@ve RuBoard

I l@ve RuBoard

The Consequences of a Flexible Solution

Flexibly designed software offers many advantages. The ways to support specific variation have been

preestablished. Hooks are in place, waiting for you to plug in a new variation. Instead of spending time devising new

mechanisms, you follow set design rules. You just have to dig in and implement a variation that follows them. Are you

improvising? Yes. But you don't have to be terribly clever. You have patterns and proven mechanisms to extend and

augment.

If a new banking service is similar to the design of an existing one, adding it is fairly easy. Objects that

coordinate the new financial service need to be designed and coded. But the pattern for doing so is

preestablished. It is a matter of fitting this new service provider into preexisting patterns of collaboration

and calling on existing backend banking services. Sometimes, additional backend banking system

functions may need to be wrapped and utilized. That takes more work.

The learning curve for highly flexible software can be steep. Understanding complex software takes time.

Understanding complex, flexible software takes even longer. And if you dwell in a complex system for a while, you

tend to create complex solutions, whether or not they are warranted. It's a matter of fitting in and following the

established style. Yes, software can be too flexible for its own good! Raphael Malveau and Thomas Mowbray in

Software Architect Bootcamp (Prentice Hall, 2000) caution against "flexibility disease," whose symptoms include the

following:

Overly complex procedures. If the recipe for making an extension has many complex steps to follow, it can

be difficult and error-prone.

Many documented conventions. Sometimes a design is so flexible that the only way to extend it properly is

to follow complex coding conventions. The only thing that prevents you from breaking things is to pay

excruciating attention to detail.

Extra code. To use a configurable service, clients must parameterize their requests. And the service

provider may be more complex in order to handle all the options. Extra complexity can pile up on both sides

of a flexible interface.

A design chock full of ready-to-extend abstractions and brilliantly factored responsibilities can be

daunting. Patterns can be applied too heavily, making the design complex, flexible, and hard to

decipher. This is because it is harder to think abstractly than to think concretely.

The major drawback of a flexible design is added complexity. But creating an inflexible solution isn't the antidote.

Inflexible designs are difficult to revise and improve on. No one wants to build software that is creaky, difficult to

maintain, and subject to ugly hacks. So the easier it is to make software adapt, the longer it will stay true to its original

design. The key is to build in flexibility in just the right places.

I l@ve RuBoard

I l@ve RuBoard

Nailing Down Flexibility Requirements

Not every object needs to be flexible, and not all parts of a design need to flex. You create a flexible design when you

see the similarities and variations on common behavior and subsequently identify roles that can be shared by

different kinds of objects.

Letters, words, sentences, and commands are core concepts of the Speak for Me domain. Realizing that

they are all variations of another concept, a "guess," simplifies the design and makes it easy to extend.

There is no explicit statement in the requirements that "the system will offer several different kinds of

guesses to the user." The concept had to be invented. But once they were there, we pushed on it ... and

extrapolated that message Destinations could also be a kind of guess.

The more variations you see surrounding a common theme, the more fodder you have to create good abstractions

that support a range of variations. So even without expending lots of extra effort, you may discover that certain parts

of your design may have the potential to be more flexible, even though flexibility hasn't been your focus. But how can

you determine where you should concentrate your efforts?

Identify the real problem. Flexibility requirements are rarely spelled out in explicit detail. No one says, "Build me the

coolest framework and make it hum!" Often, only when you look closely at how to satisfy other requirements do you

see that a flexible solution might be the right solution to propose:

A stated objective for the online banking framework was that it should be configured and installed at a

new location within a month. The project sponsors also wanted installations to require little or no

programming or design rework because it was difficult to negotiate time-and-materials contracts and

customers were used to fixed installation costs.

These requirements led us to conclude that facilities needed to be designed into the software to make it

easily tunable during installation.

Making an application flexible takes extra work. So it is important that the requirements warrant the

effort. When requirements specify configurable behavior, or extensibility, or robust reactions to

unanticipated conditions, that is where we start.

Flexibility is rarely the problem that needs solving. Proposing a flexible solution may allow you to support frequent

revisions or adapt to different environments or users or to add new functionality in a predictable way. The real need is

to support new changes. Flexibility isn't a requirement; it's only one design option.

Establish the vision. When you spot an opportunity to propose a flexible solution, it is important that you paint

pictures of the future with and without a flexible solution. Make it clear that a flexible solution will make a difference.

The telco integration framework will need to support cases in which different software components

share information and in which data will need to be collected from more than one source. Rather than

integrate various applications via point-to-point solutions, the framework will serve as the central means

to coordinate work among various applications that it integrates. Limiting visibility between applications

allows for changing external systems without changing each interdependent application.

Honestly assess whether a flexible solution is affordable. Although a flexible solution may be important to a

project's success, you have spotted a potential opportunity and not necessarily the only workable solution. And

because flexibility incurs extra development costs, you'll need to convince yourself and others that a flexible solution

is the appropriate solution.

It is tempting to overdesign and invent abstractions to accommodate any number of imagined design

changes. That's just another form of feature creep.

The system architect of the online banking system was fresh off another very successful project. A

brilliant programmer, he loved the special challenge of building generalized frameworks, something that

was explicitly demanded in his previous project. He brought his excitement (and assumptions about

requirements) to the online banking project. But this project was on a tight schedule, with little room for

invention or error. When he became consumed by his desire to implement a customizable framework,

his colleagues had to spend many long hours to fill in the gaps and meet tight project deadlines.

Flexibility in a design can be of great value. But the variations that you support should be of value. When you are on a

tight schedule, it is dangerous to spend precious time designing for the unforeseen future. You can't sacrifice other

project goals just for the sake of flexibility.

Identify places where your architecture should flex. There may be areas in your design where a flexible solution

offers clear advantages. If you believe that to be true, push on that part of the design for a bit and don't let go until

you understand more. Before you can design in flexibility, characterize what variations your software needs to

support. Then pinpoint appropriate places where a flexible design solution is warranted.

A small number of design constraints were proposed for the telco integration project. These included

statements such as these: It should provide transparent integration between different business

applications. It will not provide only hardwired point-to-point communications. Instead, components in

the integration framework will encapsulate the differences among instances of a particular type of

application.

This led us to partition the architecture into adapters that interfaced with core business processing

functions. Adapters were responsible for transferring requests and information between external

applications and a business process coordination core. Each adapter interfaced to a specific application.

Resource managers were responsible for locating information maintained by external applications.

Communications between adapters and the core were through a common set of framework-specific

commands.

Demonstrate real benefits. It can be difficult to quantify benefits and estimate the cost of designing a flexible

solution, especially when you are building something from scratch. We can't stress this enough: Flexibility doesn't

come for free! But the need for developing a flexible solution should be defensible. Identify the benefits that a more

flexible solution provides over a less flexible one.

With the telco integration framework, a new application can be supported by defining its services, fitting

them into current or new business processes, and developing an adapter component. Currently we must

ask each vendor to bid on software modifications and customized interfaces to other applications. The

vendors are in control, and we have little opportunity to manage development costs.

If the billing system fails, requests will be queued in the integration framework. Currently, the entire

order must be reentered, which is error-prone. If the billing application's database becomes corrupted

and needs to be restored, the framework could "replay" previous billing adjustments. This is possible

because all orders are stored in a database. Currently, the billing system is restored with manual entries

via a complex user interface. Only one or two highly skilled billing analysts can perform this task with any

reliability.

The telco integration framework was sold to management on the basis of reduced customization costs,

increased control over a constantly evolving environment, and increased reliability.

But be careful. Don't oversell or propose a difficult solution when a simpler one is adequate.

Find out what you don't know. What you don't know can compromise your design efforts. Ask crucial questions

before investing a lot of energy in wasted effort. You can mitigate risks by following an incremental, iterative

development process that places tight controls on how much you will invest in making things flexible. In a nutshell,

define an increment; identify a set of features that will prove the merits of some flexibility you want to support in your

software; then design and implement a flexible solution that supports those features. Evaluate your results and replan

for the next increment. Don't let unplanned embellishments slip in. Don't let too much time slide by without taking a

critical look at your design solution. Each increment buys information about the choices you've made and lays a

foundation for future increments. If you are planning to build a very flexible system, defining the right-sized

increments and watching your investments in flexibility will be key to your success.

"An architecture is a plan, and it is said that no plan survives first contact with the enemy. The

enemies in this case are change and ignorance.... What we don't know can change our

architectural assumptions to the breaking point."

—Raphael Malveau and Thomas Mowbray

The first deliverable for the telco integration application was a prototype, implemented in Java. This was

delivered in six months. It handled simple service orders for two types of products. The project

deliverables also included a design model for the core framework and adapters, a documented

subsystem architecture, and a list of issues and recommendations.

An important objective of the initial telco framework prototype project was to identify issues that must be

addressed in a production-quality system. After the prototype was completed, the architecture, design,

and issues were reviewed by a select group of internal and external reviewers. Their feedback was used

in planning the next iteration.

Incremental development lets you validate what you think you know instead of pressing on in ignorance.

I l@ve RuBoard

I l@ve RuBoard

Recording Variations

If you are developing flexible software, it is important to characterize the types of variability your software needs to

support. You can start by asking the following:

What functions will change over time or work differently because of certain conditions? A list of points of

variation, or hot spots, can focus your efforts.

What is the desired degree of flexibility for each hot spot? Must the flexible functionality be changeable at

run time or by end users? How flexible does the software need to be? An honest assessment of how

flexible your software needs to be can help you plan the effort.

Hot spots, recorded on index cards, are informal tools for capturing rough ideas about the points of

variation you want to support in your software. Index cards are indeed a flexible tool—you can use

them to record variations as well as describe candidate objects.

Whether you are building a framework or simply trying to design software that supports some variations, hot spot

cards are a great way to briefly characterize some flexible behavior. Wolfgang Pree introduced the notion of a hot

spot or variation card at an OOPSLA tutorial in 1995. Like CRC cards, they are a low-tech tool you can use to

describe the essence of a variation.

A hot spot card is divided into three sections (see Figure 9-2). The top section includes the name of the hot spot. The

middle section summarizes the functionality that varies. This high-level general description leaves out details. The

bottom section is used to sketch two specific examples of the variation. Ideally, you should capture just enough detail

that you can discriminate similarities and differences as you consider potential design strategies.

Figure 9-2. The hot spot card describes and demonstrates variations.

Who fills out hot spots cards? During requirements gathering, people who articulate business needs—business

analysts or end users—can work with designers to jointly fill out the cards. These cards can be a tool to briefly

characterize run-time flexibility or the possibility of end-user-directed adaptations (see Figure 9-3). Anyone describing

a hot spot should realize that added flexibility incurs some cost. A reasonable design solution will include additional

mechanisms that will allow the software to flex in support of the hot spot.

Figure 9-3. A guess can be selected in several different ways in Speak for Me. It's a hot spot.

You can also use hot spot cards during design. Document variations that you spot at the beginning of a design

iteration. Use hot spot cards to reverse-engineer your design—characterize existing variations—before planning how

to absorb new requirements. Ask what's already there and how it varies. Understand what you have before altering

your design to slip in a new adaptation.

Imagine if the Sun Java development team had used hot spot cards to describe desired variable behaviors before

inventing design mechanisms and new interfaces and classes! In Java, all collections contain a number of elements

in a certain data structure. Different classes of collections define different structures, optimized for specific access

and usage patterns. Linked lists and hashtables are two specific examples. An iterator is a mechanism for accessing

elements of a collection without having to know anything about its underlying structure. In Java, an interface has been

defined that describes three basic operations of an iterator: hasNext(), next(), and remove(). Figure 9-4 shows a

description of collection traversal that might have hatched the Java iterator concept.

Figure 9-4. Iteration is a hot spot in collection class libraries.

There are obvious limits to what can be written on a hot spot card. Complex algorithms don't easily fit. If you need to

characterize a variation in more detail, do so. Use cards to sketch out the basic ideas, and keep them simple. Don't

solve the flexibility requirement on the card—just sketch what varies. Nothing says you can't write more or that you

must limit your thoughts to what fits on a card. Use the card to sketch what varies and not to solve the flexibility

requirement. A slightly expanded hot spot description might sketch out several possible solutions.

A hot spot card should describe the variation and not pose a design solution.

Early in the telco integration project, a 10-page document was written that described seven hot spots. It

also described initial thoughts on how best to support them. The project sponsors and business analysts

didn't want to give the team detailed guidance on design choices, but they wanted the team to focus on

the right things. This document was one tool used to gain buy-in and support for an extensible

framework and pinpoint exactly how the integration framework should flex. It was also used by the team

to guide design discussions.

Hot spot descriptions are tools to guide your flexibility design efforts. Discussing hot spots helps a team to come to a

deeper understanding of design variations that need to be supported. Use them to characterize how flexible a design

needs to be.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

I l@ve RuBoard

Variations and Realizations

To "solve" a hot spot, you will likely introduce new design mechanisms that enable your design to flex. This boils down to

making specific responsibilities tunable, replaceable, or extensible. After you've characterized a hot spot, you can get very

specific. You can then do the following:

Identify the focus and scope of the variation. How big an impact will it have on your design? Does it require a minor

tweak, a modest investment, or a major design effort? Is it an extension or modification of what's already there, or

does it require something new?

Explore strategies for realizing the flexibility. Solutions can be as simple as tweaking a single responsibility or

something much more elaborate.

Evaluate your solution for gaps, unnecessary complexity, and usability.

Describe to other designers and, potentially, to your software's users how to make the software flex.

Identifying the Impact of a Variation

The focus of a variation is a set of system responsibilities that directly support the variation. A narrowly focused variation—one

that affects one or two responsibilities—is likely to have a limited impact on a design.

Enabling the design of Speak for Me to accommodate different preferences in the ordering of the spoken alphabet

affects two objects: the UserPreferences object, which is responsible for knowing the preferred ordering, and the

Alphabet, which is responsible for offering the next bid to the Guesser.

The scope is a measure of how pervasive that variation is—how much of the design, it affects. A variation could have a narrow

focus and still have a large scope. This isn't necessarily the sign of a poorly factored design, but rather one that needs to be

reshaped to accommodate a variation. Affected responsibilities may need to be factored into different objects or subdivided into

smaller ones that can be tuned or replaced. Interfaces to services may need to be reconsidered. Responsibilities may need to

be reassigned, and new objects may need to be inserted into the design.

Exploring Strategies for Realizing Flexibility

Identifying the scope and focus of an adaptation sets the stage for devising mechanisms to support a variation. If a variation is

simple, with a narrow focus and limited scope, you might get away with implementing a solution that isn't flexible. Your solution

would support some variation but would not include mechanisms that would permit easy adaptations to support other, similar

variations. On the other hand, if you expect similar variations to continue to crop up and stretch your design, develop a flexible

solution.

When is a flexible solution warranted? It is hard to characterize how responsibilities vary until you have several

variations to compare and contrast. Don't invent a flexible solution until you can test it with at least three tangible

examples.

Here are two examples that push at two ends of the spectrum. The first example is a variation with a narrow focus. It can be

solved with a simple but inflexible design tweak. The scope could be fairly broad (it is hard to tell from the description), but even

so, it seems that a reasonable design strategy would be to define a state variable (encapsulated in an information holder object)

that could be checked:

A trial version of software checks for a registration when it is launched. After that first check, it doesn't check

again until the next launch. If the user isn't registered, the software disables several features (such as printing or

creating work products larger than a specified size). A check-once variation.

In contrast, supporting a new product in the telco integration application has a broad scope and benefits from a flexible solution:

When a new product is defined, the software needs to adjust in several places: New billing rules and provisioning

tasks must be defined. A description of how to translate between an external order and the framework's

representation of the order must be described. Initially, this analysis of the hot spot's scope surprised the project

sponsors. They didn't expect that adding a new product would affect so many parts of the system. A variation

that requires definition of new information and translation rules.

This variation is more challenging because the executable behavior of several parts of the design must change. The scope is

broad, and the affected responsibilities are complex: New billing rules must be described, a provisioning task structure must be

specified, and the external order must be translated into an internal one. This involves more than a few design tweaks. Each

affected area of the design needs careful consideration and a flexible solution.

Using Templates and Hooks to Support Variations

In addition to conditional logic and branching, there is one basic technique for making individual object behaviors flex that

exploits inheritance: template methods. As described in Design Patterns (Erich Gamma, et al., Addison-Wesley, 1995), a

template method is a skeleton of an algorithm. It specifies steps in an operation and identifies specific steps that can be tuned or

replaced. A template method is a skeleton of an algorithm because it is incomplete; some steps are deferred.

There are other techniques for making software flexible, but the Template Method pattern is a basic mechanism

that enables responsibilities implemented in a class hierarchy to flex.

As a designer you are likely to apply the Template Method pattern when you recognize that there will be differences in how

subclasses should implement certain steps. The template method implements the fixed parts of an algorithm once, defines the

ordering of steps, and leaves it up to subclass designers to implement the steps that vary. Code in template methods tends to

call one of several kinds of methods:

Concrete methods—methods defined in either abstract or concrete classes that do not require hooks to be replaced in

order to work. A concrete method may implement default behavior that can be overridden in a subclass, or it may

implement fixed behavior that is not replaceable.

Primitive operations—basic operations defined by the specific programming language environment.

Factory methods—methods that return new objects.

Hook methods—placeholder methods that define spots where specific steps in the algorithm need to be plugged in to

flesh out the skeleton. Often, designers provide default hook method implementations in abstract classes.

A hook method is a placeholder that gives other developers who are creating subclasses a chance to insert new behavior at a

specific step in an algorithm. By calling upon a hook, developers can alter behavior for a particular step without having to alter

any template method code. The template code stays fixed, whereas the contents of a hook varies and objects returned from

factory methods vary (while supporting the same interface). The algorithm defined in a template method is flexible and is

extensible by a developer who creates a subclass that implements hook methods.

The general algorithm for performing any online banking request is as follows:

Obtain connection to backend banking system (a concrete action).1.

Prepare request (a hook).2.

Submit request to backend banking service (a hook).3.

Release connection (a concrete action).4.

Log results to transaction history database (a concrete action).5.

Report results to user (a concrete action).6.

In the online banking application, a template method is defined in the abstract class OnlineTransaction. Subclasses are

designed to coordinate specific transactions. Subclass designers must implement two hook methods: prepareRequest() and

submitRequest(). All other steps of the algorithm are implemented by concrete methods defined in the OnlineTransaction

(see Figure 9-5).

Figure 9-5. Template and hook methods designate which parts are frozen and which spots are hot.

The Template Method pattern describes one specific technique to adapt a configurable algorithm whose steps need to vary. But

there are other ways to make specific responsibilities tunable. More generally, a hook, according to Gary Froehlich and his

colleagues who wrote about them in Building Application Frameworks (Mohamed Fayad, ed., John Wiley, 1999), is any point in

the design that is meant to be adapted. It is a specific spot where variation is supported. There are several ways that behavior

can be adjusted. Each hook uses at least one of these techniques:

Enabling or disabling a feature

Replacing a feature

Augmenting a feature

Adding a feature

Configuring a feature

Normally, hook mechanisms wouldn't be part of your design. You introduce them whenever you want to support

planned variations.

In support of an individual hot spot you might define several hooks or points in your design that are adaptable. To instrument

these hooks you will need to introduce specific design mechanisms that allow other designers to adjust your design's behavior.

For example, to enable or disable a feature, you might introduce a new variable whose value is checked in one or more places

to alter the path taken through a method. To replace a feature, you might need to define new interfaces that allow designers to

introduce new classes. Augmenting a feature may involve refactoring your design and making an extensible class hierarchy that

incorporates template and hook methods. Or you may need to redesign a controller to activate a new feature.

Determine when something needs to vary. The degree of difficulty of implementing support for a variation increases

whenever software needs to adapt while it is executing. You may have to add support for synchronizing a number of related

adjustments or structure your software so that the subsequent requests follow new rules, while a currently executing operation

performs under conditions that were established when it started. Because dynamically adjustable software can be more

complicated, don't assume it's a necessity. One question to ask when you're designing to support a variation is when it needs to

be accommodated. Are conditions established when the application is launched, or are they dynamically checked to alter

behavior during execution? There is a range of options.

User access rights to accounts are checked when a user logs in. The software doesn't check again until the next

time the user logs in. A check-once variation.

The user of an e-mail application sets parameters that affect how mail is displayed, when to check for mail,

whether to check for spelling errors, what signature to append to a message, how to encode a mail message, and

so on. These variations affect many parts of the software. Whenever the user changes any setting, the software

responds. Numerous variations enabled by user-initiated events.

To install a new upgrade to software controlling a card in a complex control system, the operator issues a

command. The system reboots the card and reinitializes the card only after it has successfully downloaded the

software and stored a backup copy in nonvolatile RAM. If the card isn't carrying any active traffic, an upgrade can

be loaded at any time. A dynamic reconfiguration with rollback/recovery constraints.

There isn't a sharp line you can draw between what is considered "normal" conditional checking and control flow

in an application and a flexible, configurable solution. Most object designs can be made to flex. A good design

includes an appropriate degree of flexibility.

Consider when your software needs to flex, and design it accordingly. Sometimes, simpler solutions meet flexibility

requirements even though they don't support dynamic variation of system behavior.

Supporting a different input device for the Speak for Me application involves installing a new device driver,

defining and implementing a new interfacer to that device, and adding the device to the user's configurable

preferences. Although Speak for Me could support dynamic loading of new devices whenever they are detected,

this isn't strictly necessary. End users do not plug in new devices; hospital staff do. It is rare that a user is

switched from one input device to another. In this case it is perfectly acceptable to configure the user's

preferences and then restart the application.

Choose the simplest solution. When there is little reason to choose one design alternative over another, follow the simplest

course of action. There are very simple ways to support variations that involve enabling or disabling a feature or setting a

configurable parameter to a range of values.

"When faced with alternative approaches, choose the simplest first and change to a more complex one as

needed."

—Martin Fowler

To support optional functionality, you can design your objects to ask and respond to feature availability. Behavior is tuned by

setting parameters whose values are queried. Depending on the value of a particular parameter, different branches can be

chosen. In a non-object-oriented solution, these tunable parameters could be implemented as flags. A more object-oriented

solution is to create an information-holder object with responsibility for maintaining configurable information. It is queried by

objects whose responsibilities adjust accordingly.

In the online banking application, certain bank installations support automatic online activation, whereas others

require that users submit information that is later manually verified by a bank agent against bank records before

online access is activated. A BankConfiguration object is queried to determine whether or not Auto Activation is

enabled. The application alters its behavior to display the appropriate registration screen and to either invoke

automated authorization services or queue a registration request for manual activation, depending on the answer

to a simple question.

Certain variations require no coding changes. Parameters stored externally in a file or database are read to

initialize system behavior. Whether a developer or an end user, whoever edits that information may need to

know what values are valid and understand dependencies that exist between parameters.

Concentrate variable information into information holders. Often, many parameters control an application's variable

behavior. You could locate each of these settable parameters in different objects whose behavior is directly affected.

Alternatively, each affected object could turn around and ask a common source a question and then vary its behavior depending

on the answer.

In the online banking application there are dozens of parameters that can be used to tune the application's

behavior: number of user retries before failing login, time elapsed before session time-out, and default language,

to name a few. The BankConfiguration object is initialized by reading values from an external source.

We recommend the second approach. Bundled together, configurable information can be dealt with as a unit. Sprinkling

configurable values among many objects makes this information hard to locate and manage. But don't let your information

holder become too bulky. Instead of letting it get bloated with disconnected information, you can always divide and conquer.

Create a number of smaller information holders that encapsulate related information. Give the original information holder

responsibility for managing these smaller information holders. Redesign it to hold on to larger-grained information.

Grouping related information into smaller focused information holders allows parts of the application to ask about

specific feature sets. In an e-mail application, a number of user-specific information holders might be created and

maintained by a UserPreferences object: IncomingMailOptions, OutgoingMailOptions, UserIdentity, ReplyOptions,

and DisplayOptions, to name a few.

Insert design placeholders. You aren't likely to discover all variations at once. But if you are following an incremental, iterative

design process, you can plan to grow your design in specific ways. Placeholders can be introduced into your design to

encapsulate behavior and information that you expect will grow and vary. You can invent several placeholders and grow their

responsibilities with successive iterations. This isn't a technique so much for enabling variation as it is for keeping it contained to

well-known spots.

Steven Jones, in Building Application Frameworks, introduces the notion of a Placeholder pattern. If you want to reserve a spot

for anticipated improvements in later iterations, define and implement one or more placeholders and insert them into the design,

to be fleshed out later. As an example, Jones describes a class hierarchy that includes a specific placeholder for

application-centric features. Using this framework, application developers are expected to define a new class and add it to this

hierarchy for each application they implement.

Planned for but unused flexibility increases a design's complexity. So do poorly factored hacks in support of

unplanned variations. But appropriately located placeholders can preserve a design's integrity.

The abstract class Application defines common default behaviors for starting, initializing and shutting down any application.

The class CommonApplication is a subclass of Application, and a placeholder that provides a home for additional behaviors

that will have a global effect on all applications. Instead of subclassing Application, to fit into this application framework,

developers create their own specific application's startup and control behaviors by subclassing CommonApplication. The

following future behaviors might be added to CommonApplication:

Checking on whether a particular version of the application can be started on a specific machine.

Verifying licensing keys or user registration.

Maintaining banners or welcome messages.

Registering a distributed application with a naming service.

Specifying the operational mode of the application—is it in debug mode or normal operation? Is access limited, or is it

under normal operation?

Some programmers are likely to argue against placeholders; they consider overdesigning to be bad practice. Designers who've

been burned on prior projects might argue fervently for their favorite placeholder. The value of a placeholder is that it limits the

impact of subsequent design changes. New responsibilities can be given to a placeholder, with minimal impact on the rest of the

design (see Figure 9-6). Creating an explicit spot—a placeholder—allows for variations to be localized, encapsulated, and

managed.

Figure 9-6. Two placeholder classes—BankAppUser and AppUser—reserve spots for future behaviors.

Debate about whether a placeholder is necessary or sufficient is healthy for a design, as long as camps don't

form and positions become entrenched. The real test will be in the future—when new adaptations are rolled into

the design.

In the online banking application there are several placeholders—too many for some designers' tastes. Several

placeholders were introduced by the architect as a result of his past development experiences. Not all team

members bought into the need for introducing so many of them. One noncontroversial placeholder is the

BankConfiguration object—a spot where bank-specific configuration information is maintained. A more

controversial placeholder is the user class hierarchy. Although there are only three known kinds of users—the

bank agent, a system administrator, and end users—an ApplicationUser inheritance hierarchy was designed. It is

intended to support anticipated user-specific capabilities and defines specific places for extension. The

placeholder classes weren't easily accepted by the design team because early releases of the application

supported only end users.

Create appropriate knobs for developers to turn. As a flexibility designer, you can make other developers' jobs easier by

providing extra support—adding "knobs" to your implementation that assist developers in making changes. The alternative is to

give them free rein to the code and let them have at it. Sure, it's possible to implement variations without extra support. But it is

especially important when several hooks must be implemented in a particular order to realize a single variation. Without such

support, making extensions can get tricky.

If several parts of your system need to be configured as a unit and the ordering of changes is important, consider providing a

single method—a master knob, if you will—that contains the code that configures a variation in one atomic operation. Rather

than call on several methods to configure a feature, the developer invokes only one method to make a set of related changes.

This is much more reliable than letting developers write their own scripts.

Sometimes, configuring a variation may involve reading and interpreting externally stored settings. Rather than let developers or

users change settings by using a low-level text editor, you might want to create a tool that assists them in making consistent

changes. A tool can also check and report inconsistent settings.

Sometimes, to implement a variation, extensive programming is required. It is difficult to provide knobs in this case. But at the

very least, you can provide examples to emulate and can outline the steps developers should follow. Rather than provide a

knob, provide them with a starting point.

There is one more knob that is a hallmark of disciplined development practices: a "test" knob. After making a change, a

developer can turn a test knob to check whether an adaptation hasn't broken anything. A test knob typically invokes preexisting

test code that asserts whether values are correctly initialized, whether newly installed objects respond appropriately to standard

questions, and whether new variations of behaviors perform according to established scripts.

I l@ve RuBoard

I l@ve RuBoard

The Role of Patterns in Flexible Designs

Design patterns use composition, inheritance, and abstraction as tools to enable adaptations. Design patterns make software

"soft" and amenable to extension and modification in prescribed ways. We've already seen that the Template Method pattern

defines basic building blocks for constructing skeleton algorithms. A design pattern typically affects a small segment of the

design—a few collaborating objects or a class in an inheritance hierarchy. Let's look more closely at three patterns described in

Design Patterns to see where they flex.

The Strategy Pattern factors a responsibility (often a private one) out of an object, replacing it with a

collaboration with another object that performs that responsibility. It is particularly useful when the responsibility

is complicated or might vary. After a responsibility has been factored into its own object, it can be replaced with

other strategies, enabling the original object's behavior to vary.

Varying an Object's Behavior with the Strategy Pattern

The Strategy pattern lets you define a family of algorithms. The Strategy pattern encapsulates a single algorithm in an object.

Usually called on by clients fulfilling larger responsibilities, this pattern lets developers use any object playing the role of the

strategy interchangeably.

Speak for Me presents the letters of the alphabet in different sequences according to the wishes of the user. The

Guesser delegates the work of guessing letters to the Alphabet. If the Alphabet plugged in different

AlphabetOrder strategy objects according to the user's preferences, that would change the way letters are

guessed.

The Strategy pattern presents a design alternative to having the client select the appropriate algorithm based on conditional

logic and directly executing it. Sure, the client might need to be aware of different strategies in order to pick the right one. But the

appropriate strategy might be provided by some other third party that knows which strategy to choose. The responsibility for

performing different variants on the same algorithm has been factored into several different kinds of strategy objects. Introduce

a new strategy, and you've extended your design.

Hiding Interacting Objects with Mediator

One bugaboo of flexibility is tight coupling. To collaborate with an object, the client must acquire a reference to that object. If

references are fixed, communication paths and collaborations aren't flexible. The Mediator pattern's sole purpose is to promote

looser coupling by keeping objects from directly calling on one another's services.

By representing the responsibilities of the objects that it delegates to, a Mediator assumes all of their combined

responsibilities.

In the Mediator pattern, an object that plays the role of a mediator is responsible for coordinating the interactions of a group of

objects. Rather than collaborate with each other directly, the objects know only about the mediator. The mediator is the hub of

communication. It instigates and manages inter-object communications.

Speak for Me's MessageBuilder is a mediator. Coordinators often play the role of a mediator. It responds to the

application events and hides the domain objects and their responsibilities from the objects in the user interface.

The user interface objects know about mediator, but that's all. The mediator, in turn, knows about the

event-handling responsibilities of all of the domain objects that it delegates to, but these domain objects and their

responsibilities are hidden from the user interface objects. A mediator acts as a channel for interactions.

The distinction between a mediator and a coordinator is a subtle one. Your intention when inventing a

coordinator is to solve a control problem by creating an object that coordinates activities of other objects. A

designer may choose to adapt the Mediator pattern as a solution—designing that coordinator to play a mediator

role, or not. A coordinator can manage the activities of other objects without having to be a mediator.

The Mediator pattern trades off complexity of interactions between individual objects for knowledge and visibility of those objects

by an object playing the role of mediator. With this looser coupling, your design is more flexible. Any object that plays one of

several preestablished roles known to the mediator can be plugged in and used interchangeably.

Making a Predefined Object or System Fit Using Adapter

You apply the Adapter pattern when something you want to use isn't malleable enough to suit your purposes as is and you can't

change it. Rather than warp the rest of your design to use an object or component that has an undesirable interface—it could

be clunky, or too low-level, or not fit in with the rest of the design—you wrap it with a more desirable one and plug that into your

design.

The telco integration software coordinates the work of a number of business applications developed by independent software

vendors. In order to insulate the integration core from application specifics, the system is partitioned into a number of

adapters, which transform requests from the external application into integration software common commands and/or

translates requests from the integration software into application-specific API calls (see Figure 9-7). Each adapter runs in its

own process, allowing for asynchronous processing. Parts of the system can be brought up at different times, and adapters

can be allocated to separate processors.

Figure 9-7. The Adapter pattern can be used to make different objects or components present a similar interface.

The Adapter pattern allows you to fit new elements into your design without compromising it. By creating adapters, you preserve

your design's integrity and don't let low-level details or a clunky interface "leak out" and affect other objects.

How Do Patterns Increase Flexibility?

Many of the design patterns described in Design Patterns encourage the distinction between an interface to a set of operations

and its implementation. To be plugged in and used, an object need only support a common interface and not a common

implementation. This allows objects that share common roles to be used interchangeably. Clients are unaware of the classes of

objects they use; they only depend on their interface. This greatly reduces implementation dependencies among objects and

gives designers the flexibility to replace one interface-compatible object with another.

Variations in behavior that are obtained by composing objects that support predefined interfaces promotes "black box" use. No

internal details of those objects are visible to their clients. Regardless of whether you apply a particular pattern, you can always

increase flexibility by defining interfaces and having clients rely on them instead of referring to concrete classes. Declaring an

interface as the type of an argument as the value returned by a method, or as the type of a variable effectively establishes a

contract for service without specifying what class of object will perform it. It's all the same to the client, but only an object's

creator needs to be aware of its class. If a client's only view of a collaborator is its interface, different objects that support the

same interface can be interchanged.

Another technique used in many design patterns is delegation: An object that receives a request forwards it to an appropriate

delegate (see Figure 9-8). For example, both the State pattern and the Strategy pattern change the behavior of an object by

changing whom requests are delegated to. Delegation makes it easy to support run-time variation. By swapping delegates

on-the-fly, you can adjust an object's behavior.

Figure 9-8. Delegation to replaceable collaborators makes a design flexible.

I l@ve RuBoard

I l@ve RuBoard

How to Document a Flexible Design

How can you denote a potential point of variation in a collaboration, or show where an object playing a specific role can be

plugged in to a design? You might think that the first thing to do is to create appropriate class and sequence diagrams that

identify "flexible elements"—but exactly how do you show that? UML provides basic mechanisms for showing classes, roles,

interfaces, collaborations, and patterns. But it doesn't provide facilities for explicitly denoting hooks or identifying related

template and hook methods.

"Delegation is a good design choice only when it simplifies more than it complicates. It isn't easy to give

rules that tell you exactly when to use delegation, because how effective it will be depends on the context

and on how much experience you have with it. Delegation works best when it's used in highly stylized

ways—that is, in standard patterns."

—Erich Gamma et al.

Although frameworks and extensible software have been developed for a wide range of applications, UML as it stands today still

lacks adequate ways to describe points where a design can be extended. Recently, the Unified Modeling Language community

has started to define profiles, which are subsets or extensions of UML targeted for specific uses. That's one reason the authors of

The UML Profile for Framework Architectures (Marcus Fontoura et al., Addison-Wesley, 2001) developed a specific profile

aimed at aiding framework designers and architects in describing extensible software.

In defining UML-F, Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe have made a first attempt at describing points of

design flexibility. It remains to be seen whether their proposed notations become widely adopted or make it into future versions

of the UML standard.

Several notations in UML-F are worth a close look. Designs that have a large number of classes and interfaces can be difficult

to grasp. For many systems, a complete class diagram that shows every class and interface as well as associations would be

incomprehensible. It is common to show a partial set of classes on a diagram and to repeat classes on many different diagrams.

It is a necessity to break down a large design into comprehensible chunks.

UML profiles are being proposed to address specific modeling issues of targeted application areas. For

example, people are working on a UML profile for fault-tolerant designs. Other UML profiles being proposed at

the time this book is being written range from enterprise application integration to workflow and business

process modeling.

But this can be confusing, too—especially when classes are depicted in greater or lesser detail on different diagrams. On one

diagram a class may include attributes and operations; on another, only a subset of operations may be enumerated. Yet a third

diagram might show the class with no attributes or operations. This is perfectly legal in UML, and it is good to remove

extraneous details so that you can emphasize what's important. However, developers studying a design model in order to make

a variation could benefit from a clearer understanding of exactly what they are seeing.

To address this issue, the UML-F authors extended UML with two tags that make it explicit whether or not a class, or any other

design element, is fully specified (see Figure 9-9). Tagged with a "©" means that it is complete. Tagging a design element with a

"..." means that it is incomplete (there's more detail but it is not shown). By default, any element not tagged with "©" or "..." is

deemed incomplete.

Figure 9-9. Adding UML-F tags makes it clear whether you are looking at a partial or a complete specification.

When you are looking at a UML diagram, you can never be certain whether you are looking at a complete or a

partial specification of a class or inheritance hierarchy. Sometimes it is easy to forget this and read more (or

less) into a design than was intended. That's why the UML-F authors included the "..." notation to tag design

elements as incomplete. This forces your attention to the fact that you are seeing only part of a design.

UML-F also lets you annotate individual methods with an explanation of their intent and implementation. This allows a designer

to specify whether a method's implementation is

Abstract and needs to be overridden by subclasses (shown with a diagonal slash through the rectangle)

Inherited and not redefined (shown with an unfilled rectangle)

Newly defined or completely redefined by a class (shown with a gray-filled rectangle)

Redefined but uses behavior defined in a superclass via a call to the superclass's method (shown with a rectangle

that is half gray, half unfilled)

This is particularly useful for visualizing how inheritance is used when you specify configurable algorithms using template and

hook methods (see Figure 9-10). You can see at a glance whether a method has been replaced or superseded in subclasses

without having to read code.

Figure 9-10. UML-F has notations for showing implementation inheritance characteristics.

Finally, we introduce one more UML-F construct: template and hook tags. Methods, classes, and interfaces can be tagged as

being templates or hooks. A group of related template and hook tags can be named. Thus it is possible to see the complete

suite of template and hook methods that support a specific variation (see Figure 9-11).

Figure 9-11. GuessDictionaries share a common algorithm for loading data, but each parses its data differently.

When you look at any UML diagram it's hard to know how much is left out. There are many valid reasons to

leave out design elements; to emphasize certain aspects and remove clutter are two.

There is more to UML-F than we describe here. And there is more to describing how a design supports a variation than can be

shown on any diagram. The main value of UML-F is the ways it can be used to express design variations and their

implementation details.

Consider Your Audience

Although you can document details in UML, consider your audience. What levels of detail do your readers need (or want) to

see? Consider the detailed diagram in Figure 9-12, which shows the implementation of many hooks in Speak for Me.

Figure 9-12. UML class diagrams show flexibility in interfaces, abstract classes, and inheritance hierarchies.

Contrast Figure 9-12 with a second, conceptual picture (Figure 9-13) that generally explains hooks and where they are located in

the design.

Figure 9-13. A conceptual diagram can also be used to show how the Speak for Me application can flex without

showing classes and interfaces.

Different stakeholders are likely to prefer one view over the other. Some will prefer a big picture overview. Your fellow designers

may want to examine your design in all its glory—and may not be satisfied with any level of detail you can show using UML. No

single picture or diagram can communicate these different perspectives.

Without knowing whether you are looking at the whole story and where aspects of the design have been

explicitly elided, drawings can only be viewed as representations, with the real answers to be found by reading

code.

Describing How to Make a Variation

If the person making a variation is a developer, he or she will need to understand at some level how the design works before

making it vary. Diagrams can help, but they aren't the whole story. Explanations, words, written procedures to follow, and code

examples all help. But before you launch into an extensive documentation effort, consider what the person needs to know in

order to make a variation.

If the level of support you have provided for making an adaptation is high, then developers may not require deep knowledge.

Perhaps you have created a number of prebuilt components or classes. To implement a variation, a developer simply chooses

an existing component and plugs it in to a particular collaboration by invoking a single "setter" method. If this is so, designers

won't require deep knowledge of your design or a complex set of instructions. They are likely to need only a simple set of

instructions—a basic recipe to follow.

Sometimes multiple views of your design are appropriate. Don't expect everyone to understand your design's

flexibility at the same level of detail. Vary your descriptions according to your audience.

A Basic Recipe for Selecting a New Device Driver:

Choose from one of ...

Configure into system by doing ...

Restart and test by calling ...

More likely, the developer must change or add at least one class and modify code in other classes to implement a variation.

Examples or pointers to places where similar variations have been implemented could be helpful.

Sometimes people who create a design don't know how to limit their descriptions. The key to writing a good

recipe is to get into the mindset of the users. Ask, "What do they need to know?" instead of thinking, "What

should I tell them?"

How to add a new banking option

Add a method to the BankConfiguration object that can query whether this feature is enabled.1.

Add a variable declaration in the bank configuration file named xxxFeature.2.

Initialize the system.3.

General procedure to follow: Code in the affected classes can be altered to query the Bank object for

SupportsXXX and if so, alter behavior. Typically, Bank features affect specific transactions, specific

4.

display, or logging and recovery functions. For an example, see how supportsAutoActivation is used to

vary the behavior of the RegisterTransaction.

More complex variations require more extensive knowledge. A good recipe needs to provide only enough information to guide

someone making an adaptation. It doesn't have to tell everything. Here is a basic recipe template adapted from The UML Profile

for Framework Architectures:

Recipe Name: Usually starts with "How to"

Intent: The reason to use this recipe

Design Description: Which classes and interfaces are involved and need to be understood, what roles do they

play and what collaborations are involved. What responsibilities are adapted via the variation ... backed up by

supporting UML or UML-F diagrams and other descriptions.

Related Recipes: Alternative ways to accomplish a similar variation; or related sub-recipes. If the recipe is

complex it may need to be broken down into several sub-recipes.

Steps 1. First create a class that implements the xyz interface...

2. In it define a method named...

3. And another method named...

4. ...

Discussion: This could mention problems that might crop up, how to test that a variation is correctly installed, or

what should not be attempted using this approach.

If the end user is making the variation, the recipes aren't likely to mention objects or how the software adapts behind the scenes.

If it is more than a single action, users are likely to want step-by-step procedures, just as developers do—but procedures written

at a level that describes how the user interacts with a tool to make changes.

End users and developers need to understand how to make variations, but typically at different levels of abstraction. Often, both

need to understand the limits of the software. Certain changes are easy. Others take time and extra preparation. Good recipes

should tell people what to expect, present options, and tell them what they need to know to keep on track.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Changing a Working System's Design

So far we've talked about increasing flexibility as if you were approaching a design with a clean slate. When there are

existing obstacles, bumps, wrinkles, and constraints that you have to put up with and cannot change, introducing

flexibility is more challenging. If you could have divined the future and accurately predicted future requirements, you

would have designed your software to absorb changes with minimal impact. Barring that, you need strategies for

wedging variations into your existing software. How can you extend your software without compromising it?

Software, unlike the pyramids, is seldom built as a memorial, never again to be touched. To withstand

time, shifting user needs, or the latest OS release, software must be flexible.

Earl Ecklund, Lois Delcambre, and Michael Freiling introduced the idea of change case analysis in a paper presented

at OOPSLA 1996. They suggest you characterize the focus, scope, and degree of definition of any proposed change

before designing a solution. The scope of a change refers to how much it pervades the software; but to these

authors, scope is more than the impact on the design. After software is in use, a proposed change can have

far-reaching effects on users, existing requirements, use cases, design documentation, and testing procedures.

Degree of definition refers to how well known the details of a proposed change are. After a proposed change is well

defined and its impact has been assessed, then Ecklund and his colleagues propose that you shift your emphasis to

design.

Not every change to your software is an opportunity to make your software more flexible. But it is an

opportunity to rethink your design and ask, "Is now the right time to refactor my design, or should I

simply make the change as quickly as possible?"

Of course, not all changes warrant creation of a flexible solution. You may need to bolt on a new feature that doesn't

fit with or naturally extend the existing parts of your design. However, if a change represents a variation on existing

behaviors, then you can consider a flexible solution. If changes occur frequently, and follow common patterns, you

are likely to have designed your system to be flexible to begin with.

Tax laws change every year, so tax preparation software changes every year. But it changes in

predictable ways: Specific calculations and tax rules change and new tax forms are invented (with their

own rules and calculations). Various items on forms are linked to other items. Tax preparation software

is designed to support rules, calculations and relationships. Because forms and rules and calculations

vary from year to year, the software designers have developed a framework for defining rules and

relationships between line items, for defining new forms, and for performing calculations. If new rules

don't fit into their existing toolkit of predefined calculator objects, they invent new calculators and fit them

into the existing framework. If new forms are needed, they invent those. But the basic structures—forms

with line items—and ways of performing calculations remain the same. It's only when new functionality is

required, such as electronic filing of taxes, that major design work is required.

However, even though you know it is coming, if a change is ill defined, it is hard to plan ahead.

Knowing that new software will continue to be integrated into the telco integration framework doesn't

mean that the designers can make many preparations. Integrating any new software system will require

developing a usage model and then writing an adapter to interface between it and the existing

framework core. But beyond that, they can't "prepare" their design to absorb the new software. Not until

a clear model is made of how the new software is to be used and how it interacts with the existing

system can any detailed plans for design rework or new design features be made.

When does making a change compel you to a flexible solution instead of merely applying a fix? Rarely is this a

simple decision. When the scope of a change is broad and will radically alter existing system behavior, it's a good

time to step back and explore your options. Redesigning your software to increase flexibility may be the most

expedient way to absorb this type of change. Or it may not be. When the scope of a change is small—perhaps

localized to a single object—the tendency is to patch in the change. That might be OK. But the next time you patch

that patch, things could get ugly. It is a matter of deciding whether to pay for redesign now or defer the decision until

later when you know more. You may not know enough about potential variations until you make that third or fourth

change. When you start to see a pattern, consider refactoring your design and developing a more flexible solution.

Patches may be the quickest solution, but they impact your software's ability to flex in the future. The more patches

you make, the harder it is to see your design and to introduce support for adaptations.

Martin Fowler's Refactoring describes many ways to readjust your code in preparation for a design

change. Instead of patching in a change, you might need to refactor code before changing your

design.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Summary

Flexibility is a measure of how readily software adapts to a range of design parameters. Only those parts of a system

whose behaviors need to be adjusted—by either a programmer or an end user—need to be flexibly designed.

Flexibility does not necessitate large frameworks. To support any variation, you can introduce a modest amount of

flexibility into your software. Hot spot cards are a low-tech tool for analyzing your software's flexibility requirements.

The essential characteristics of variations, or hot spots, can be quickly described on index cards. After you've

described a hot spot, you can pinpoint the areas of your design that are affected and strategize how best to alter your

design to support the hot spot.

Many design techniques that you are already familiar with can be used to introduce flexibility into your design. Your

intention is to make your design adaptable along specific dimensions. This requires extra work. To support any hot

spot, you will likely introduce extra mechanisms—or hooks—into your design that allow others to tune or extend your

design. You are likely to identify shared roles and define common interfaces. You may create new abstractions,

define abstract classes, and use inheritance to your advantage. You may introduce placeholders—objects that have

minimal behavior and are intended to accrue more responsibilities in later iterations. Many design patterns allow for

specific extensions and variations. In addition to these design mechanisms, you may develop sample code for others

to emulate or write recipes that explain how to perform an adaptation.

I l@ve RuBoard

I l@ve RuBoard

Further Reading

The UML Profile for Framework Architectures (Addison-Wesley, 2001) by Marcus Fontoura, Wolfgang Pree, and

Bernhard Rumpe describes a set of extensions to UML specifically targeted for developers describing extensible

designs. This slim volume is divided into two parts. The first section describes the UML-F profile; the second is

devoted to case studies and examples showing actual designs and recipes of extensible frameworks.

You can learn much about building flexible solutions by studying extensible designs. Two books, Building Application

Frameworks (1999) and Implementing Application Frameworks (1999), edited by Mohamed Fayad, Douglas Schmidt,

and Ralph Johnson, are full of experiences recounted by framework designers and architects. There is much

practical advice to be mined from these books!

Wolfgang Pree, in Building Application Frameworks, introduces the notion of a framelet—an

architectural unit that is small (fewer than 10 classes), does not take over main control of an

application, and has a clearly defined and simple interface. A framelet can be extended and

specialized, but by intent is small and narrowly focused.

There are many techniques for introducing flexibility into a design. Most are based on inheritance, composition, and

configuration. We want to point you to one more interesting idea—called Adaptive Object Models—introduced at the

intriguing technology session at OOPSLA 2001. The idea behind an Adaptive Object Model is very simple: Let end

users define objects, their relationships, and behaviors. Provide tools that let users describe objects and their

semantics. Then construct your software to interpret and execute these self-describing models. Talk about the

ultimate in end-user adaptation! Joseph W. Yoder, Federico Balaguer, and Ralph Johnson presented the paper

"Architecture and Design of Adaptive Object Models" at the OOPSLA 2001 conference. Another paper, "The

Adaptive Object Model Architectural Style," coauthored by Yoder and Johnson, describes in more detail techniques

for constructing adaptive object modeling systems.

I l@ve RuBoard

I l@ve RuBoard

Chapter 10. On Design

Lewis Thomas, noted physician and science writer, observed, "I'm not as fond of the notion of serendipity as I used to

be. It seems to me now that as you get research going... things are bound to begin happening if you've got your wits

about you. You create the lucky accidents." From time to time, object designers make startling discoveries,

too—insights that make you want to stand up and shout. New ideas that you just know you should push on.

Revelations that lead to deep understanding about how your software should work and what its limitations are. But

amid these discoveries, you must keep working on the problem and not get distracted. That's the hard part: keeping

design challenges in perspective while making progress and delivering on your promises.

I l@ve RuBoard

I l@ve RuBoard

The Nature of Software Design

As a designer, you are expected to be a good problem solver. You skillfully handle new challenges as they come up,

balance conflicting priorities, and do what's needed to get the job done. In spite of uncertainty, you are counted on to

devise good solutions.

You can be well prepared with a toolkit full of design techniques and practices, but design is never predictable. There

are always surprises, additional complexity, and new twists. To keep on track, it helps to fit your design problems into

one or more of these categories:

Core design problems. The core is the core because without it, there is no reason to build the rest. Your

application won't meet its users' needs or stand up to the rigors of use without a well-designed core. Core

design problems must absolutely, positively be dealt with.

Revealing design problems. Revealing problems, when pursued, lead to a fundamentally new, deeper

understanding about the nature of your software. Just because some part of a design is difficult or tricky,

however, doesn't make it revealing.

The rest. Although not trivial, the rest requires hard work but far less creativity or inspiration.

Each type of problem warrants a different approach and has a different rhythm to its solution. Core problems must be

solved. This is engineering at its best. You've got to give it proper attention. If you don't, your project will fail.

Revealing problems are squishy and hard to characterize or even know when they are completely solved. Each time

you look further into a revealing problem it teaches you something new. Revealing problems deserve special

recognition and attention. They can't always be solved in tidy ways. They must be tamed.

But the rest can't be ignored either. It may include mundane, tedious, or mildly interesting design work. It is always

present and pressing. If you don't budget your time, it can soak up all your spare cycles. The rest needs your

attention but not your total devotion.

This chapter presents strategies for designing responsibly in the face of uncertainty, complex problems that have no

obvious answers, and lots of tedious details. We present ways to approach different kinds of design problems. To

work effectively, you need to flex and adapt, react and respond, and work steadily on all aspects of your design.

I l@ve RuBoard

I l@ve RuBoard

Tackling Core Design Problems

Designing the core parts of your system requires energy and focused attention. It can be all too easy to get distracted

by minutiae or wander off on a quest to solve a difficult problem. The core of your design must be well known and

solid. It requires steady, persistent consideration. The key to balancing core design work with other design activities is

to put everything else in perspective. The rest will always be with you and must be done after the core is well in hand.

Revealing problems can crop up at any time. You can't plan for them. They just happen. Work on revealing problems

progresses in fits and spurts. Rarely can revealing problems be solved by relentless attention. Core design problems

are most often at the front of your work queue until you nail them and move on.

But what exactly is in the core? It depends. Designing an optimizing compiler is very different from designing online

banking software. Core to an optimizing compiler is an internal representation of a computer program and code

optimization algorithms. Design of an appropriate program representation goes hand in hand with the design of

efficient optimization algorithms. The appropriate choice of structures to represent a program is critical to the

algorithm design.

The core of the online banking system includes the design of online transactions and a common interface to backend

banking services. Sure, the user interface is important to the project and its sponsors, but the quality of its design isn't

central to the application's success. It just must be there. However, design features that enable performance to scale

and the system to keep running under certain failure conditions are critical. Without a solid design for these core

parts, the system won't be deployable.

Core problems include those fundamental aspects of your design (no, not every part can be fundamental) that are

essential to your design's success. Depending on your design requirements, you might nominate for the core these

elements of your design:

Mechanisms that increase reliability. These could include the design of exception-handling mechanisms,

recovery mechanisms, and connection and synchronization with other systems.

Key objects in the domain model that your software manipulates.

Important control centers.

Support for user interactions.

Key algorithms.

How do you decide what's in and what's out? When there's debate on whether something is in the core, ask what the

consequences would be of fudging that part of the design. What would happen if you didn't work so hard or come up

with such an all-encompassing design? Would the project fail? Would other parts of your design be severely

impacted? Then it's definitely core.

Whether you classify something as part of the "core" or part of the "rest," you'll still have to deal with

it—it's a matter of emphasis. The main point is to give things the attention they deserve and be clear

on your priorities.

If you encounter disagreement about whether something is core, dig deeper. Are there fundamentally different

expectations for that part of your design, or does someone know something important that no one else has thought

about? You may be glossing over something important.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Frame the Problem

Most software designs are too big to jump in and solve all at once. You break design into bite-sized chunks and work

on them piece by piece. Depending on the nature of your software, you naturally focus on different things. Michael

Jackson, in Software Requirements & Specifications (Addison-Wesley, 1995), identifies five general categories of

problems—or problem frames—that software addresses. Many software systems can be thought of a set of related

and interconnected subproblems and as a consequence may comprise several different problem frames. Each class

of problem has its own concerns and design issues:

"When you turn on a light, you probably think of your movement of the control button and the

illumination of the light as a single event. In fact, of course, something more complex is going on."

—Michael Jackson

Control problems occur when software controls state changes of external devices or machinery according to

prescribed rules. The most obvious questions surround whether your design needs to determine whether its

commands that supposedly have changed some external thing have had the desired effect. If so, you will

likely design ways to probe whether things are as you expect. And if they aren't, well, you'll need to consider

whether the problem is with your software or an external device.

Connection problems occur when software receives or transmits information indirectly through a

connection. Sometimes connections break down, and information gets lost or gets garbled. How reliable

does your software have to be? Depending on the answer, you may need to go to great lengths to establish

an alternative path or get the connection working again.

Information display problems involve presenting information in response to queries about things and events

known by your software. Typically, the quality and timeliness of information and the precision and nature of

queries are a concern. Does your design have to accommodate imprecise questions or partial answers?

Are users interested in the current information? Is history important, or timeliness of responses? If so, what

do you need to do to meet these requirements?

Workpiece problems occur when your software serves as a tool that allows users to create and manipulate

computer-processable objects, or workpieces. Just as a lathe is a tool for woodworking, software helps

users create documents, compile and write programs, compose music, perform calculations, manipulate

visual images, and generate reports, to mention a few tasks. Design considerations for workpiece problems

involve the nature of the workpiece and the usability of the tool.

Transformation problems involve converting some input to one or more output formats according to

well-defined transformation rules. Transformation problems can be tricky. There may be constraints on

speed or memory utilization. Sometimes what constitutes an acceptable loss of information is at issue.

Sometimes the reversibility of a transformation is important.

Jackson advocates that you fully understand the nature of the problems your software is trying to solve before you

start design. That would be ideal. But if you live in a world of imperfect knowledge and incomplete specifications, you

can still prepare yourself by characterizing the problems your design will solve. Even if you don't have all the

answers, you'll know what questions to ask and which aspects of your design are likely to deserve your extra

attention.

"Problem frames amount to coherent sets of useful questions to ask about the problem domain in

order to invent a problem to solve."

—Ben Kovitz

Consider Jackson's characterization of connection problems:

"In many problems you'll find that you can't connect the [software] machine to the relevant parts of the

real world in quite the way you would like. You would prefer a direct connection... instead you have to

put up with an indirect connection that introduces various kinds of delays and distortion into the

connection."

If you find that connections between your software and some other system cannot be ignored—they are not

transparent, nor do they always work flawlessly—then your design will have to address their quirky behavior. There

are two basic strategies for dealing with connection issues. You could readjust your view and consider that your

software is really interacting with "something in the middle" that is connected to "something out there" that doesn't

always work. Jackson presents a classic example of a patient monitoring device as a connection problem:

A monitoring system collects real-time readings of a patient's temperature, blood pressure, etc. through

the use of analog devices. Analog devices are sometimes unreliable. This must be considered in the

design of your monitoring software. If a patient's temperature reading is 132 degrees, considering the

normal range of temperature variation, this reading is invalid. Your design should detect that a

temperature sensing device isn't functioning properly and raise an alarm.

To accommodate a faulty connection means treating the analog device as an untrusted collaborator. Instead of

blindly accepting its input, you validate information transmitted through a faulty connection.

Alternatively, if you determine that there will be interactions among your software, the connection, and the thing it

connects to, all of which need to be considered, your design problem takes on an added degree of complexity. You

must consider how your software should react in the face of potential time delays and conflicting states between

connected systems as well as faulty connections.

In the telco integration framework, there is a bidirectional connection between the order taking

application and the framework: The framework receives orders from the order taking application and

transmits notifications about the state of the order back to the application. Occasionally, communications

between the order taking application will break down. To accommodate this, queues have been

implemented to hold incoming requests and outgoing responses. Additionally, the interfacer component

to the order taking application is designed to retry transmissions several times before queuing them and

to notify system administrators when communications channels aren't working. Sometimes, as a result

of delayed communications, cancel orders are received after orders have already been completed.

Because the framework can't undo work that has been completed, it considers the cancel order a

problem it can't solve and notifies a person charged with troubleshooting problem orders.

Characterizing the nature your design—or as Jackson phrases it, identifying relevant problem frames—helps you to

sort through what's important and identify potential core design problems. Framing problems isn't only for analysts or

business folks writing specifications. As a designer, you should be asking those questions that help you frame your

design problems. Although you can look to use cases or requirements or user stories for guidance and clarification,

they describe only what your system should do and not the nature of the problems you are solving.

Even if you have framed the problem and think you know what you're in for, there are often surprises. Sometimes,

you stumble onto a meaty problem that can't be solved through skillful design alone.

I l@ve RuBoard

I l@ve RuBoard

Dealing with Revealing Design Problems

Revealing design problems are always hard. They may be hard because coming up with a solution is difficult—even

though that solution may eventually be straightforward. A revealing problem may not have a simple, elegant solution.

It may not be solvable in a general fashion; each maddening detail may have to be tamed, one at a time. It may

require you to stretch your thinking and invent things that you have never before imagined.

Sometimes when you work on a core problem, you discover it to be a revealing one, too. Not all core problems are

revealing ones. But those that are deserve special recognition. What distinguishes revealing problems from core

problems is their degree of difficulty and the element of surprise, discovery, and invention. To solve them you may

need to experiment. They may not be easily solved. People may disagree on whether any solution is good enough. It

may take a while to know what the real problem is. Working on revealing problems involves periods of intense

concentration, design, reflection, and implementation, interspersed with open, honest communication about your

progress.

Solutions to revealing problems can touch on any aspect of a design. They could impact an application's control

architecture, the key responsibilities of core objects, the design of central services, and complex algorithms or

interfaces to external systems. They can cause you to completely shift your worldview and discard what you had

assumed to be a fundamental truth about your design, replacing it with something more complex. If you find yourself

saying, "Nah—that could never be!" to a design challenge, you may have uncovered a revealing problem.

Let's look at some revealing design problems and see what we can learn.

A Story About Managing Shared Information

The telco integration software glued together several disparate applications. The system was designed to streamline

and, where possible, automate the process of taking an order, provisioning products that were ordered, and setting

up customer billing. The applications that were integrated by the framework included

Applications that managed customer service requests and orders

Applications that managed the tasks involved in, and the provisioning of, telecommunications equipment

and services

Applications that billed customers for service

Each application had its own worldview and and proprietary databases and complex ways of interacting with users.

None was designed to be plugged in to other applications to provide a comprehensive automated system. Right up

front, the team faced a big decision that proved to be an ongoing, revealing design challenge: How should the

framework handle information maintained by each application? Who should be the keeper of information about

customers, their products, and orders? Should there be a master source? Not only did each application have its own

worldview, but their views overlapped and sometimes contradicted one another. Addressing this fundamental

question revealed several deep insights.

One design option that was considered and rejected was that the integration framework could maintain a master copy

of orders, customers, and products and be charged with keeping everything in sync. Alternatively, the framework

could take a more arm's length view of other systems and their information. It could be designed to know to ask other

systems about the resources they maintained and coordinate their work.

Past experiences and war stories led the architects to conclude that the integration framework software should not

actively manage all common information. This was too hard and fraught with data synchronization problems. Instead,

the framework was designed to discover information in these other systems as it processed an order.

Working through an appropriate way to manage and change resources that are in other systems proved difficult. But

deep insights were gained only after migrating data in one billing system to another. In a new release, the framework

was chartered with supporting converted products. Sometimes, what was converted didn't match any official product.

Still, the integration software was expected to gracefully handle converted products. This led to the design of

strategies for limited support of nonstandard products and new rules for processing disconnect orders for products

with ambiguous definitions.

The difficulty in solving how to handle converted products hammered home the lesson that it isn't always possible for

the framework to interpret information that is validly being used by external applications. Still, the framework had to

provide solutions to tame the difficult problem of product information that didn't fit standard definitions. It wasn't

acceptable for the framework not to handle these products. The compromise, which didn't satisfy all the stakeholders,

was for the framework to support these products in a limited way. The framework simply didn't have enough

information to do anything else.

A Story About Connection Problem Complexity

This next revealing problem was uncovered after the telco integration software had been in production for several

months. Handling changes to in-progress orders proved to be a revealing problem.

To support the modification of an in-progress order, the designers developed a complex algorithm to compare a

resubmitted order against the current one and to create new tasks to undo or modify work in progress. On further

investigation, it was concluded that a change to an existing order could have several effects: Provisioning tasks might

need to be modified; work that had already been completed might need to be undone; or additional work might need

to be scheduled. And nothing prevented users from repeatedly submitting change requests. This was difficult, tricky

work, but still not revealing. The revealing problem surfaced when the designers tried to handle several exceptional

conditions that could happen when a user attempted to change an order.

It wasn't always possible to undo work that had been completed. And sometimes, even though the framework knew

about errors, it couldn't report them to the order entry application because that application wasn't in a state to accept

an error report. The framework couldn't "kick" this other system and make it receive a report. The other system

couldn't be modified to accept error reports. It wasn't an option. This led to the creation of a problem order queue,

where the software logged orders with problems that could be resolved only by extremely knowledgeable systems

engineers.

Modifying orders that are being worked on by disparate systems proved to be a very hard problem. The analogy of

trying to put toothpaste back into the toothpaste tube comes to mind. When tackled, it led to deep insights and the

revelation that some problems with orders can be solved only by human intervention and judgment. That's what made

it revealing, as well as plain difficult.

No matter how clever you are, software has its limits. Even with extraordinary effort you can't always design software

to put things back the way they should be. Ask Humpty Dumpty if you don't believe us! Synchronizing systems can be

very difficult. It isn't possible to transparently handle every anomaly with a software solution. Asking intelligent human

beings to intervene sometimes may be not only the best solution, but also the only solution.

A Story About a Design Problem That Never Got Easier

This is a story about the design of an optimizing compiler for Java. In order to aggressively optimize the code for a

method, a compiler needs to model the possible control flow paths within the method. In other words, the compiler

needs to understand all possible paths that execution may take through the method. This enables the compiler to do

things such as eliminate code that will never be executed and eliminate duplicate computations whose results have

already been computed earlier along a control path. Compilers typically model control flow by grouping statements

into basic blocks. A basic block is simply a sequence of statements that is always executed from beginning to end.

You can model complex control flow, such as loops and if statements, by building a graph whose nodes are basic

blocks and whose edges are the possible control transfers between blocks. Because control transfers within a

procedure are normally explicitly expressed as statements (if, case, for, while, etc.) in the programming language,

normally it is fairly easy for a compiler to build and maintain the control flow graph.

Programming language features that support exception handling significantly complicate the modeling of control flows

because exceptions can cause implicit transfers of control that are not explicitly shown in the code of a method.

Because of this complication, many compilers simply do not attempt to optimize methods that throw or handle

exceptions. Because it is quite common for Java methods to handle or throw exceptions, the designers concluded

that their optimization objectives would not be met if they did not optimize such methods. So they adapted the control

flow model to account for implicit control flow transfers caused by exceptions and enhanced optimization algorithms

to deal with this model.

They succeeded, but not without a lot of work. During testing, the team kept uncovering optimization bugs that were

the result of this design decision. As they continued to compile more programs, they continued to find even more

sticky problems related to the optimization of exceptions. Even after the compiler had been shipping for several years,

it remained the case that the majority of newly discovered optimization bugs were related to exceptions.

The designers didn't change or relax their design goals. They stuck to their initial decision and kept tweaking their

design. When they started, they had no idea that optimizing exception handling would be a continuing source of bugs

and new insights. In general, optimizing compilers are hard to design and debug because there are so many subtle

language features that interact with one another. You can demonstrate only that a compiler correctly compiles the

programs you have thrown at it. After it successfully compiles a suite of programs, there are no guarantees that it will

compile the next tortured piece of code.

Any design handles only those problems its designers can conceive of. As with many other kinds of software, the

number of different inputs a compiler must accept and process is infinite. Only over time and with enough test data

can complex designs be adequately stressed and tamed. Most compilers or any other complex program will probably

never be free of bugs. For systems such as these, designers simply cannot predict all problems beforehand nor

develop the ultimate test suite. Christopher Alexander, in Notes on the Synthesis of Form, sums this up nicely: "The

process of design, even when it becomes self-conscious, remains a process of error-reduction."

When you cannot anticipate all situations your design must stand up to, you should expect to

repeatedly confront a revealing problem until you've thrown enough rigorous cases at your design to

harden it.

Can Revealing Problems Be Wicked, Too?

In 1973, Horst Rittel and Melvin Webber coined the term wicked problems to describe questions that can't be solved

using traditional approaches. Although Rittel and Webber were talking about problems in planning and setting public

policy, their characterizations of wicked problems strike an eerie chord with our software design experience. Wicked

problems generally have these characteristics:

They have no definitive formulation. It's hard to state concisely what the problem is, and each time you do

so, you gain a new insight.

It's difficult to know when one is solved.

Solutions aren't true or false, but rather good or bad. For better or worse, it may be difficult to get various

stakeholders to agree on the quality of your solution. Some may consider it good enough, and others may

not.

There is no obvious way to verify that a solution fixes the problem.

Every solution has unforeseen consequences. As you fix one problem, sometime later more problems may

pop up.

They don't have a well-described set of potential solutions.

Each is essentially unique. You can reuse your brain and problem-solving skills, but you will likely craft a

unique solution to each wicked problem.

Each can be considered a symptom of another problem. The nest of interconnected concerns can be hard

to untangle. There is no simple cause and effect.

The causes can be explained in numerous ways. Different people will have different theories on what's

really causing the problem.

The planner can't be wrong. This means that you, the designer, still must invent some acceptable solution.

You can't ignore the problem.

We never said it was easy! Solving wicked problems can involve intensely creative design activity or skillful

negotiations. These problems call on many different problem-solving skills. Revealing problems may share one or

more characteristics of wicked problems. They're closely related. Most revealing problems don't have obvious

solutions. Sometimes they require you to redefine the problem. If you are lucky, you may invent a nifty solution. But

there may not be a tidy solution to your revealing problem. Sometimes the solution represents a compromise. The

hallmark of any revealing problem is that it forces you to think deeply about your software design.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Strategies for Solving Revealing Problems

You don't sit down and try to solve a revealing problem through brute force or sheer willpower. You must look at the

problem, roll it around, and consider perspectives. Viewing the problem from different angles gives you fresh insights.

Revealing problems aren't often solved in predictable ways. George Polya, mathematician and author of How to

Solve It, contrasts how insects and animals and humans approach problem solving:

Mary Poppendieck says that "wicked projects arise when a project is organized as if it were

tame—thus creating a monster." To tame wicked projects, Poppendieck advises that they "are best

served by an adaptive process instead of traditional methodologies."

"An insect tries to escape through the windowpane, tries the same hopeless thing again and again, and

does not try the next window which is open and through which it came into the room. A mouse may act

more intelligently; caught in the trap, he tries to squeeze through between two bars, then between the

next two bars, then between other bars; he varies his trials, he explores various possibilities. A man is

able, or should be able, to vary his trials still more intelligently, to explore the various possibilities with

more understanding, to learn by his errors and shortcomings. 'Try, try again' is popular advice. It is good

advice. The insect, the mouse, and the man follow it; but if one follows it with more success than the

others it is because he varies his problem more intelligently."

We are great problem solvers because we don't give up and don't often repeat dumb mistakes. Because rarely are

we lucky enough to hit on a solution right away, we keep trying to find a good angle. We don't give up, and we are

clever. We're very good at finding solutions because we weave our past experiences into a solution by what Polya

calls "action of contact": Our current line of thinking makes contact with some past experience that may be relevant.

Whenever you shift your perspective, you contact a different set of potentially relevant experiences. This means that

the more experience you have with a particular class of problems, the more adept you are at shifting quickly to

revealing angles and forming fruitful connections.

Problem solving requires these fundamental skills:

The ability to shift your perspective and vary the problem

The ability to gauge whether an approach, if pursued, is likely to bear fruit

Knowing when you've hit a dead end

Most revealing problems require intense concentration. People get tired when they concentrate on the same point for

very long. So to stick with it, you must redirect and look at different aspects of the problem. If there are new points to

consider, you stay interested. If not, your interest lags. To keep working productively on a problem, you need to take

breaks from time to time or shift your point of view.

Before crafting an object-oriented solution, think about the nature of the problem and the solution in

general terms. After you've identified a plausible design strategy, you can then apply these

techniques to craft a solution. Don't mistake the mechanisms used in the solution for the general

solution.

The principal means we use to vary a problem, according to Polya, are generalization, specialization, analogy,

decomposition, and recombination. These are an amazing fit with object-oriented design techniques! By using these

techniques as a designer, you keep your basic reasoning skills sharp. But to solve a revealing problem you'll need to

think through a problem at many different levels. You may form complex chains of reasoning, or bounce around and

recombine a number of half-baked solutions to finally come up with a three-quarters-baked solution. It's a lot of hard

work!

Redefining the Problem

Sometimes you can solve a problem by completely shifting your point of view. Instead of trying to solve the problem,

turn the problem on its head. Imagine that everything worked as you wanted and the problem you are trying to solve

doesn't exist. Live in that world awhile. Describe it. Envision how the machinery of your application might work in this

ideal scene. Now, step back and figure out what you need to do create that ideal scene.

Instead of trying to optimally schedule routes for transporting packages, FedEx redefined the problem.

Instead of working on algorithms to optimize "a traveling salesman problem", it defined a whole new way

of doing business. All packages are flown to a central location, sorted, and then loaded on the

appropriate plane. Even packages shipped within the same city are routed through this central hub.

This makes scheduling easier but makes sorting harder. Let's consider a software example:

A programming language that uses garbage collection, such as Java, C#, or Smalltalk, will automatically

recover memory from objects that are no longer being used. Early implementations of object-oriented

environments used reference counting to manage memory. Every time a new reference to an object was

made, its reference count was incremented. Each time a memory reference to an object was

overridden, its reference count was decremented. If the count went to zero, the memory for the object

was freed. Reference counting is simple, but very expensive in terms of computational overhead. To

speed up garbage collection algorithms, implementers of the languages redefined the problem—and

now use a sophisticated scavenging algorithms.

Did replacing referencing counting techniques with sophisticated management of multiple object spaces and efficient

marking strategies simplify the design of garbage collectors? No. But it did allow dramatic improvements in the

performance of most applications. Solving a problem by redefining it doesn't necessarily simplify your design. It only

opens up new possibilities.

Synthesizing a Solution

Another approach to solving a revealing problem is to combine several parts of some almost-OK solutions. Even

though you know that these potential solutions are flawed in one way or another, you can examine each for its

strengths and weaknesses. Then propose a solution that combines the strengths of several flawed solutions and

doesn't have their weaknesses. When designing reliable collaborations for writing a phone number, we devised a

strategy that combined several recovery techniques because no single strategy proved satisfactory:

An object would attempt to write down the phone number but broadcast a request for a pencil if it failed

to locate one. It might then wait for a certain amount of time. But if no one provided it with one, ultimately

it might ignore the request. Meanwhile, the requester might wait awhile for confirmation and then locate

another to write the phone number after waiting a predetermined period of time.

Although rather complicated, this solution does handle several exceptional conditions. It's better than any individual

simple solution, but is it a good solution? A simpler solution is always preferable. But if simple solutions aren't

adequate, it's appropriate to consider a more complex solution. Sometimes there aren't any simple solutions or easy

answers.

To solve revealing problems requires concentrated periods of thought and reflection, interspersed with time away

from the problem. You need time to let things soak in. You need to let your background mental activity kick in and

make connections between the problem and your experiences.

But on any project there's a ton of work to do. There's the core. And because it's been identified as being central, it

usually gets the attention it deserves. And then there are revealing problems, which have their own rhythms—intense

periods of concentration interspersed with background mental processing. Revealing problems are always either

squarely demanding your undivided attention or lurking in the background. When they require soak time, take a break

and work on something else. There's plenty of other stuff that needs your attention, too.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Working on the Rest

The rest is what you work on day in and day out, week after week, when nothing else demands your attention. What

items might be included in the rest?

Common error logging or reporting mechanisms

Data conversion

Exception handlers

Basic features that are similar to ones you've already implemented

Unhappy path scenarios

Optional features

Alternative strategies for accomplishing some behavior

Support for different ways that users accomplish basic tasks

Several items are on this list just to provoke your thinking. It's easy to get caught up in a debate of what's core and

what's in the rest. Don't waste time debating whether common error logging and reporting mechanisms are

considered core design work or part of the rest. If you know that something is just basic design work that has to be

there—nothing special, nothing fancy—it's probably part of the rest. What about exception handling? Why isn't the

90% of your design work that supports the unhappy scenario a core design task? Well, depending on your project, it

might be. Or it might not. When your team agrees that some design task is critical to the success of your design, add

it to your list of core items. But not every design task is equally critical. Not everything can have the highest priority.

Core problems should be given more attention. That doesn't mean the rest gets slighted. It just isn't at the top of your

list.

The way you organize your design work, and how much time you spend working in uninterrupted stretches, can be

critical to your success. Design and programming involve thinking, problem solving, and concentrated efforts. If you

don't give core design activities your undivided attention, you can expend a lot of energy starting, stopping, and

restarting. Alistair Cockburn, in Agile Software Development, describes why distractions can be so maddening:

"Software consists of tying together complex threads of thought. The programmer spends a great deal

of time lifting and holding together a set of ideas.... If she gets called to a meeting ... her thought

structure falls to the ground and she must rebuild it after the meeting. It can take 20 minutes to build this

structure and an hour to make progress. Therefore, any phone call, discussion, or meeting that distracts

her for longer than a few minutes causes her to lose up to an hour of work and an immense amount of

energy."

It isn't always the meeting or the phone call or the overheard conversation that causes you to lose focus. Quitting a

design session without coming to a good stopping point can also do you in.

The worst thing you can do to break your flow is to put a rubber band around a stack of CRC cards,

throw them in a drawer, and pick them up after a week.

At the end of the day, it is tempting to leave CRC cards scattered around a table and white boards full of

scribbles and sketches. Drop everything, the day is over! Time and time again we've found that

spending just a minute or two to summarize where you are and where you might pick up your work can

have a big payoff. Scribbling a couple of notes about the "state of your design" on a whiteboard before

dashing off helps your team to reconnect with the design the next morning. Even taking a few seconds

to group or rearrange CRC cards, instead of collecting them into a big pile, can help.

Whether you are working on some core problem or on something slightly less important, take time to mentally wrap

things up whenever you break away from design. Because the rest of your design work fits into days full of meetings,

programming, conversations, and distractions, this isn't always easy. But it helps if you conclude (rather than halt) a

design episode before switching to another task.

It's hard to keep things on track and give design your proper attention when you are constantly

distracted. Block off a chunk of time—at least an hour at a stretch—to work on any significant design

task. Unless you are really caught up in your work, you need short breaks to keep your energy level

high.

Above all, don't lose sight of the big picture. The core must be solid, the rest needs attention, and usually there are

places where you'll need to cut corners. If you adopt development practices that help you honestly set and revisit your

priorities, you will be much more comfortable making these design trade-offs.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Designing Responsibly

"Fudging" on a software project is the equivalent of drawing pictures that distort the size and relative importance of

things. Ever see a drawing of the United States with New York looming large in the forefront and the rest so small as

to be indistinguishable? The tiny bits on the drawing are analogous to the parts of your design you are fudging on.

You make 'em really small and insignificant in order to leave room for the "important" stuff. Different developers—and

different development methods—fudge on different things.

Michael Jackson, in Software Requirements and Specifications, talks about the consequences of fudging. If you fudge

on the wrong things, your software development effort is doomed. In Jackson's opinion, most object-oriented design

methods pay attention to developing abstractions and inventing class hierarchies and understanding object

interactions, but they fudge on correctness. He further argues that dividing a system into objects and classes makes it

easier to fudge on understanding larger patterns of behavior. In contrast, formal methods are very careful about

correctness and mathematical precision. But they fudge on how software should relate to its users and environment.

One of the parts of UML that we've fudged on mentioning in this book is the Object Constraint

Language, or OCL. It is a modeling language that is part of UML. Using OCL, you can formally specify

constraints in your model. If you need to precisely specify preconditions, postconditions, guards,

relations, and operations in your design model, OCL is one formal language you can use.

If you view software development (and object design) as only a narrow set of activities—focused on producing an

object-oriented application—Jackson's assessment may be accurate. We think Jackson's view of object design and

development practices is too limited. As designers, we naturally think in terms of software objects and their roles and

interactions. You can zoom in and study individual collaborators, or you can shift your perspective to look at paths of

collaboration among object neighborhoods and components. But although objects take center stage in our work,

designing responsibly means fitting our work into a larger context of people, processes, and organizations. Design is

a collaborative activity that at its heart involves melding the strengths of a group of individuals in order to produce

something of value: a software design that meets customer needs. To keep on track, your team must do more than

design responsibly. It must adopt development practices that support your project's values. People, development

practices, and attention to design are equally important to a project's success.

"Basketball is a team sport filled with individual talent. Software development is similar.

Collaboration—joint production of work products, collaborative decision making, and knowledge

sharing—builds high-performance teams out of groups of individuals."

—Jim Highsmith

Any development method or team emphasizes certain practices and, as a consequence, will slight others. Is fudging

a bad thing? It is, but only if you ignore something that shouldn't be swept aside. The practices you adopt should

support those things you value. If you need to be more formal, that is something you shouldn't fudge on. Don't use

object technology and informal techniques as an excuse for fudging. You can add more precision and rigor to your

design. But each project must adapt a set of development practices that supports its specific goals. There is much

more to a successful project than a set of good design practices and techniques. There are certainly more good

design techniques than those we've mentioned in this book.

Designers of highly interactive systems will need additional practices that help them to identify and design effective

user-system interactions. Embedded software designers often spend a lot of time on reliability and make trade-offs

between memory utilization and execution speed. They may need to develop complex models that represent the

state of their system, its hardware, and its software. Yet these designers can still reason about their software in terms

of objects having roles and responsibilities. Although every project's concerns are slightly different from those of other

projects, its primary tool—the power of abstraction used to create a model of software objects—remains constant.

An intriguing trend in software development is toward "agile" development practices. The agile movement embraces

the notion that teams and organizations should flex and adapt to changing conditions. According to Jim Highsmith,

those who pursue agile development practices "seek to restore credibility to the concept of methodology. We want to

restore a balance. We accept modeling, but not in order to file some diagram in a dusty corporate repository. We

accept documentation, but not hundreds of pages of never-maintained and rarely used tomes. We plan, but

recognize the limits of planning in a turbulent environment."

Agility advocates want to be nimble. Development practices that worked well last week may need tuning or changing

tomorrow. Fundamental to agile practices are the following beliefs:

Organizations exhibit both chaos and order and cannot be managed by predictive planning and execution

practices.

Collaborative values and principles are vital to a project's success.

Barely sufficient methodology lets a development team concentrate on those activities that create value.

Agile methods do not equate to good, and non-agile (or rigid) methods to bad. There are many places

where agile, adaptable practices are vital. But there are situations when software should be

developed in a rigorous fashion. Software that controls life-critical systems demands more formal

methods and practices.

Responsibility-Driven Design offers techniques that fit with and complement agile practices. Our emphasis is on

software responsibilities. Following this approach, you start with rough ideas and refine them. You add as much

precision as you need in your design work. Initially, you identify candidate objects, characterize them, assign them

responsibilities, and develop an understanding of your application's control style. You might identify and apply design

patterns or work through issues of trust among collaborators. Or you might develop exception-handling mechanisms.

If you need a flexible design, you would pinpoint hot spots and then strategize how best to support planned variations

in your software's behavior. Along the way you might develop and document collaboration stories to highlight key

points in your design. Depending on your development practices, you could either keep these as part of your

permanent design record or discard them after you've effectively communicated to others.

Responsibility-Driven Design offers tools and techniques, along with a galvanizing way of viewing your design.

Thinking and reasoning about software in terms of objects, their roles, and their collective responsibilities provide a

powerful perspective—one that doesn't fudge on a model of software as an organization of responsible, collaborating

objects.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

I l@ve RuBoard

Further Reading

How to Solve It by George Polya (Princeton University Press, 1971) presents many strategies for developing

solutions to problems. Polya, a mathematician, freely uses mathematical examples. If you are not mathematically

inclined, you can get past those parts quite nicely by not puzzling over them. Instead, concentrate on Polya's logical

discussions and advice. The book contains summaries of various problem-solving strategies and questions to ask

that are fundamental to any kind of problem solving.

Agile development practices are garnering a lot of attention. If you want to read a thoughtful discussion of the

common principles behind agile development and survey six different agile methods, pick up Jim Highsmith's Agile

Software Development Ecosystems (Addison-Wesley, 2002).

I l@ve RuBoard

I l@ve RuBoard

Bibliography

 Adams, Douglas. Mostly Harmless (Hitchhiker's Guide Series #5). Random House, 1993.

 Albers, Josef. "One Plus One Equals Three or More: Factual Facts and Actual Facts." In Albers, ed., Search Versus

Re-Search. Hartford, 1969.

 Alexander, Christopher. Notes on the Synthesis of Form. Harvard University Press, 1970.

 Amyot, Daniel, "Frequently Asked Questions, with Answers," http://www.usecasemaps.org/, March 23, 1999.

 Auer, Ken, and Roy Miller. Extreme Programming Applied: Playing to Win. Addison-Wesley, 2002.

 Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-Wesley, 1998.

 Beck, Kent, and Ward Cunningham. "A Laboratory for Teaching Object-Oriented Thinking," OOPSLA '89 Conference

Proceedings, pp. 1–6.

 Bellin, David, and Susan Suchman Simone. The CRC Card Book. Addison-Wesley, 1997.

 Bennett, Doug. Designing Hard Software. Prentice Hall, 1997.

 Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User Guide. Addison-Wesley,

1999.

 Budd, Timothy. An Introduction to Object-Oriented Programming. 3rd ed. Addison-Wesley, 2002.

 Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Micahel Stal. Pattern-Oriented Software

Architecture: A System of Patterns. John Wiley & Sons Ltd., 1996.

 Clay, Jean, "Albers: Josef's Coats of Many Colours," Realities, August 1968, p. 68.

 Cockburn, Alistair. Agile Software Development. Addison-Wesley, 2002.

 Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, 2001.

 Constantine, Larry, and Lucy Lockwood. Software for Use: A Practical Guide to the Models and Methods of Usage

Centered Design. ACM Press, 1999.

 Coplien, James O., and Douglas C. Schmidt, eds. Pattern Languages of Program Design. Addison-Wesley, 1995

 Davis, Alan. 201 Principles of Software Development. McGraw-Hill, 1995.

 Douglass, Bruce Powel. Real-Time UML: Developing Efficient Objects for Embedded Systems. Addison-Wesley,

1998.

 Ecklund, Earl, Lois Delcambre, and Michael Freiling, "Change Cases: Use Cases That Identify Future Requirements,"

OOPSLA '96 Conference Proceedings.

http://www.usecasemaps.org/default.htm

 Edwards, Betty. Drawing on the Artist Within: An Inspirational and Practical Guide to Increasing Your Creative

Powers. Fireside, 1987.

 Fayad, Mohamed E., Douglas Schmidt, and Ralph Johnson, eds. Building Application Frameworks. John Wiley &

Sons, 1999.

 Fayad, Mohamed E., Douglas Schmidt, and Ralph Johnson, eds. Implementing Application Frameworks. John Wiley

& Sons, 1999.

 Fontoura, Marcus, Wolfgang Pree, and Bernhard Rumpe. The UML Profile for Framework Architectures.

Addison-Wesley, 2002.

 Fowler, Martin. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1997.

 Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

 Froehlich, Gary, H. James Noover, Ling Liu, and Paul Sorenson. "Reusing Hooks." In Mohamed E. Fayad et al., eds.,

Building Application Frameworks. John Wiley & Sons, 1999.

 Galton, Francis. Inquiries into Human Faculty and Its Development. London: Dent, 1907.

 Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

 Goodenough, John. In Alexander Romanovsky et al., eds. Advances in Exception Handling Techniques.

Springer-Verlag, 2001.

 Harel, David, "From Play-In Scenarios to Code: An Achievable Dream," Technical Report MCS00-06, The Weizmann

Institute of Science, February 2000.

 Harrison, Neil et al., eds. Pattern Languages of Program Design 4. Addison-Wesley, 2000.

 Highsmith, Jim. Agile Software Development Ecosystems. Addison-Wesley, 2002.

 Hofstadter, Douglas. Le Ton Beau De Marot: In Praise of the Music of Language. Basic Books, 1998.

 Howell, Charles, and Gary Veccellio. "Experiences with Error Handling in Critical Systems." In Alexander

Romanovsky et al., eds., Advances in Exception Handling Techniques. Springer-Verlag, 2001.

 Ingalls, Daniel. "A Simple Technique for Handling Multiple Polymorphism," OOPSLA '86 Conference Proceedings,

pp. 347–349.

 Israels, Chuck, quoted in Paul F. Berliner, Thinking in Jazz: The Infinite Art of Improvisation. University of Chicago

Press, 1994.

 Jackson, Michael. Software Requirements & Specifications: A Lexicon of Practice, Principles and Prejudices.

Addison-Wesley, 1995.

 Jackson, Michael. Problem Frames: Analyzing and Structuring Software Development Problems. Addison-Wesley,

2001.

 Jacobson, Ivar et al. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.

 Jones, Steven R. "A Framework Recipe." In Mohamed E. Fayad et al., eds., Building Application Frameworks. John

Wiley & Sons, 1999.

 Kay, Alan, quoted in Cade Metz, "The Perfect Architecture." PC Magazine, September 4, 2001,

http://www.pcmag.com/print_article/0,3048,a=10175,00.asp.

 Kerievsky, Joshua, "Stop Over-Engineering!" Software Development, Vol. 10, No. 4 (April 2002).

 Klee, Paul. Altes Fraulein, 1931. Paris: Spadem, 1976.

 Kovitz, Benjamin L. Practical Software Requirements: A Manual of Content and Style. Manning Publications, 1998.

 Kruchten, Philippe. The Rational Unified Process: An Introduction, Second Edition. Addison-Wesley, 2000.

 Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified

Process. 2d ed. Prentice-Hall, 2001.

 Lea, Douglas. Concurrent Programming in Java™, Second Edition: Design Principles and Patterns.

Addison-Wesley, 2000.

 Malveau, Rapahel, and Thomas Mowbray. Software Architect Bootcamp. Prentice Hall, 2001.

 Martin, Robert C. et al., eds. Pattern Languages of Program Design 3. Addison-Wesley, 1998.

 Metsker, Steven. Design Patterns Java™ Workbook. Addison-Wesley, 2002.

 Meyer, Bertrand. Object-Oriented Software Construction. 2d ed. Prentice-Hall, 2000.

 Minsky, Marvin. The Society of Mind. Simon and Schuster, 1988.

 Norman, Donald. The Design of Everyday Things. Basic Books, 2002.

 Page-Jones, Meilir. Fundamentals of Object-Oriented Design in UML. Addison-Wesley, 2000.

 Peter, Laurence J., and Raymond Hull. The Peter Principle. William Morrow, 1969.

 Petroski, Henry. To Engineer Is Human. Vintage Books, 1992.

 Pirsig, Robert. Zen and the Art of Motorcycle Maintenance: An Inquiry into Values. William Morrow, 1975.

 Polya, George. How to Solve It. Princeton University Press, 1971.

 Poppendieck, Mary, "Wicked Problems," Software Development, Vol. 10, No. 5 (May 2002).

 Pree, Wolfgang. Design Patterns for Object-Oriented Software Development. Addison-Wesley, 1995.

 Pree, Wolfgrang. "Framelets—Small Is Beautiful." In Mohamed E. Fayad et al., eds., Building Application

Frameworks. John Wiley & Sons, 1999.

 Pye, David. The Nature and Aesthetics of Design. Van Nostrand Reinhold Company, 1978.

 Reenskaug, Trygve, Per Wold, and Odd Arild Lehne. Working With Objects: The OOram Software Engineering

Method. Manning Publications, 1996.

http://www.pcmag.com/print_article/0,3048,a=10175,00.asp

 Rittel, Horst, and Melvin Webber. "Dilemmas in a General Theory of Planning." In Policy Sciences, Vol. 4. Elsevier

Scientific Publishing, 1973.

 Romanovsky, Alexander et al., eds. Advances in Exception Handling Techniques. Springer, 2001.

 Rumbaugh, James. OMT Insights. SIGS Books, 1996.

 Strunk, T., and E.B. White. The Elements of Style. Macmillan Publishing Co., 1972.

 Tufte, Edward R. The Visual Display of Quantitative Information. Graphics Press, 1983.

 Vlissides, John M. et al., eds. Pattern Languages of Program Design 2. Addison-Wesley, 1996.

 Vygotsky, Lev S. Thought and Language. Rev. ed. MIT Press, 1986.

 Wilkinson, Nancy. Using CRC Cards: An Informal Approach to Object-Oriented Development. Cambridge University

Press, 1995.

 Wirfs-Brock, Rebecca, and Brian Wilkerson, "Object-Oriented Design: A Responsibility-Driven Approach," OOPSLA

'89 Conference Proceedings, pp. 71–75.

 Wirfs-Brock, Rebecca, "Adding to Your Conceptual Toolkit: What's Important About Responsibility-Driven Design," in

The Report on Object Analysis and Design, Vol. 1, No. 2 (1994).

 Wirfs-Brock, Rebecca, "Designing Scenarios: Making the Case for a Use Case Framework," The Smalltalk Report,

Vol. 4, No. 3 (1994).

 Wirfs-Brock, Rebecca, "The Art of Meaningful Conversations," The Smalltalk Report, Vol. 4, No. 5 (1995).

 Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Software. Prentice Hall PTR,

1990.

 Wirfs-Brock, Rebecca. "Characterizing Your Objects," The Smalltalk Report, Vol. 2, No. 5 (1993).

 Wirfs-Brock, Rebecca. "Designing Objects and Their Interactions: A Brief Look at Responsibility-Driven Design." In

John Carroll, ed., Scenario-Based Design: Envisioning the Work and Technology in System Development. John

Wiley & Sons, 1995.

I l@ve RuBoard

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Addison%20Wesley%20-%20Object%20Design%20Roles,%20Responsibilities,%20and%20Collaborations.chm/0201379430_

	Main Page
	Table of content
	Copyright
	Foreword by Ivar Jacobson
	Foreword by John Vlissides
	Preface
	How To Read This Book
	Acknowledgments

	Chapter 1. Design Concepts
	Object Machinery
	Roles
	Object Role Stereotypes
	Roles, Responsibilities, and Collaborations
	Object Contracts
	Domain Objects
	Application-Specific Objects
	Interfaces
	Classes
	Composition
	Inheritance
	Object Organizations
	Components
	Patterns
	Frameworks, Inc.
	Architecture
	Architectural Styles
	Design Description
	Summary
	Further Reading

	Chapter 2. Responsibility-Driven Design
	A Process for Seeing, Describing, and Designing
	Writing the Script: Analysis Descriptions
	Casting the Characters: Exploratory Design
	Tuning the Production: Design Refinement
	Summary
	Further Reading

	Chapter 3. Finding Objects
	A Discovery Strategy
	Looking for Objects and Roles, and Then Classes
	Why Tell a Design Story?
	Search Strategies
	What's in a Name?
	Describing Candidates
	Characterizing Candidates
	Connecting Candidates
	Looking for Common Ground
	Defend Candidates and Look for Others
	SUMMARY
	FURTHER READING

	Chapter 4. Responsibilities
	What Are Responsibilities?
	Where Do Responsibilities Come From?
	Strategies for Assigning Responsibilities
	Implementing Objects and Responsibilities
	Testing Your Candidates' Quality
	Summary
	Further Reading

	Chapter 5. Collaborations
	What Is Object Collaboration?
	The Design Story for the Speak for Me Software
	Collaboration Options
	Strategies for Identifying Collaborations
	Simulating Collaborations
	Designing Good Collaborations
	Making Collaborations Possible
	When Are We Finished?
	Summary
	Further Reading

	Chapter 6. Control Style
	What Is Control Style?
	COntrol Style Options
	Making Trade-Offs
	Developing Control Centers
	A Case Study: Control Style for External User Events
	Summary

	Chapter 7. Describing Collaborations
	Telling Collaboration Stories
	A Strategy for Developing a Collaboration Story
	Establishing Scope, Depth, and Tone
	Listing What You Will Cover
	Deciding on the Level of Detail
	Choosing the Appropriate Form
	Tell It, Draw It, Describe It: Guidelines
	Organizing Your Work
	Preserving Stories
	Summary
	Further Reading

	Chapter 8. Reliable Collaborations
	Understanding the Consequences of Failure
	Increasing Your System's Reliability
	Determining Where Collaborations Can Be Trusted
	Identifying Collaborations To Be Made Reliable
	Designing A Solution
	Documenting Your Exception-Handling Designs
	Reviewing Your Design
	Summary
	Further Reading

	Chapter 9. Flexibility
	What Does It Mean to Be Flexible?
	Degrees of Flexibility
	The Consequences of a Flexible Solution
	Nailing Down Flexibility Requirements
	Recording Variations
	Variations and Realizations
	The Role of Patterns in Flexible Designs
	How to Document a Flexible Design
	Changing a Working System's Design
	Summary
	Further Reading

	Chapter 10. On Design
	The Nature of Software Design
	Tackling Core Design Problems
	Frame the Problem
	Dealing with Revealing Design Problems
	Strategies for Solving Revealing Problems
	Working on the Rest
	Designing Responsibly
	Further Reading

	Bibliography

